
Building Effective
Modelling Domains
for Testing

Sagar Sen
Equipe Triskell, INRIA/IRISA
35042 Rennes, France

Outline
   Motivation

   Challenge : Building Effective Modelling Domains

   Solution Overview : Cartier

   Cartier : A Guided Tour

   Instance Generation using the Alloy API

   Validation of Test Cases: Mutation Analysis

   Experiments and Results

   Conclusion

Motivation : The Modelling
Domain

Modelling Domain

Inputs
are Models

Motivation : Transformations

Prei MTi
Posti

Input Domain Output Domain

Input meta-model Output meta-model
Test model knowledge
1.  Model fragments
2.  Test Model Objectives

specifies specifies
specifies test models

Question: How to select test models using knowledge from
Input meta-model + Prei + Test Model Knowledge?

Motivation : Applications
1.  Model transformation pipelines such as XML to XML Pipelines (Eg: Xproc)

2. Code Generators (Eg: Simulink Model to Code)

3. Object Persistence (Eg: Hibernate 3.0)

4. Simulation Traces (Eg: Simulink, Modelica)

5.  UML Model Design Re-factoring (Eg: Rhapsody)

6.  Code migration (Cobol to Java/C#, VPLUS UI to XML/J2EE)

7. Game development pipelines (Eg: XNA Studio)

8. Business Process Models (Eg: Websphere business process model)

9. Code reverse engineering

10. Graphical Editors …

Software
(MT)

Motivation : The Testing
Context

CONSTRAINTS

Effective
Modelling
Domain

Test Cases

Knowledge
Domain Concepts
Static Analysis
Partitioning
Testers 1. Solve

2. Test
3. Validate
Post-condition
Coverage
Mutation Analysis

Modelling Domain

Challenge: Effective Domains
To select a model (a complex graph) from a constrained infinite domain

Unbounded number of
Transitions

: State

isInitial = true
isFinal = false

label = 1

: State

isInitial = false
isFinal = false

label = 2

: State

isInitial = false
isFinal = true

label = 3

: Transition

event = evt1

outgoingTransition source

: Transition

event = evt2

source
outgoingTransition incomingTransition target

incomingTransition

target

: Transition

event = evt3

outgoingTransition

source
incomingTransition

target

1 3 evt1

2
evt2 evt3

Challenge: Building Effective
Modelling Domains for Testing

Meta-model
(Ecore)

Invariants
(OCL)

Model Fragments
(Partitions)

Test Model
Objectives

1. How to transform sources of knowledge for testing?

Partial
Model

CONSTRAINTS

2. How to solve and which solver?

Experimental
Design

3. How to transform solutions
to modelling domain instance?

Solution Overview: Cartier

Meta-model
(Ecore)

Invariants
(OCL)

Model Fragments
(Partitions)

Test Model
Objectives

1. Transformation from Knowledge Sources to Alloy

Cartier

Alloy

Common Constraint Language : Alloy

SAT Solver
ZChaff, MiniSAT,

Berkmin

Partial
Model

Experimental
Design

Cartier : A Guided Tour
Cartier is implemented using Kermeta

 (http://www.kermeta.org)
  Kermeta (Meta-modelling Kernel) is a language to represent
meta-models and models of the different sources of
knowledge.
  Cartier uses “aspect-oriented modelling” to transform
aspects in source language to target language Alloy.
 So, what are the essential aspects in Kermeta that are
transformed to Alloy ? ….

Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

2. Test Model Knowledge
to

Alloy Predicates

3. Experimental Design
to

Alloy Run Commands

Cartier: A Guided Tour
(Object Persistence Case Study)

Lets take the Classifier concept from the UML Class Diagram meta-model

Transformed to an Alloy
Signature
abstract sig Classifier {
 name : Int

 }
String is abstracted to an
integer for simplicity

Lets take the Class concept concept that inherits from Classifier

Transformed to an Alloy
Signature

sig Class extends Classifier {
 is_persistent: one Bool,
 parent : lone Class,
 attrs : some Attribute

