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Motivation : The Modelling 
Domain 

Modelling Domain 

Inputs  
are Models 



Motivation : Transformations 

Prei MTi 
Posti 

Input Domain Output Domain 

Input meta-model Output meta-model 
Test model knowledge 
1.  Model fragments 
2.  Test Model Objectives 

specifies specifies 
specifies test models 

Question: How to select test models using knowledge from  
Input meta-model + Prei + Test Model Knowledge? 



Motivation : Applications 
1.  Model transformation pipelines such as XML to XML Pipelines (Eg: Xproc) 

2. Code Generators (Eg: Simulink Model to Code) 

3. Object Persistence (Eg: Hibernate 3.0) 

4. Simulation Traces (Eg: Simulink, Modelica) 

5.  UML Model Design Re-factoring (Eg: Rhapsody) 

6.  Code migration (Cobol to Java/C#, VPLUS UI to XML/J2EE ) 

7. Game development pipelines (Eg: XNA Studio) 

8. Business Process Models (Eg: Websphere business process model) 

9. Code reverse engineering  

10. Graphical Editors … 



Software 
(MT) 

Motivation : The Testing 
Context 

CONSTRAINTS 

Effective  
Modelling  
Domain 

Test Cases 

Knowledge 
Domain Concepts 
Static Analysis 
Partitioning 
Testers 1. Solve 

2. Test 
3. Validate 
Post-condition 
Coverage 
Mutation Analysis 

Modelling Domain 



Challenge: Effective Domains 
To select a model (a complex graph) from a constrained infinite domain 

Unbounded number of 
Transitions 
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Challenge: Building Effective 
Modelling Domains for Testing 

Meta-model 
(Ecore) 

Invariants 
(OCL) 

Model Fragments 
(Partitions) 

Test Model  
Objectives 

1. How to transform sources of knowledge for testing? 

Partial 
Model 

CONSTRAINTS 

2. How to solve and which solver? 

Experimental  
Design 

3. How to transform solutions 
to modelling domain instance? 



Solution Overview: Cartier 

Meta-model 
(Ecore) 

Invariants 
(OCL) 

Model Fragments 
(Partitions) 

Test Model  
Objectives 

1. Transformation from Knowledge Sources to Alloy  

Cartier 

Alloy 

Common Constraint Language : Alloy 

SAT Solver 
ZChaff, MiniSAT, 

Berkmin 

Partial 
Model 

Experimental  
Design 



Cartier : A Guided Tour 
Cartier is implemented using Kermeta 

 (http://www.kermeta.org) 
  Kermeta (Meta-modelling Kernel) is a language to represent 
meta-models and models of the different sources of 
knowledge. 
  Cartier uses “aspect-oriented modelling” to transform 
aspects in source language to target language Alloy. 
 So, what are the essential aspects in Kermeta that are 
transformed to Alloy ? …. 



Cartier : A Guided Tour 

1. Kermeta Meta-model to 
Alloy Base Model 

2. Test Model Knowledge 
to 

Alloy Predicates 

3. Experimental Design 
to 

Alloy Run Commands 



Cartier: A Guided Tour  
(Object Persistence Case Study) 

Lets take the Classifier concept from the UML Class Diagram meta-model 

Transformed to an Alloy 
Signature 
abstract sig Classifier { 
      name :  Int 

 } 
String is abstracted to an 
integer for simplicity 

Lets take the Class concept concept that inherits from Classifier 

Transformed to an Alloy 
Signature 

sig Class extends Classifier { 
 is_persistent: one Bool, 
 parent : lone Class, 
 attrs : some Attribute 

} 



Cartier: A Guided Tour 
Transforming Invariants 

No Cyclic Inheritance 

inherits 

inherits 

ClassA : Class 

ClassB: Class 

ClassC: Class 

inherits 

name: String 
is_persistent:Bool 

name: String 
is_persistent:Bool 

name: String 
is_persistent:Bool 

? 
OCL Version: 

context Class: 

inv : 

not self.allParents()->includes(self) 

