
Building Effective
Modelling Domains using

Alloy
Sagar Sen
Equipe Triskell, INRIA, Rennes, France
19th November, 2008

Outline
1. Motivation

2. Running Example : HFSM

3. Building Modelling Domains using Alloy

3. Signatures in Alloy

4. Facts in Alloy

5. Predicates and Functions in Alloy

6. Run Command in Alloy

7. Assert and Check Command in Alloy

8. Other features for Automation

9. Applications

Motivation

   Today, software systems are engineered using complex
graph structures called models based on principles of
Model-driven Engineering (MDE)

   MDE is an emerging trend with need for tools to help
design modelling languages and models.

   Problems in building such tools include: (a) Model
Conformance (b) Model Synthesis (for testing,
completion etc.) (c) Evolution of Specification
Language (d) Improving Model Design (e) Maximum
AUTOMATION

Building Modelling Domains
using Alloy

   We want to solve the problems presented in motivation

   We propose the mapping of a modelling domain to
declarative constraint specification language, Alloy.

Alloy KodKod Boolean CNF

SAT Solver
Cartier

What is Alloy?

   Software Implementation of first-order relational logic with quantifiers
(FORLQ)

   Declaratively specify a set of instances (models in MDE) as an Alloy
Model (Meta-model in MDE)

   Transforms Alloy formulas (in FORLQ) of the Alloy Model to
Boolean CNF

   Solves Boolean CNF using a satisfiability (SAT) solver to give one
or more instances that conform to the initial Alloy Model

   Or, Solve Boolean CNF to give a counterexample instance that
shows that an assertion does not hold true against an Alloy Model.

Running Example

   Hierarchical Finite State Machine Modelling Domain

Alloy Signatures

To Specify Concepts

Signatures in Alloy
one sig HFSM
{

 currentState : lone AbstractState
 states : set AbstractState
 transitions : set Transition

}

Signatures in Alloy
abstract sig AbstractState
{

 label : one Int
 outgoingTransition : set Transition
 incomingTransition : set Transition
 container : lone Composite
 hfsmCurrentState: one HFSM
 hfsmStates : one HFSM

}

Signatures in Alloy
sig State extends AbstractState
{

 isFinal: one Boolean
 isInitial: one Boolean

}

Alloy Facts

To Specify Constraints on
Concepts

Facts in Alloy

Example : Containment Constraints

fact HFSM_states_composite
{
all p: State | p in HFSM.states and
all owningClassObject1 : HFSM, owningClassObject2 : HFSM |
all property1 : HFSM.states, property2:HFSM.states |
property1 = property2 implies owningClassObject1 = owningClassObject2
}

fact HFSM_transitions_composite
{
all p: Transition | p in HFSM.transitions and
all owningClassObject1 : HFSM, owningClassObject2 : HFSM |
all property1 : HFSM.transitions, property2:HFSM.transitions |
property1 = property2 implies owningClassObject1 = owningClassObject2
}

Quantifier Expression

Facts in Alloy

Example : Exactly One Initial State and At least one Final State

fact exactlyOneInitialState {
 one s:State|s.isInitial == True

}

fact atleastOneFinalState {
 some s:State | s.isFinal == True

}

Facts about Alloy Facts

   A fact is ALWAYS true in a model

   A fact contains expressions such as quantifier
expressions, binary expression, compare expressions
etc.

   A quantifier expression is used specify properties on a
set of objects

   Allowed quantifiers are : all, some, one, and lone

Alloy Predicates

To Specify On/off
Constraints on Concepts

Predicates in Alloy

Example : At least 2 Composite States

pred atleast2Composite()

{
#Composite > 2
}

A predicate can be satisfied when desired.

Alloy Functions

Named Expressions

Functions in Alloy

Example :Number of states in a Composite State is a functions as named expression

//
fun numberOfStates(composite:Composite): one Int
{
 #composite.ownedStates
}

Using a function value in a predicate:

pred atleastTwoAbstractStatesInComposite
{
numberOfStates[Composite]>2
}

Alloy Run Command

 To Generate Instances

Run Command in Alloy

   Generating instances conforming to an Alloy model

Scope (Up to N objects for a signature)

pred example { ...}
run example for 20

Exact numbers and scope

run example for exactly 10 State, exactly 10 Composite, 1 HFSM, exactly 20 Transition

Output:

Alloy instance if all facts and called predicates are satisfied.

Alloy Assertions and Check
Command

 To Generate
Counterexamples

Verifying Properties using
Assert and Check

   Lets see if an Alloy model contains a Composite State
with itself.

assert compositeStatedoesnotContainItself
{
all c:Composite | c not in c.ownedStates
}

check compositeStatedoesnotContainItself
for 20

We include a fact to avoid
this… (Improving Spec.)

fact compositeCannotContainItself
{
all c1:Composite, c2:Composite | c1 = c2 => c2
not in c1.ownedStates and c1 not in
c2.ownedStates

}

Alloy Other Automation

 Features

Alloy API
1.  API based parsing of Alloy model, execution

of multiple run commands for generation of
models

2.  Setting of different types of SAT solvers:
Zchaff, MiniSAT, Berkmin etc. for solving

 resulting Boolean CNF

Applications

   Test Model Generation for Model Transformation
Testing, Service testing etc.

   Completion of Partially Specified Models

   Improving Model Design ?