}

Cartier: A Guided Tour
Transforming Invariants

No Cyclic Inheritance

inherits

inherits

ClassA : Class

ClassB: Class

ClassC: Class

inherits

name: String
is_persistent:Bool

name: String
is_persistent:Bool

name: String
is_persistent:Bool

?
OCL Version:

context Class:

inv :

not self.allParents()->includes(self)

Alloy Version:

fact noCyclicInheritance {

 no c: Class | c in c.^parent

}

to an Alloy fact (specified
for a subset)

Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

2. Test Model Knowledge
to

Alloy Predicates

3. Experimental Design
to

Alloy Run Commands

Cartier : A Guided Tour
Transforming Model Fragments

pred modelFragment1
{
some a1:Association,a2:Association|#a1.src=0 and #a2.src=1
}

Consider the model fragment (partition of the modelling domain)
obtained using MMCC (Frank Fleurey et al. 2007) on the UML

Class Diagram meta-model

Association(source=0) and Association(source =1)
At least one Association object with no source and one Association object

with one source
transformed to
 an Alloy predicate

Cartier : A Guided Tour

1. Kermeta Meta-model to
Alloy Base Model

2. Test Model Knowledge
to

Alloy Predicates

3. Experimental Design
to

Alloy Run Commands

Cartier : A Guided Tour
Transforming Experimental Design

A experimental design specifies:
1)  A factorial combination of number of objects

of each type and different predicates.
2)  Scope of Integer, String
3) Maximum size of a sequence

to Alloy Run Commands

run testModel1 for exactly 10 Class, exactly 5 Attribute, exactly 10 Association,
5 Int
run testModel1 for exactly 10 Class, exactly 10 Attribute, exactly 10 Association,
5 Int
.
run testModel2 for exactly 5 Class, exactly 5 Attribute, exactly 10 Association, 5
Int

Cartier : A Guided Tour
Instance Generation and Output Processing

1. Load output Alloy model

Alloy API Calls

2. Parse Alloy model

3. Generate Boolean CNF
4. Select Boolean SAT

Solver

5. Solve CNF and Dump
XML

6. Transform XML to XMI

Instance Generation using
Alloy

Why Alloy?
  Combines the power of first-order predicate logic with quantifiers
and operators in relational logic.
  A restricted but theoretically sound meta-level declarative language.
  Operators such as transitive closure improve the expressive power
of Alloy over for example Prolog
Eg: A constraint can be expressed on:
 c.^parent ={c.parent, c.parent.parent, c.parent.parent.parent….}
  Operators such as the relational join (box/dot) allow you to specify
powerful navigation expressions on sets and relations.
Eg:
 all c: State |c.label !=5
  Automatic transformation to Boolean CNF for instance and
counterexample generation for a finite scope.

Instance Generation using
Alloy

Some limitations
  No support for higher-order relations.
  That means no constraint on relations of relations
  Constraints can be expressed on binary relations and their transitive
closure.
  No fundamental support for String type from the MDE world. We
developed one.
  No extensive support for functions on relations. Functions in Alloy
are named expressions.

Instance Generation using
Alloy

   For a given scope or exact number of objects Alloy
creates relations which are tuples of atoms.

Example:

sig Association {
 name: Int,
 dest: one Class,
 src: one Class

}

Association ={
 (14,Class8,Class4),
 (11,Class8,Class9),
 (8,Class8,Class3),
 (1,Class7,Class5),
 (-10,Class6,Class9),
 (-14,Class5,Class3),
 (-16,Class5,Class6),
 (-16,Class5,Class2),
 (-1,Class4,Class1)
 }

run mfAllRanges6a for 1 ClassModel, 5 int, exactly 10 Class,
 exactly 20 Attribute, exactly 4 PrimitiveDataType, exactly 10 Association

Instance Generation using
Alloy

Association ={
 (14,Class8,Class4),
 (11,Class8,Class9),
 (8,Class8,Class3),
 (1,Class7,Class5),
 (-10,Class6,Class9),
 (-14,Class5,Class3),
 (-16,Class5,Class6),
 (-16,Class5,Class2),
 (-1,Class4,Class1)
 }

Where do these values come from?