Alloy Version: 

fact noCyclicInheritance { 

 no c: Class | c in c.^parent 

} 

to an Alloy fact (specified 
for a subset) 



Cartier : A Guided Tour 

1. Kermeta Meta-model to 
Alloy Base Model 

2. Test Model Knowledge 
to 

Alloy Predicates 

3. Experimental Design 
to 

Alloy Run Commands 



Cartier : A Guided Tour 
Transforming Model Fragments 

pred modelFragment1 
{ 
some a1:Association,a2:Association|#a1.src=0 and #a2.src=1 
} 

Consider the model fragment (partition of the modelling domain) 
obtained using MMCC (Frank Fleurey et al. 2007) on the UML 

Class Diagram meta-model 

Association(source=0) and Association(source =1) 
At least one Association object with no source and one Association object 

with one source 
transformed to 
 an Alloy predicate 



Cartier : A Guided Tour 

1. Kermeta Meta-model to 
Alloy Base Model 

2. Test Model Knowledge 
to 

Alloy Predicates 

3. Experimental Design 
to 

Alloy Run Commands 



Cartier : A Guided Tour 
Transforming Experimental Design 

A experimental design specifies: 
1)  A factorial combination of number of objects 

of each type and different predicates. 
2)   Scope of Integer, String  
3) Maximum size of a sequence 

to Alloy Run Commands 

run testModel1 for exactly 10 Class, exactly 5 Attribute, exactly 10 Association,  
5 Int 
run testModel1 for exactly 10 Class, exactly 10 Attribute, exactly 10 Association,  
5 Int 
. 
run testModel2 for exactly 5 Class, exactly 5 Attribute, exactly 10 Association, 5 
Int 



Cartier : A Guided Tour 
Instance Generation and Output Processing 

1. Load output Alloy model 

Alloy API Calls 

2. Parse Alloy model 

3. Generate Boolean CNF 
4. Select Boolean SAT 

Solver 

5. Solve CNF and Dump 
XML 

6. Transform XML to XMI 



Instance Generation using 
Alloy 

Why Alloy? 
  Combines the power of first-order predicate logic with quantifiers  
and operators in relational logic.  
  A restricted but theoretically sound meta-level declarative language. 
  Operators such as transitive closure improve the expressive power 
of Alloy over for example Prolog 
Eg: A constraint can be expressed on: 
    c.^parent ={c.parent, c.parent.parent, c.parent.parent.parent….} 
  Operators such as the relational join (box/dot) allow you to specify 
powerful navigation expressions on sets and relations. 
Eg: 
    all c: State |c.label !=5 
  Automatic transformation to Boolean CNF for instance and  
counterexample generation for a finite scope. 



Instance Generation using 
Alloy 

Some limitations 
  No support for higher-order relations.  
  That means no constraint on relations of relations 
  Constraints can be expressed on binary relations and their transitive  
closure. 
  No fundamental support for String type from the MDE world. We  
developed one. 
  No extensive support for functions on relations. Functions in Alloy 
are named expressions. 



Instance Generation using 
Alloy 

   For a given scope or exact number of objects Alloy 
creates relations which are tuples of atoms. 

Example: 

sig Association { 
 name: Int, 
 dest: one Class, 
 src: one Class 

}  

Association ={  
 (14,Class8,Class4),        
 (11,Class8,Class9),  
 (8,Class8,Class3), 
 (1,Class7,Class5),  
 (-10,Class6,Class9), 
 (-14,Class5,Class3), 
 (-16,Class5,Class6), 
 (-16,Class5,Class2), 
 (-1,Class4,Class1) 
   } 

run mfAllRanges6a for 1 ClassModel, 5 int, exactly 10 Class, 
 exactly 20 Attribute, exactly 4 PrimitiveDataType, exactly 10 Association 



Instance Generation using 
Alloy 

Association ={  
 (14,Class8,Class4),        
 (11,Class8,Class9),  
 (8,Class8,Class3), 
 (1,Class7,Class5),  
 (-10,Class6,Class9), 
 (-14,Class5,Class3), 
 (-16,Class5,Class6), 
 (-16,Class5,Class2), 
 (-1,Class4,Class1) 
   } 

Where do these values come from? 

