Build{ng Effective
Modelhng Domains
for Testmg

~ Sagar Sen
Equipe Triskell, INRIA/IRISA

35042 Rennes, France



Outline

Motivation

Challenge : Building Effective Modelling Domains
Solution Overview : Cartier

Cartier : A Guided Tour

Instance Generation using the Alloy API
Validation of Test Cases: Mutation Analysis
Experiments and Results

Conclusion



Motivation : The Modelling

Domain

Modelling Domain

Inputs
are Models




Motivation : Transformations

r D e —
\ —— — Test model knowledge - J
Input meta-model 1. Model fragments Output meta-model

2. Test Model Objectives

specifies test models s
specifies

Input Domain Output Domain

Question: How to select test models using knowledge from
Input meta-model + Pre; + Test Model Knowledge?



Motivation : Applications
1. Model transformation pipelines such as XML to XML Pipelines (Eg: Xproc)

2. Code Generators (Eg: Simulink Model to Code)

3. Object Persistence (Eg: Hibernate 3.0)

4. Simulation Traces (Eg: Simulink, Modelica)

5. UML Model Design Re-factoring (Eg: Rhapsody)

6. Code migration (Cobol to Java/C#, VPLUS Ul to XML/J2EE )
7. Game development pipelines (Eg: XNA Studio)

8. Business Process Models (Eg: Websphere business process model)

9. Code reverse engineering

10. Graphical Editors ...



Motivation : The Testing

Knowledge COnteXt
Domain Concepts

Static Analysis a&%
Partitioning

Testers 1. Solve

Modelling Domain
Effective
Test Cases Modelling
Domain

2. Test
Y 3. Validate

v f
> £
Software Post-condition -

(MT) / Coverage
Mutation Analysis




Challenge: Effective Domains

To select a model (a complex graph) from a constrained infinite domain

outgoingTransition  source

Transition /

] AbstractState

N 0. ownedState
event: String label: Integer
incomingTransition target 0.*
0.* 1
Unbounded number of
nsition
Transitions Stete o
Composite |@—
isFinal: Boolean container
islnitial: Boolean
target
outgoingTransition
incomingTransition N
& Ik : Transition
s outgoingTransition S YR a
[ % ._ T event = evt3
: State event = evt p f 3
S er incomingTransition
isInitial = true
target
isFinal = false 2
label = 1 = . State
: Transition
source : i Initial = fal
outgoingTransition incomingTransition target| 1Sinitial =talse

event = evt2

isFinal = true
label = 3




Challenge: Building Effective
Modelling Domains for Testing

1. How to transform sources of knowledge for testing?

Meta-model Invariants | Model Fragments  Test Model Partial
(Ecore) (OCL) (Partitions) Objectives Model

\\//

> CONSTRAINTS
\ Experimental
Design

3. How to transform solutions

] = 2. How to solve and which solver!
to modelling domain instance!




Solution Overview: Cartier

1. Transformation from Knowledge Sources to Alloy

Meta-model Invariants | Model Fragments  Test Model Partial

(Ecore) (OCL) (Partitions) Objectives Model
[2@(
) .
Ceyp ' Experimental
2 Cartier < Des;
< esign
e _ /
0°
P»\\Oq Common Constraint Language : Alloy

SAT Solver -
ZChaff, MiniSAT, <—— Aﬂoy

Berkmin




Cartier : A Guided Tour

Cartier is implemented using Kermeta
( )
1 Kermeta (Meta-modelling Kernel) is a language to represent
meta-models and models of the different sources of

knowledge.
 Cartier uses “aspect-oriented modelling” to transform

aspects in source language to target language Alloy.
S0, what are the essential aspects in Kermeta that are

transformed to Alloy ? ....



Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

v

2. Test Model Knowledge

to
Alloy Predicates

|

3. Experimental Design

to
Alloy Run Commands




Cartier: A Guided Tour
(Object Persistence Case Study)

< <datatype>>
Boolean
< <javaclass>> java.lang.Boolean

(9 Ciassifier 0.
o« hame : String

classifier
< <datatype>> [IB
String
< <javaclass>> java.lang.String
R ——

(2 PrimitiveDataType

Transformed to an Allo
& Signature
= abstract sig Classifier
name : Int

(® Class
ersistent : Boolean

parent

Transformed to an Alloy
Signature

sig Class extends Classifier {

¢

is_persistent: one Bool, 3 Association | g » ® ClassModal
: Stri
parent : lone Class, B 25505 dtion
attrs : some Attribute tdeputlthe ibMiit€ trosDE gssifiemeta-model



Cartier: A Guided Tour

Transforming Invariants

No Cyclic Inheritance
OCL Version:

context Class:
inv :

not self.allParents()->includes(self)

to an Alloy fact (specified

for a subset)
Alloy Version:

fact noCycliclnheritance {

no c: Class | ¢ in c.*parent

inherits

inherits

SITREYNNNL



Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

v

2. Test Model Knowledge

to
Alloy Predicates

v

3. Experimental Design
to
Alloy Run Commands




Cartier : A Guided Tour

Transforming Model Fragments
Consider the model fragment (partition of the modelling domain)

obtained using MMCC (Frank Fleurey et al. 2007) on the UML

Class Diagram meta-model

Association(source=0) and Association(source =1)
At least one Association object with no source and one Association object

with one source
l transformed to

an Alloy predicate

pred modelFragmentl

{

some al:Association,aZ2:Association |#al.src=0 and #a2.src=1

J



Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

}
2. Test Model Knowledge

to
Alloy Predicates

v

3. Experimental Design
to
Alloy Run Commands




Cartier : A Guided Tour

Transforming Experimental Design

A experimental design specifies:
1) A factorial combination of number of objects

of each type and different predicates.
2) Scope of Integer, String
3) Maximum size of a sequence

l to Alloy Run Commands

run testModell for exactly 10 Class, exactly 5 Attribute, exactly 10 Association,
5 Int

run testModell for exactly 10 Class, exactly 10 Attribute, exactly 10 Association,
5 Int

run testModel2 for exactly 5 Class, exactly 5 Attribute, exactly 10 Association, 5
Int



Cartier : A Guided Tour

Instance Generation and Output Processing

Alloy API Calls

1. Load output Alloy model 2. Parse Alloy model

4. Select Boolean SAT

Solver

3. Generate Boolean CNF

5. Solve CNF and Dump
XML

 /
6. Transform XML to XMI




Instance Generation using
Alloy
Why Alloy?

[ Combines the power of first-order predicate logic with quantifiers
and operators in relational logic.
A restricted but theoretically sound meta-level declarative language.
[ Operators such as transitive closure improve the expressive power
of Alloy over for example Prolog
Eg: A constraint can be expressed on:

c.”\parent ={c.parent, c.parent.parent, c.parent.parent.parent....}
[ Operators such as the relational join (box/dot) allow you to specify
powerful navigation expressions on sets and relations.
Eg:

all c: State |c.label =5
1 Automatic transformation to Boolean CNF for instance and
counterexample generation for a finite scope.



Instance Generation using
Alloy
Some limitations

[ No support for higher-order relations.

1 That means no constraint on relations of relations

1 Constraints can be expressed on binary relations and their transitive
closure.

[ No fundamental support for String type from the MDE world. We
developed one.

1 No extensive support for functions on relations. Functions in Alloy
are named expressions.



Instance Generation using

Allo

For a given scope or exact nquer of objects Alloy

creates relations which are tuples of atoms.
Association ={

Example: (14,Class8,Class4),
(11,Class8,Class9),
(8,Class8,Class3),

sig Association { (e el i)

name: Int, sy (-10,Class6,Class9),
dest: one Class, (-14,Class5,Class3),
src: one Class (-16,Class5,Class6),
} (-16,Class5,Class?2),
(-1,Class4,Class1)
}

run mfAllRanges6a for 1 ClassModel, 5 int, exactly 10 Class,
exactly 20 Attribute, exactly 4 PrimitiveDataType, exactly 10 Association



Instance Generation using

Alloy

Association ={ Where do these values come from?
(14,Class8,Class4), /

(11,Class8,Class9),

(8,Class8,Class3), Nhat satisfies facts such as...

