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Abstract

A spoken language understanding (SLU) system is described. It generates hypotheses of conceptual constituents
with a translation process. This process is performed by finite state transducers (FST) which accept word patterns from
a lattice of word hypotheses generated by an Automatic Speech Recognition (ASR) system. FSTs operate in parallel
and may share word hypotheses at their input. Semantic hypotheses are obtained by composition of compatible trans-
lations under the control of composition rules. Interpretation hypotheses are scored by the sum of the posterior prob-
abilities of paths in the lattice of word hypotheses supporting the interpretation. A compact structured n-best list of
interpretation is obtained and used by the SLU interpretation strategy.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Automatic speech recognition; Spoken language understanding, Dialogue; Finite state transducers
0167-6393/$ - see front matter � 2005 Elsevier B.V. All rights reserv
doi:10.1016/j.specom.2005.06.012

q This research is supported by France Telecom�s R&D under
the contract 021B178.
* Corresponding author.
E-mail addresses: christian.raymond@univ-avignon.fr (C.

Raymond), frederic.bechet@univ-avignon.fr (F. Béchet), rena-
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1. Introduction

Semantic interpretations are data structures
built using a knowledge source and performing
operations such as recognition of conceptual
constituents, composition and inference. Hypothe-
sisation of conceptual constituents is triggered by
words, phrases and other structures. Composition
and inference generate semantic structures from
conceptual constituents and other structures
ed.
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following different types of semantic relations be-
tween constituents. The interpretation of a message
conveyed by a speech signal involves the generation
of semantic hypothesis from word hypotheses.

Most of the approaches proposed so far for
spoken language understanding (SLU) integrate
semantic and syntactic knowledge into a semantic
grammar and propose different algorithms for
computing the probability P(C,W) of a conceptual
structure C and a sequence of words W (Sarikaya
et al., 2004; Bangalore and Johnston, 2004; Wang
et al., 2002; He and Young, 2003; He and Young,
2004; Seneff, 1992; Hacioglu and Ward, 2001;
Young et al., 1989).

In contrast to this, approaches to natural lan-
guage understanding (NLU) have been proposed
with separate language and semantic models.
Interesting comments and motivations for ap-
proaches of this type can be found in (Jackendoff,
1990). Among them, it is worth mentioning:

• Each major syntactic constituent of a sentence
maps into a conceptual constituent, but the
inverse is not true.

• Each conceptual constituent supports the
encoding of units (linguistic, visual, etc.).

• Many of the categories support type/token dis-
tinction (e.g. place_type, place_token).

• Many of the categories support quantification.
• Each conceptual category has some realizations
in which it is decomposed into a function/argu-
ment structure.

• Various types of relations, such as IS_A, PAR-
T_OF, hold between conceptual constituents.
These relations can be used to infer the presence
of a constituent in a sentence given the presence
of other constituents.

Various types of semantic knowledge and their
use can be found, for example in (Jackendoff,
1990; Levesque and Brachman, 1985). A common
aspect of many of them is that it is possible to rep-
resent complex relational structures with non-
probabilistic schemes that are more effective than
context-free grammars. The purpose of this paper
is to describe a process for generating hypotheses
about a set of basic conceptual constituents. A
conceptual language model (LM) is proposed for
each constituent. These models taken into account
long distance word dependencies and are imple-
mented by finite state machines (FSM). A strategy
is proposed for generating interpretation hypothe-
ses by transforming a lattice of word hypotheses
generated by an ASR system into a stochastic
FSM and performing algebraic operations
between this stochastic FSM and the FSMs imple-
menting conceptual LMs.

Semantic composition and inference are not dis-
cussed in this paper. Nevertheless the formalism
described in (Jackendoff, 1990) is used to show
that the proposed approach is consistent with a
linguistic theory rich of examples about the appli-
cation domain of the system used for the experi-
ment described later on. In particular, with the
proposed strategy, it is possible that the same word
contributes to the generation of different concep-
tual hypotheses. This makes it possible to intro-
duce redundancies in conceptual LMs to increase
hypothesisation robustness.

The detection and the extraction of the basic
concepts from the speech signal will be described
in Section 3 with a simple example. For semantic
scoring and evaluation, it is convenient to estimate
the probability of a semantic interpretation given
the acoustic description of the speech signal, in
contrast with approaches that consider an approx-
imation which completely separates the likelihood
of concepts and words from the likelihood of
acoustic descriptions and words. Semantic compo-
sition is described in Section 4. Section 5 describes
how a structured n-best list of interpretations is ex-
tracted from a word lattice generated by the ASR
module processing a speech signal. This list con-
tains all the interpretations that can be found in
the word lattice, with their posterior probabilities,
and the n-best values for each interpretation. Fi-
nally, the last part of this paper describes the inte-
gration of the proposed SLU module in a dialogue
manager, involving a decision strategy based on
various confidence measures.
2. Knowledge representation and use

The knowledge representation used in the ap-
proach proposed in the following is based on a
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two-level model: the first level is made of concep-
tual constituents each of which belongs to one of
a small set of major ontological categories (such
as thing, event, state, action, place,
path, property, amount, etc.). Section 3 pre-
sents how these concepts are represented and ex-
tracted from a speech signal by means of specific
LMs (one for each concept) coded as finite state
machines (FSM). The second level in the knowl-
edge representation consists of semantic relations
between these conceptual constituents. This level
is considered in this paper only because conceptual
LMs have been derived only for few composite
concepts. Composition has been manually
performed following the theory and examples
described in (Jackendoff, 1990). Nevertheless, this
formalism is not used in the system
implementation.

