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Pierre-Alain Muller

• 15+ years experience in OO modeling
• Assistant professor at ENSISA (a French 

school of engineering)
• Former CEO ObjeXion Software
• Independent Consultant
• Author of “Instant UML”, Wrox Press 1997 

and “Modélisation objet avec UML”, 
Eyrolles 2000



V 2.0 Requirement Analysis 3

Course objectives

• Quick introduction to UML
• Requirement Analysis

– Activity modeling
– Use Cases modeling
– Object-Oriented modeling
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What is UML ?

• Unified Modeling Language for object-
oriented developments

• De facto standard
– Defined and endorsed by the OMG (Object 

Management Group)
– Universally adopted by all major software 

vendors
– The Esperanto for the object-oriented methods
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A single language

• UML is the language for the description of 
the object-oriented models

• UML can be used by
– Business analysts
– Software engineers
– Quality Assurance and Validation
– End-Users and Customers
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UML is a powerful notation

• Syntax and semantics formally defined in a 
metamodel

• 9 types of diagrams (from business 
modeling to component modeling)

• Everything is not needed by everybody
– Many use a subset of UML
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Activity Modeling

• Understand the business processes
• Find the actors in the business
• Find the activities performed by the actors
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Scope

• The focus is on understanding Who is doing 
What and Where in the business

• Then the focus shifts on asking What should 
be provided by the system to help the actors 
to perform their tasks
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Example

: Provider: Customer : Sales Rep

I need X

I will prepare a proposal
How much for X ?

Make a study

It will cost 1 $

Brainstorming

It will cost 3 $

Too expensive !!!

Make it cheaper !



V 2.0 Requirement Analysis 10

Use Cases Modeling

• Communicate with users and customers
• Capture requirements
• Identify system boundaries
• Derive objects and objects interactions
• Design user interface
• Define test cases
• Outline the user documentation
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What is usually wrong with 
requirement  specification?

• The customer is focused on business details
• The SW development is focused on 

implementation details
• The customers introduces new ideas without 

realizing that they are out of the agreed 
scope
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The root of the problem

• They are too many ways to interpret a 
requirement specification
– All the details are correct, but they are out of 

context
– Very few, if any, will indicate what the users 

really need
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What is good with Use Cases ?

• The user is involved early in the process
• The user is aware when there is a change in 

the model
• The user sees the cost impact of a change in 

the model
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Who writes the Use Cases ?

• A separate analysis team
• The designers

– This is often the best way to get most from Use 
Cases
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Use Case model concepts

• Actors
• Use Cases
• Scenarios
• System Boundaries
• Use Case description

Actor 1

Use case 1

Actor 2

Use case 2
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What is an Actor ?

• An Actor 
– represents anything that interacts with the 

system (human, machine or another system)
– represents roles a user can play
– can give and receive information
– is not part of the system
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Identifying Actors

• Who will supply, use or remove information ?
• Who will use this functionality ?
• Who will support and maintain the system ?
• What are the system external resources ?
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Description of Actors

• An Actor is described by:
– Name
– Brief description

• Who or what the actor represents
• Why the actor is needed
• What interests the actor has in the system
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What is a Use Case ?
• A Use Case is a complete and meaningful 

flow of events
• A Use Case is initiated by an actor to 

invoke a certain functionality in the system
• A Use Case models a dialogue between an 

actor and the system
• The collection of all Use Cases constitutes 

all possible ways of using the system
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Identifying Use Cases

• What are the tasks of an actor ?
• How is the actor informed about certain 

occurrences in the system ?
• How is the system informed about certain 

occurrences in the business ?
• Does the system supply the business with 

the correct behavior ?
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Use Case and Actors
• A Use Case can interact with many actors
• An actor normally interacts with several 

Use Cases of a system
• For each actor

– Each way of using the system is captured in a 
use case

• For each use case
– There is one actor initiating the use case
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Use Case description

• A Use Case has:
– Name
– Brief description
– Flow of events

• One basic flow
• Several alternative flows

– Additional requirements
• performance, reliability...
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How to name a Use Case

• Name is taken from the actor point of view
• Name makes sense to the user (not to the 

system implementor)
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Beware of functional 
decomposition

• Symptoms
– A lot of small Use Cases
– Difficult to understand the model
– Names like

• Operation + Object or Function + Data

• Actions
– Raise the abstraction level (the larger context)
– What value will the Use Case add ?
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Interaction with the system

• A communication-association between an 
Actor and a Use Case indicates that they 
interact

• The arrow direction shows who started the 
interaction

Customer

Bank operation
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Interaction description

• A Use Case is a set of flow of events
• These flows scenarios are named scenarios
• The scenarios can be described

– Textually (in natural language)
– Graphically (using UML sequence diagrams)
– Usually both ways

• Between 5 and 15 pages of documentation
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Example

• The user inserts his/her Credit Card in the 
ATM

• The ATM asks the PIN code
• The User provides the code

: Customer ATM

Insert Card

Ask PIN Code

Give Pin Code
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Essential Use Cases