(1,Class7,Class5), /*An associations have the same name either

(-10,Class6,Class9), b
(-14,Class5,Class3), BhLeY. 2
T e —" are the same association or they have
Cl6 @155 Clas?) different sources®/
(-1,Class4,Class1) fact uniqueNameAssocSrc {
) all al:Association, aZ2:Association |

al.name == aZ.name => (al = a2 or al.src !=
a2.s1c)

}



Instance Generation using

a[1..10] ={ AHOY

(VI,VZ,Vs), BOOlean

o Compact Boolean Circuit
(v7,v8,v9),

(v10,v11,v12), KodKod ((v1==v4)=>(al=a2) or (v3!=v6)) and
(v13,v14,v15), Engine ((vl==v7)>(al=a3) or (v3!=v9)) and
(v16,v17,v18), — > ((vl==v10)=>(al=a4) or (v3!=v12)) and

(v19,v20,v21), Symmetry
(v22,v23,v24), Detection
(v25,v26,v27), &
) Breaking
fact uniqueNameAssocSrc {

all al:Association, aZ2:Association |

al.name == a2.name =>(al = a2 or al.src !=

a2.s1C)

J

l

Conjunctive Normal Form

cnf 267395 317287
-2 3884 0
-3 3884 0
-4 3884 0



Instance Generation using

Alloy

Conjunctive Normal Form SAT Solver

enf 267395 317287 Zthff
-2 3884 0 MiniSAT Al
438840 Ble Al XML Instances

43884 0 SAT4]

Cartier

v

XMI Instances



Validation : Mutation Analysis

Question: Are the generated test models able to detect bugs?

P

insert the 'mutation

oracle

operators
=S v
Mutant

improve the test set

suppress the equivalent mutants

mutants
killed |
mutants
alive '

_______________________________________

yes
Sufficient

(Mottu, J.; Baudry, B. & Traon, Y. L.
Mutation Analysis Testing for Model Transformations

Proceedings of ECMDA'06 (European Conference on Model Driven Architecture), 2006)



Validation : Mutation Analysis

A Navigation Mutation Operator Example
Relation to the Same Class Change - RSCC

b1

1 g:ClassA a:ClassB
ClassA bl ClassB

b2

T b:ClassB
b2

l..n b2

b3 c:ClassB
Metamodel b3 -

f:ClassB SCE d:ClassB

b2

Model



Experiments and Results

Experimental Design

Objective: To compare test generation strategies using mutation scores
of sets of test models:

a) Using model fragments and conforming to modelling domain

b) Randomly selected in a pool of models of various sizes conforming
to modelling domain.

We compare four strategies for model selection : AllRanges,

Random(15 models/set), AllPartitions, Random(5 models/set)

Models Generated for AllRanges = 8 x 15 = 120
Models Generated for AllPartitions = 8 x 5 = 40
Models Generated for Random = 200

Total = 360 models



Experiments and Results

Mutation Score

90%

85%

80%

75%

70%

65%

60%

55%

(5 models/set in 8 sets)

Strategy

= 87.60%
== 86.60%
| 32 729%
) 31.43%
== 72.68% 72.68%
Em 13%
68.56% 69.07%
i 55.98%
64.69%
3rd quartile = max
Hmedian = min
1st quartile
i 55.67%
Random AllPartitions(5/8) Random(15/8) AllIRanges(15/8)




Conclusion

We present a tool Cartier to transform a modelling domain

to Alloy

We show how we invoke the Alloy API to generate instances
or models.

We show how the effectiveness of these generated instances

can be improved for testing using test model knowledge such
as model fragments.

We want to apply Cartier and Alloy for several applications
in MDE such as test generation, partial model completion,
and improving modelling domain specifications.