/*An associations have the same name either
they
are the same association or they have
different sources*/
fact uniqueNameAssocSrc {
all a1:Association, a2:Association |
a1.name == a2.name => (a1 = a2 or a1.src !=
a2.src)
}

That satisfies facts such as…

Instance Generation using
Alloy a[1..10] ={

 (v1,v2,v3),
 (v4,v5,v6),
 (v7,v8,v9),
 (v10,v11,v12),
 (v13,v14,v15),
 (v16,v17,v18),
 (v19,v20,v21),
 (v22,v23,v24),
 (v25,v26,v27),
 }

Compact Boolean Circuit

((v1==v4)(a1=a2) or (v3!=v6)) and
((v1==v7)(a1=a3) or (v3!=v9)) and
((v1==v10)(a1=a4) or (v3!=v12)) and
…

fact uniqueNameAssocSrc {
all a1:Association, a2:Association |
a1.name == a2.name => (a1 = a2 or a1.src !=
a2.src)
}

Boolean
variables

Conjunctive Normal Form
 cnf 267395 317287
-2 3884 0
-3 3884 0
-4 3884 0
…

KodKod
Engine

Symmetry
Detection
&
Breaking

Instance Generation using
Alloy

Conjunctive Normal Form

 cnf 267395 317287
-2 3884 0
-3 3884 0
-4 3884 0
…

SAT Solver
ZChaff
MiniSAT
BerkMin
SAT4J

Alloy
XML Instances

Cartier

XMI Instances

Validation : Mutation Analysis
Question: Are the generated test models able to detect bugs?

 insert the mutation
 operators

Mutant

P

Test
set

suppress the equivalent mutants
improve the test set

mutant
results

results
of P

sufficient

no

 yes

mutants
killed

mutants
alive

 oracle

(Mottu, J.; Baudry, B. & Traon, Y. L.
Mutation Analysis Testing for Model Transformations
Proceedings of ECMDA'06 (European Conference on Model Driven Architecture), 2006)

Validation : Mutation Analysis
A Navigation Mutation Operator Example

  Relation to the Same Class Change - RSCC

g:ClassA a:ClassB

d:ClassB

b:ClassB

c:ClassB

b1

e:ClassB f:ClassB

b2

b2

b2

b3 b3

Model

d:ClassB

b:ClassB

c:ClassB

Metamodel

ClassA ClassB

1

b1

1..n

b3

b2

1..n

b2

1..n

1..n

b3

1

b1

a:ClassB

e:ClassB f:ClassB

Experiments and Results
Experimental Design

Objective: To compare test generation strategies using mutation scores
of sets of test models:
a)  Using model fragments and conforming to modelling domain
b)  Randomly selected in a pool of models of various sizes conforming
to modelling domain.

 We compare four strategies for model selection : AllRanges,
Random(15 models/set), AllPartitions, Random(5 models/set)

Models Generated for AllRanges = 8 x 15 = 120
Models Generated for AllPartitions = 8 x 5 = 40
Models Generated for Random = 200
Total = 360 models

Experiments and Results

!"#$!%

"&#!'%
"!#!'%

!(#!)%

&*#*+%

"*#(+%

$$#!&%

&,#!"%

!$#)"%

&,#!"%

",#&,%

!)#'&%

$$%

!'%

!$%

&'%

&$%

"'%

"$%

)'%

-./012

3$421056787594:/4"47597;

<66=.>9:9:1/73$8"; -./0123*$8"; <66-./?573*$8";

!"#$"%&'

(
)
"$
"*
+
,
-!
.
+
#%

+>04@A.>9:65 2.B

250:./ 2:/

*794@A.>9:65

Conclusion

   We present a tool Cartier to transform a modelling domain
to Alloy

   We show how we invoke the Alloy API to generate instances
or models.

   We show how the effectiveness of these generated instances
can be improved for testing using test model knowledge such
as model fragments.

   We want to apply Cartier and Alloy for several applications
in MDE such as test generation, partial model completion,
and improving modelling domain specifications.