/*An associations have the same name either 
they  
are the same association or they have 
different sources*/ 
fact uniqueNameAssocSrc { 
all a1:Association, a2:Association |  
a1.name == a2.name => (a1 = a2 or a1.src != 
a2.src) 
} 

That satisfies facts such as… 



Instance Generation using 
Alloy a[1..10] ={  

 (v1,v2,v3),          
 (v4,v5,v6),  
 (v7,v8,v9),          
 (v10,v11,v12),  
 (v13,v14,v15),          
 (v16,v17,v18),  
 (v19,v20,v21),          
 (v22,v23,v24),  
 (v25,v26,v27),          
   } 

Compact Boolean Circuit 

((v1==v4)(a1=a2) or (v3!=v6)) and 
((v1==v7)(a1=a3) or (v3!=v9)) and 
((v1==v10)(a1=a4) or (v3!=v12)) and 
… 

fact uniqueNameAssocSrc { 
all a1:Association, a2:Association |  
a1.name == a2.name => (a1 = a2 or a1.src != 
a2.src) 
} 

Boolean  
variables 

Conjunctive Normal Form 
 cnf 267395 317287 
-2 3884 0 
-3 3884 0 
-4 3884 0 
… 

KodKod  
Engine 

Symmetry 
Detection 
& 
Breaking 



Instance Generation using 
Alloy 

Conjunctive Normal Form 

 cnf 267395 317287 
-2 3884 0 
-3 3884 0 
-4 3884 0 
… 

SAT Solver 
ZChaff 
MiniSAT 
BerkMin 
SAT4J 

Alloy  
XML Instances 

Cartier 

XMI Instances 



Validation : Mutation Analysis 
Question: Are the generated test models able to detect bugs? 

  insert the   mutation         
  operators 

Mutant 

P 

Test 
set 

suppress the equivalent mutants 
improve the test set 

mutant 
results 

results 
of P 

sufficient 

no 

 yes 

mutants 
killed 

mutants 
alive 

 oracle 

(Mottu, J.; Baudry, B. & Traon, Y. L. 
Mutation Analysis Testing for Model Transformations 
Proceedings of ECMDA'06 (European Conference on Model Driven Architecture), 2006)  



Validation : Mutation Analysis 
A Navigation Mutation Operator Example 

  Relation to the Same Class Change - RSCC 

g:ClassA  a:ClassB  

d:ClassB  

b:ClassB  

c:ClassB  

b1 

e:ClassB  f:ClassB  

b2 

b2 

b2 

b3 b3 

Model 

d:ClassB  

b:ClassB  

c:ClassB  

Metamodel 

ClassA  ClassB  

1 

b1 

1..n 

b3 

b2 

1..n 

b2 

1..n 

1..n 

b3 

1 

b1 

a:ClassB  

e:ClassB  f:ClassB  



Experiments and Results 
Experimental Design 

Objective: To compare test generation strategies using mutation scores  
of sets of test models: 
a)  Using model fragments and conforming to modelling domain 
b)  Randomly selected in a pool of models of various sizes conforming 
to modelling domain. 

 We compare four strategies for model selection : AllRanges, 
Random(15 models/set), AllPartitions, Random(5 models/set) 

Models Generated for AllRanges = 8 x 15 = 120 
Models Generated for AllPartitions = 8 x 5 = 40 
Models Generated for Random = 200 
Total = 360 models 



Experiments and Results 
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Conclusion 

   We present a tool Cartier to transform a modelling domain 
to Alloy 

   We show how we invoke the Alloy API to generate instances 
or models. 

   We show how the effectiveness of these generated instances 
can be improved for testing using test model knowledge such 
as model fragments. 

   We want to apply Cartier and Alloy for several applications 
in MDE such as test generation, partial model completion, 
and improving modelling domain specifications. 