The theory is summarized as follows: Let SPS
be an alphabet of major conceptual categories
called semantic parts of speech. Each of them is
represented in terms of functions and arguments.
Let FA be the alphabet of the functions. Arguments
are entities Ek which can be element of SPS or re-
sults of compositions. Composition rules are
expressions of the type [Em]! F([Ei], [Ej], [Ek], . . .).
The operators of F 2 FA are disjunction and con-
junctions. An example of composition is:

½PLACE� ! bplaceINðbthingLOCcÞc

Subscripts are ontological category variables. IN

indicates a function whose argument follows be-
tween parentheses. Selectional restrictions are gen-
eral semantic restrictions on arguments. In the
above example, LOC is a restriction for THING.

Semantic composition rules are also used to de-
rive patterns of compatibility among hypotheses of
conceptual constituents. A number of such pat-
terns have been manually derived and used as
described in Section 4.

In summary, structures are obtained with
semantic knowledge. LMs and FSMs are designed
for each basic structure. Interpretation hypothe-
ses are generated with operations on automata.
Compatibility among interpretation hypotheses
is verified using semantic knowledge. Interpreta-
tion hypotheses are ranked using probabilistic
scores.
3. Generation of elementary semantic hypotheses

with a translation process

Reasoning with semantic knowledge is triggered
by assertions of conceptual constituents which are
elementary semantic hypotheses derived from
recognized sentences or phrases which may not
be syntactically well formed.

Semantic interpretation may follow syntactic
analysis. The lexicon knowledge source has items
in which words are associated with syntactic con-
straints and patterns of semantic structures. An in-
stance of a pattern structure has to be built using
the constituents of the sentence to be interpreted.
Although noticeable examples exist on syntactic
parsing and ASR (Roark, 2002; Chappelier
et al., 1999), spontaneous speech in a dialogue con-
text contains a lot of irregular syntactic forms,
there may be errors in the hypothesised word
sequences, lexical structures are incomplete and
imprecise. Furthermore ASR accuracy can be
improved by taking into account the fact that
interpretation may constrain ASR and can be con-
strained by dialogue expectations or beliefs.

Following previous work from (Vidal et al.,
1993), the above considerations suggest conceiving
interpretation as a translation process in which
stochastic language models (LMs) contain phrases
accepted by finite state machines (FSM) which
output labels for semantic constituents. There is
an FSM for each elementary conceptual constitu-
ent. The definition of these constituents has to
satisfy two major constraints:

• it should be possible to infer a LM for each
constituent;

• it should be possible to compose or infer any
structure of the semantic knowledge from the
set of constituents.

The LM for each constituent can be seen as a
language accepted by a finite state approximation
of a natural language grammar. Such an approxi-
mation is implemented by a FSM transducer whose
outputs are instances of semantic constituents.

This idea has been implemented in the past rep-
resenting the linguistic knowledge of a conceptual
constituent with a hidden Markov model (HMM)
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having words as observations (Levin and Pierac-
cini, 1995) or with a collection of word patterns
made of chains of phrases and fillers inferred by
semantic classification trees (SCTs) (Kuhn and
De Mori, 1995). SCTs have also been the first
example of the application of classifiers to seman-
tic interpretation, a practice that is now fairly
popular (Haffner et al., 2003). Previous speech
understanding systems based on Finite State pars-
ing can also be found in (Kaiser et al., 1999,
Potamianos and Kuo, 2000).

Different automata, representing different con-
ceptual constituents, may share phrases, allowing
semantic interpretations to share part of the words
conveyed by a speech signal, without requiring,
as in popular approaches to shallow semantic
parsing, that semantic chunks do not overlap
(Hacioglu, 2004; Pradhan et al., 2004).

The structure of these FSMs is described with a
simple example before introducing the decoding
strategy. The dialogue corpus used for training
and evaluating these algorithms is made of dialogue
traces of the France TelecomR&D spoken dialogue
system PlanResto (Sadek et al., 1996) which is a
booking restaurant application. All the examples
presented here are related to this application.

