
V 2.0 Requirement Analysis 1

Requirement Analysis
with UML

Pierre-Alain Muller
pa.muller@uha.fr

V 2.0 Requirement Analysis 2

Pierre-Alain Muller

• 15+ years experience in OO modeling
• Assistant professor at ENSISA (a French

school of engineering)
• Former CEO ObjeXion Software
• Independent Consultant
• Author of “Instant UML”, Wrox Press 1997

and “Modélisation objet avec UML”,
Eyrolles 2000

V 2.0 Requirement Analysis 3

Course objectives

• Quick introduction to UML
• Requirement Analysis

– Activity modeling
– Use Cases modeling
– Object-Oriented modeling

V 2.0 Requirement Analysis 4

What is UML ?

• Unified Modeling Language for object-
oriented developments

• De facto standard
– Defined and endorsed by the OMG (Object

Management Group)
– Universally adopted by all major software

vendors
– The Esperanto for the object-oriented methods

V 2.0 Requirement Analysis 5

A single language

• UML is the language for the description of
the object-oriented models

• UML can be used by
– Business analysts
– Software engineers
– Quality Assurance and Validation
– End-Users and Customers

V 2.0 Requirement Analysis 6

UML is a powerful notation

• Syntax and semantics formally defined in a
metamodel

• 9 types of diagrams (from business
modeling to component modeling)

• Everything is not needed by everybody
– Many use a subset of UML

V 2.0 Requirement Analysis 7

Activity Modeling

• Understand the business processes
• Find the actors in the business
• Find the activities performed by the actors

V 2.0 Requirement Analysis 8

Scope

• The focus is on understanding Who is doing
What and Where in the business

• Then the focus shifts on asking What should
be provided by the system to help the actors
to perform their tasks

V 2.0 Requirement Analysis 9

Example

: Provider: Customer : Sales Rep

I need X

I will prepare a proposal
How much for X ?

Make a study

It will cost 1 $

Brainstorming

It will cost 3 $

Too expensive !!!

Make it cheaper !

V 2.0 Requirement Analysis 10

Use Cases Modeling

• Communicate with users and customers
• Capture requirements
• Identify system boundaries
• Derive objects and objects interactions
• Design user interface
• Define test cases
• Outline the user documentation

V 2.0 Requirement Analysis 11

What is usually wrong with
requirement specification?

• The customer is focused on business details
• The SW development is focused on

implementation details
• The customers introduces new ideas without

realizing that they are out of the agreed
scope

V 2.0 Requirement Analysis 12

The root of the problem

• They are too many ways to interpret a
requirement specification
– All the details are correct, but they are out of

context
– Very few, if any, will indicate what the users

really need

V 2.0 Requirement Analysis 13

What is good with Use Cases ?

• The user is involved early in the process
• The user is aware when there is a change in

the model
• The user sees the cost impact of a change in

the model

V 2.0 Requirement Analysis 14

Who writes the Use Cases ?

• A separate analysis team
• The designers

– This is often the best way to get most from Use
Cases

V 2.0 Requirement Analysis 15

Use Case model concepts

• Actors
• Use Cases
• Scenarios
• System Boundaries
• Use Case description

Actor 1

Use case 1

Actor 2

Use case 2

V 2.0 Requirement Analysis 16

What is an Actor ?

• An Actor
– represents anything that interacts with the

system (human, machine or another system)
– represents roles a user can play
– can give and receive information
– is not part of the system

V 2.0 Requirement Analysis 17

Identifying Actors

• Who will supply, use or remove information ?
• Who will use this functionality ?
• Who will support and maintain the system ?
• What are the system external resources ?

V 2.0 Requirement Analysis 18

Description of Actors

• An Actor is described by:
– Name
– Brief description

• Who or what the actor represents
• Why the actor is needed
• What interests the actor has in the system

V 2.0 Requirement Analysis 19

What is a Use Case ?
• A Use Case is a complete and meaningful

flow of events
• A Use Case is initiated by an actor to

invoke a certain functionality in the system
• A Use Case models a dialogue between an

actor and the system
• The collection of all Use Cases constitutes

all possible ways of using the system

V 2.0 Requirement Analysis 20

Identifying Use Cases

• What are the tasks of an actor ?
• How is the actor informed about certain

occurrences in the system ?
• How is the system informed about certain

occurrences in the business ?
• Does the system supply the business with

the correct behavior ?

