
Alloy
 An Introduction using Traffic Network Modelling

Sagar Sen
2nd year PhD Student, INRIA, Rennes, France
Venue: MSDL, McGill Univ., Canada
Date: 23/06/2008

Outline

   What is Alloy?

   Who develops it and why?

   An Example: Traffic

   Modelling Traffic in Alloy

   Synthesizing Traffic Networks in Alloy

   Verifying Properties of the Traffic Networks Specification

   Behind the Scenes

   Conclusion

What is Alloy?

   Software Implementation of first-order relational logic with quantifiers
(FORLQ)

   Declaratively specify a set of instances (models in MDE) as an Alloy
Model (Meta-model in MDE)

   Transforms Alloy formulas (in FORLQ) of the Alloy Model to
Boolean CNF

   Solves Boolean CNF using a satisfiability (SAT) solver to give one
or more instances that conform to the initial Alloy Model

   Or, Solve Boolean CNF to give a counterexample instance that
shows that an assertion does not hold true against an Alloy Model.

Who develops it and why?

   Software Design Group, MIT

   Founded by: Daniel Jackson

   Why develop Alloy despite the presence of NuSMV, Prolog, Z and
numerous other software specification languages/tools ?

   Daniel Jackson envisioned a lightweight formal verification tool
with well defined syntax and semantics to search for model
instances with certain properties in a finite scope.

   This is the first tool that supports specification of quantified
constraints on a set of objects and also a clean transformation to a
Boolean satisfiability solver.

   Website: http://alloy.mit.edu/

An Example: Traffic

Specifying Alloy Signatures for
Classes

   An Alloy signature describes a class or set of immutable
atoms.

   Signatures are used to build conceptual models of a
world of objects.

   An instance of a signature is like an object that conforms
to a Class.

   Lets transform the Traffic Network Classes to
Signatures in Alloy…

An Example: Traffic

sig RoadNetwork
{

 name: Int,
 roadElements: set RoadElement

}

An Example: Traffic

abstract sig RoadElement
{

 name: Int,
 inport: set Port,
 outport: set Port

}

An Example: Traffic

sig Port
{

 name: Int,
 sourceRoadElement: one RoadElement,
 targetRoadElement: one RoadElement,
 trafficLight: lone TrafficLight

}

An Example: Traffic

sig TrafficLight
{

 name: Int,
 Signal: Int

}

An Example: Traffic

sig RoadSegment extends RoadElement
{

 CarCapacity: Int,
 Occupied: Bool,
 numCars: Int

}

An Example: Traffic

sig JoinSegment extends RoadElement
{
numInPorts: Int,
numOutPorts: Int
}

An Example: Traffic

sig Generator extends RoadElement
{
numOutPorts: Int
}

An Example: Traffic

sig Sink extends RoadElement
{
numInPorts: Int
}

Specifying Alloy Facts for
Constraints

   A constraint that is always true in a domain-specific language
is actually a fact.

   Hence, we transform all knowledge about the domain-
specific language that are inexpressible as signatures to Alloy
facts.

   An instance of the Alloy model containing signatures and
facts is like an object diagram in MDE that satisfies the facts.

   Lets transform the Traffic Network Constraints to Facts in
Alloy…

Containment Constraints

   All RoadElements are contained by one RoadNetwork:

fact containmentRoadNetwork
{

 all r:RoadElement| r in RoadNetwork.roadElements
}

   All TrafficLights are contained in a Port:

fact containmentTrafficLight
{

 all t:TrafficLight| t in Port.trafficLight
}

Facts on Road Networks

Exactly One Road Network

fact exactlyOneRoadNetwork
{

 one RoadNetwork
}

Facts on Road Elements

All Road Elements have unique names

fact uniqueNameRoadElements
{

 all r1:RoadElement, r2:RoadElement |
 r1!=r2 implies r1.name!=r2.name

}

Facts on Road Segments
A Road Segment has exactly one inport

fact roadSegmentInPort
{

 all r:RoadSegment | #r.inport = 1
}

A Road Segment must have exactly one outport

fact roadSegmentOutPort
{

 all r:RoadSegment | #r.outport =1
}

Facts on Join Segments
A Join Segment has numInPorts number of inports

fact joinInPort
{

 all j:JoinSegment | #j.inport = j.numInPorts
}

A Join Segment has numOutPorts number of outports

fact joinOutPort
{

 all j:JoinSegment | #j.outport = j.numOutPorts
}

Facts on Generators
A Generator Road Element has no inport
fact generatorInPort
{all g:Generator | #g.inport=0}