• Focuses on semantics
• No GUI presentation details

: Customer ATM

Secure Connection
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Recurring Use Cases

• System start and stop
• System maintenance
• System evolution
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Sources of information

• Requirements specification (if any)
• Customer, end users, and domain experts 

interviews
• Business model (if any)
• Internal standard practices and procedures
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Summary

• Use Cases capture the system requirements
• Use Cases are user-focused
• Use Cases are readable by the end-user
• Use Cases are families of scenarios



V 2.0 Requirement Analysis 32

Object-Oriented Modeling

• Move from requirements analysis to object-
oriented analysis

• Prepare the smooth transition to 
implementation
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Object-Oriented Modeling

• Use cases are realized by societies of 
collaborating objects

• These objects are originally drawn from the 
problem domain
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The move to the objects

Use Case

A B C

Collaboration

<<Realizes>>

<<Participates>>
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Sequence diagrams

• Zoom into the system

The System
: Actor 1

X

Y

Z

A
: Actor 1

B C

X

X1

X2

Y

Z

Z1
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Object chaos
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Object chaos
• There are many objects in the real world
• To understand the world, we group objects 

by similarities
• Making groups is known as classifying
• Humans have classified animals, flowers, 

mushrooms, atoms…
• Classification is the way humans deal with 

complexity
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Classes
• A class is an abstract definition of a set of 

objects
• Common objects elements are factored out in 

the class
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Graphical representation

Clas s e

- Attribute

+ Operation()

Com plex

- R eal  Par t
- Im agi nary Part

+ Add()
+ Su b()
+ Mul t()
+ D iv()
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Class Description

• Split in two parts
– The specification (the what part)

– The implementation (the how part)
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Representation of the static structure

• Class diagrams
– Classes
– Relations between classes

• Association
• Aggregation
• Generalization
• Dependence
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Association

• Bi-directional symmetric semantic 
connection between classes

• An abstraction of all the links between the 
instances of the associated classes

• Represented by a line drawn between the 
classes
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Exemple
Pers onCom pany

IB M
SGS

Nadine

Claudio

PAM : 
Person

 : Person
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Naming of associations

Pers onCom pany
< Work s for

PersonCompany
Employs >
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Naming of the roles

• A role describes one end of an association

PersonCompany

+Employer

+Employee
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Role multiplicity

1 One and only one
0..1 Zero or one
M .. N From M to N (naturals)
* Many
0 .. * From zero to many
1 .. * From one to many

Pers onCom pany

+Em ployer

+Em ployee

0..1

1..*

0..1

1..*
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Class-associations
• Adding attributes and/or operations to the 

relation
PersonCompany

+Employer

+Em ployee

0..1

1..*

0..1

1..*

Contract

-  Start Date
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Aggregation
• Bi-directional asymmetric semantic 

connection between classes
• Some kind of “stronger” association
• Represents  

– master and slave relations
– whole and part relations
– composite and component relations
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Examples

DoorCar 1

2..5

1

2..5
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Correspondences

• An object is instance of a class

• A link is instance of a relation

• Links connect objects, relations connect 
classes

• A link between two objects implies a 
relation between the classes of these objects
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Class Hierarchies
• Master complexity 

– Hierarchies of abstractions
• Generalization

– Superclasses
• Specialization

– Subclasses

Superclass

Subclass

More general

More 
specialized
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Generalization
• Factor out the common elements

– attributes, operations, relations, constraints

Vehic le

Truck Car

Ai r Vehic le Ground Vehic le

Plane
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Specialization
• Extension of a set of classes

Contract

Part ia l Time Full Time

Manager
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Properties of generalization

• Always means : is a or is a kind of

Bird
+ Fly()

Sparrow Ostrich

W rong !!!Good !!!



V 2.0 Requirement Analysis 55

Properties of generalization
• Non-reflexive, non-symmetric, transitive

B

Not possible !!!

Not possible !!!

A

B

A

B

C
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Substitution principle

• It must be possible to substitute any object 
instance of a subclass for any object 
instance of a superclass without affecting 
the semantics of a program written in terms 
of the superclass.
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Multiple Generalization

Vehic leCarpet

Land Vehic le Air Vehic le

Fly ing Carpet
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Inheritance

• Most often used technique for implementing 
generalization

• Build one class from another by sharing 
attributes, operations, relations and 
constraints within a class hierarchy

• Not always available in the implementation 
language / environment
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Dependence

• Poorly semantically loaded relation
• Dependence shows obsolescence rules

– Include, With, Instantiation

Licence Motor Bike

Trial Trial Enduro
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Summary
• Classes are connected by relations

– Associations are bi-directional symmetric 
semantic connections between classes

– Aggregations are bi-directional asymmetric 
semantic connections between classes

– Generalization orders classes within hierarchies
– Dependence shows obsolescence rules
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Summary

• UML is the standard language for object-
oriented models

• UML provides notational support for 
requirement analysis
– Business modeling
– Use Cases modeling
– Domain Modeling
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