V 2.0 Requirement Analysis 21

Use Case and Actors
• A Use Case can interact with many actors
• An actor normally interacts with several

Use Cases of a system
• For each actor

– Each way of using the system is captured in a
use case

• For each use case
– There is one actor initiating the use case

V 2.0 Requirement Analysis 22

Use Case description

• A Use Case has:
– Name
– Brief description
– Flow of events

• One basic flow
• Several alternative flows

– Additional requirements
• performance, reliability...

V 2.0 Requirement Analysis 23

How to name a Use Case

• Name is taken from the actor point of view
• Name makes sense to the user (not to the

system implementor)

V 2.0 Requirement Analysis 24

Beware of functional
decomposition

• Symptoms
– A lot of small Use Cases
– Difficult to understand the model
– Names like

• Operation + Object or Function + Data

• Actions
– Raise the abstraction level (the larger context)
– What value will the Use Case add ?

V 2.0 Requirement Analysis 25

Interaction with the system

• A communication-association between an
Actor and a Use Case indicates that they
interact

• The arrow direction shows who started the
interaction

Customer

Bank operation

V 2.0 Requirement Analysis 26

Interaction description

• A Use Case is a set of flow of events
• These flows scenarios are named scenarios
• The scenarios can be described

– Textually (in natural language)
– Graphically (using UML sequence diagrams)
– Usually both ways

• Between 5 and 15 pages of documentation

V 2.0 Requirement Analysis 27

Example

• The user inserts his/her Credit Card in the
ATM

• The ATM asks the PIN code
• The User provides the code

: Customer ATM

Insert Card

Ask PIN Code

Give Pin Code

V 2.0 Requirement Analysis 28

Essential Use Cases

• Focuses on semantics
• No GUI presentation details

: Customer ATM

Secure Connection

V 2.0 Requirement Analysis 29

Recurring Use Cases

• System start and stop
• System maintenance
• System evolution

V 2.0 Requirement Analysis 30

Sources of information

• Requirements specification (if any)
• Customer, end users, and domain experts

interviews
• Business model (if any)
• Internal standard practices and procedures

V 2.0 Requirement Analysis 31

Summary

• Use Cases capture the system requirements
• Use Cases are user-focused
• Use Cases are readable by the end-user
• Use Cases are families of scenarios

V 2.0 Requirement Analysis 32

Object-Oriented Modeling

• Move from requirements analysis to object-
oriented analysis

• Prepare the smooth transition to
implementation

V 2.0 Requirement Analysis 33

Object-Oriented Modeling

• Use cases are realized by societies of
collaborating objects

• These objects are originally drawn from the
problem domain

V 2.0 Requirement Analysis 34

The move to the objects

Use Case

A B C

Collaboration

<<Realizes>>

<<Participates>>

V 2.0 Requirement Analysis 35

Sequence diagrams

• Zoom into the system

The System
: Actor 1

X

Y

Z

A
: Actor 1

B C

X

X1

X2

Y

Z

Z1

V 2.0 Requirement Analysis 36

Object chaos

V 2.0 Requirement Analysis 37

Object chaos
• There are many objects in the real world
• To understand the world, we group objects

by similarities
• Making groups is known as classifying
• Humans have classified animals, flowers,

mushrooms, atoms…
• Classification is the way humans deal with

complexity

V 2.0 Requirement Analysis 38

Classes
• A class is an abstract definition of a set of

objects
• Common objects elements are factored out in

the class

V 2.0 Requirement Analysis 39

Graphical representation

Clas s e

- Attribute

+ Operation()

Com plex

- R eal Par t
- Im agi nary Part

+ Add()
+ Su b()
+ Mul t()
+ D iv()

V 2.0 Requirement Analysis 40

Class Description

• Split in two parts
– The specification (the what part)

– The implementation (the how part)

V 2.0 Requirement Analysis 41

Representation of the static structure

• Class diagrams
– Classes
– Relations between classes

• Association
• Aggregation
• Generalization
• Dependence

V 2.0 Requirement Analysis 42

Association

• Bi-directional symmetric semantic
connection between classes

• An abstraction of all the links between the
instances of the associated classes

• Represented by a line drawn between the
classes

V 2.0 Requirement Analysis 43

Exemple
Pers onCom pany

IB M
SGS

Nadine

Claudio

PAM :
Person

 : Person

V 2.0 Requirement Analysis 44

Naming of associations

Pers onCom pany
< Work s for

PersonCompany
Employs >

V 2.0 Requirement Analysis 45

Naming of the roles

• A role describes one end of an association

PersonCompany

+Employer

+Employee

V 2.0 Requirement Analysis 46

Role multiplicity

1 One and only one
0..1 Zero or one
M .. N From M to N (naturals)
* Many
0 .. * From zero to many
1 .. * From one to many