All Generators have at least one outport
fact generatorOutPortPositive
{all g:Generator | #g.outport>=1}

At Least One Generator in the Model
fact atleastOneGenerator
{#Generator >= 1}

A Generator Road Element has numOutPorts number of out ports
fact generatorOutPort
{all g:Generator | #g.outport=g.numOutPorts}

Facts on Sinks
All Sink elements have at least one inport
fact sinkInPortPositive
{all s:Sink | #s.inport>=1}

A Sink Road Element has no outport
fact sinkOutPort
{ all s:Sink | #s.outport=0 }

At Least One Sink in the Model
fact atleastOneSink
{ #Sink >= 1}

A Sink Road Element has numInPorts number of in ports.
fact sinkInPort
{ all s:Sink | #s.inport=s.numInPorts }

Facts on Sinks
All Sink elements have at least one inport
fact sinkInPortPositive
{all s:Sink | #s.inport>=1}

A Sink Road Element has no outport
fact sinkOutPort
{ all s:Sink | #s.outport=0 }

At Least One Sink in the Model
fact atleastOneSink
{ #Sink >= 1}

A Sink Road Element has numInPorts number of in ports.
fact sinkInPort
{ all s:Sink | #s.inport=s.numInPorts }

Facts on Ports
All Ports Unique Name
fact uniqueNamePorts
{
all p1:Port, p2:Port | p1!=p2 implies p1.name!=p2.name
}

Facts on Traffic Signals
A Traffic Signal can be Red, Yellow, or Green
fact trafficSignals
{

 all t:TrafficLight | t.Signal=1 or t.Signal=2 or t.Signal=3
}

Synthesizing Traffic Networks
in Alloy

1.  What we have ? : Alloy Model “Traffic.als” file

2.  What does it contain ? : File contains the signatures and the facts
that declaratively specifies the Traffic Modelling Language

3.  We want to now see if we can actually build traffic networks that
conform to this specification. Or, is the specification correct and
sufficient ?

4.  Lets look at the Alloy run command…

Synthesizing Traffic Networks
in Alloy : Run Command(1)

1.  We want to see if we can find an instance of Traffic in finite scope.

2.  What is a scope ? : It is the upper bound on the number of atoms of
each signature in the model (including integers).

3.  Create an empty predicate and add it to Traffic.als
 pred testModel {}

4. Run command:
 run testModel for 20

5. Output is a Traffic instance that satisfies all facts up to a maximum
of 20 atoms/signature.

Synthesizing Traffic Networks
in Alloy: Run Command (2)

1. What is want to specify synthesis options?

2. Specifying an exact number of atoms:

 run testModel for exactly 20 RoadElement, exactly 20 Port,
5 TrafficLight, 5 int

3. Output is one or more instances containing exactly 20 road
elements, 20 ports, 5 Traffic lights, and integers up to scope of
5.

Verifying Properties of the
Traffic Networks Specification

   We want to see if an assertion about the Traffic Network

Language is always True.

   Lets say: All Ports have a Traffic Light

assert AllPortsWithTrafficLights
{
all p:Port | #p.trafficLight=1
}

   We now run the check command for a scope of 20:

check AllPortsWithTrafficLights for 20

Verifying Properties of the
Traffic Networks Specification

   However, a careful look at the Traffic MM reveals
that a Port can have 0..1 TrafficLights

   The result of the check is now a counterexample

   The counterexample is a Traffic network with a
Ports without TrafficLights.

   Such counter examples can be used to prove
properties in specification for a finite scope.

Alloy: Behind the Scenes

Alloy Model
“.als” file

Boolean CNF
Formula (in

memory or .cnf)

KodKod Engine:
FORLQ to CNF

Model Instance Space

SAT Solvers such as…
SAT4J
ZChaff
BerkMin
transforms to Model Instance “.xml”
file

Conclusion

   We looked at how conceptual models can be developed in

Alloy

   We have seen how we can use Alloy to synthesize instances that
conform to the conceptual specification using the run command.

   We also use the check command to verifying assertions on an Alloy
model.

   We finally show how Alloy works in the background.