Pers onCom pany

+Em ployer

+Em ployee

0..1

1..*

0..1

1..*

V 2.0 Requirement Analysis 47

Class-associations
• Adding attributes and/or operations to the

relation
PersonCompany

+Employer

+Em ployee

0..1

1..*

0..1

1..*

Contract

- Start Date

V 2.0 Requirement Analysis 48

Aggregation
• Bi-directional asymmetric semantic

connection between classes
• Some kind of “stronger” association
• Represents

– master and slave relations
– whole and part relations
– composite and component relations

V 2.0 Requirement Analysis 49

Examples

DoorCar 1

2..5

1

2..5

V 2.0 Requirement Analysis 50

Correspondences

• An object is instance of a class

• A link is instance of a relation

• Links connect objects, relations connect
classes

• A link between two objects implies a
relation between the classes of these objects

V 2.0 Requirement Analysis 51

Class Hierarchies
• Master complexity

– Hierarchies of abstractions
• Generalization

– Superclasses
• Specialization

– Subclasses

Superclass

Subclass

More general

More
specialized

V 2.0 Requirement Analysis 52

Generalization
• Factor out the common elements

– attributes, operations, relations, constraints

Vehic le

Truck Car

Ai r Vehic le Ground Vehic le

Plane

V 2.0 Requirement Analysis 53

Specialization
• Extension of a set of classes

Contract

Part ia l Time Full Time

Manager

V 2.0 Requirement Analysis 54

Properties of generalization

• Always means : is a or is a kind of

Bird
+ Fly()

Sparrow Ostrich

W rong !!!Good !!!

V 2.0 Requirement Analysis 55

Properties of generalization
• Non-reflexive, non-symmetric, transitive

B

Not possible !!!

Not possible !!!

A

B

A

B

C

V 2.0 Requirement Analysis 56

Substitution principle

• It must be possible to substitute any object
instance of a subclass for any object
instance of a superclass without affecting
the semantics of a program written in terms
of the superclass.

V 2.0 Requirement Analysis 57

Multiple Generalization

Vehic leCarpet

Land Vehic le Air Vehic le

Fly ing Carpet

V 2.0 Requirement Analysis 58

Inheritance

• Most often used technique for implementing
generalization

• Build one class from another by sharing
attributes, operations, relations and
constraints within a class hierarchy

• Not always available in the implementation
language / environment

V 2.0 Requirement Analysis 59

Dependence

• Poorly semantically loaded relation
• Dependence shows obsolescence rules

– Include, With, Instantiation

Licence Motor Bike

Trial Trial Enduro

V 2.0 Requirement Analysis 60

Summary
• Classes are connected by relations

– Associations are bi-directional symmetric
semantic connections between classes

– Aggregations are bi-directional asymmetric
semantic connections between classes

– Generalization orders classes within hierarchies
– Dependence shows obsolescence rules

V 2.0 Requirement Analysis 61

Summary

• UML is the standard language for object-
oriented models

• UML provides notational support for
requirement analysis
– Business modeling
– Use Cases modeling
– Domain Modeling

	Requirement Analysis�with UML
	Pierre-Alain Muller
	Course objectives
	What is UML ?
	A single language
	UML is a powerful notation
	Activity Modeling
	Scope
	Example
	Use Cases Modeling
	What is usually wrong with �requirement specification?
	The root of the problem
	What is good with Use Cases ?
	Who writes the Use Cases ?
	Use Case model concepts
	What is an Actor ?
	Identifying Actors
	Description of Actors
	What is a Use Case ?
	Identifying Use Cases
	Use Case and Actors
	Use Case description
	How to name a Use Case
	Beware of functional decomposition
	Interaction with the system
	Interaction description
	Example
	Essential Use Cases
	Recurring Use Cases
	Sources of information
	Summary
	Object-Oriented Modeling
	Object-Oriented Modeling
	The move to the objects
	Sequence diagrams
	Object chaos
	Object chaos
	Classes
	Graphical representation
	Class Description
	Representation of the static structure
	Association
	Exemple
	Naming of associations
	Naming of the roles
	Role multiplicity
	Class-associations
	Aggregation
	Examples
	Correspondences
	Class Hierarchies
	Generalization
	Specialization
	Properties of generalization
	Properties of generalization
	Substitution principle
	Multiple Generalization
	Inheritance
	Dependence
	Summary
	Summary