3.1. Representing conceptual constituents

as FSMs

The conceptual constituents (called c in this
paper) that represent the first level in the inter-
pretation strategy are represented by FSM
transducers. These transducers take words at the
input and output the label c corresponding to the
constituent conveyed by the accepted phrase.
Their definitions rely on the dialogue strategy
and they can be either related to dialogue manage-
ment (confirmation, contestation, etc.) or to the
application domain (location, date, etc.).

General entities like date, amount or phone
numbers can be shared by several dialogue appli-
cations. They are represented by hand-written reg-
ular grammars coded as FSMs. For application-
dependent entities, a lightly supervised method is
used for automatically extracting the word string
patterns on which the FSMs are induced as pre-
sented in (Béchet et al., 2002).
FSMs are induced from these patterns by gener-
alizing some of their tokens by means of syntactic
and semantic criteria (e.g. prepositions, digits or
month names).

For example, from the utterance: le deuxième
restaurant italien (the second Italian restaurant),
two phrases can be extracted: the first one le deux-
ième restaurant in order to characterize the
concept c = access_to_a_list and the second
one restaurant italien for characterizing the con-
cept c = restaurant. From these phrases, the
patterns ($ORD restaurant) and (restaurant
$SPEC) can be derived, with the non-terminal
symbol $ORD representing any ordinal number
and $SPEC any food speciality. These patterns
are then turned into FSMs.

The fact that these two patterns share the word
restaurant is not a problem with the proposed
decoding method, as it will be shown in the next
sections.

Let us point out that the only supervision
needed in this process is the manual annotation
of the corpus according to the concepts c and the
choice of the generalization rules.

3.2. FSM definitions and algorithms

All the operations presented on the FSMs are
made with the AT&T FSM toolkit (Mohri et al.,
1997). Following the definitions used in (Mohri
et al., 2002) the acceptor and transducer FSMs
used in this study are defined thanks to the general
algebraic notion of semiring. A semiring K consists
of a set K with an associative and commutative
operation �, an associative operation �, as well
as two identity elements: �0 and �1: K ¼
ðK;�;�; �0; �1Þ. The weights associated to the
hypotheses generated by the ASR module repre-
sent probabilities implemented as �log probabili-
ties. The corresponding semiring is called the log

semiring: ðR;þ; .; 0; 1Þ. When using �log probabil-
ities with a best path approximation, the tropical

semiring is used: ðRþ [1;min;þ;1; 0Þ.
Acceptors and transducers are then defined as

follows:
Let R be an alphabet of input symbols; D an

alphabet of output symbols; � an empty symbol;
Q a set of states (with I = initial states and F =



292 C. Raymond et al. / Speech Communication 48 (2006) 288–304
final states);K a semiring; E a set of transitions de-
fined as: E � Q� ðR [ f�gÞ � ðD [ f�gÞ �K� Q;
w a weight function: w: Q ! K.

If Path(R1,x,R2) is a set of paths from R1 � Q

to R2 � Q with input label x and Path(R1,x,y,R2)
a set of paths in Path(R1,x,R2) with output label y,
then:

• Acceptor A = (R,Q, I,F,E) with for all x 2 R:

½A�ðxÞ ¼ �
p2PathðI ;x;F Þ

w½p� ð1Þ

• Transducer T = (R,D,Q, I,F,E) with for all
x 2 R*, y 2 D*:

½T �ðx; yÞ ¼ �
p2PathðI ;x;y;F Þ

w½p� ð2Þ

and w[p] = w[t1] � w[t2] � � � � � w[tn] for a path
p made of the following transitions t1, t2, . . ., tn.

In the next sections, the following fundamental
operations on FSM are going to be used:

• Composition: ½T 1 � T 2�ðx; yÞ ¼ �z½T 1�ðx; zÞ�
½T 2�ðz; yÞ,

• Intersection: [A1 \ A2](x) = [A1](x) � [A2](x),
• Difference: ½A1 � A2�ðxÞ ¼ ½A1 \ A2�ðxÞ,
• Projection: ½A�ðxÞ ¼ �y ½T �ðx; yÞ and ½A�ðyÞ ¼
�x½T �ðx; yÞ.

3.3. Word-to-concept transducer

Each conceptual constituent ck 2 C is associated
with an acceptor FSM (Ak for the concept ck). In
order to process strings of words that do not be-
long to any concept, a filler model, called AF is
used. Because the same string of words cannot be-
long to both a concept model and the background
text, all the paths contained in the acceptors Ak

(noted: AC = [ck 2 CAk) are removed from the filler
model AF in order to produce the acceptor
A0
F : ½A0

F�ðxÞ ¼ ½AF � AC�ðxÞ.
All these acceptors are then turned into trans-

ducers that take words as input symbols and
start or end concept tags as output symbols. In-
deed, all acceptors Ak become transducers Tk

where the first transition emits the symbol hcki
and the last transition the symbol h/cki. Similarly
the filler model becomes the transducer TBK which
emits the symbols hBAKi and h/BAKi. Except
these start and end tags, no other symbols are
emitted: all words in the concept or background
transducers emit an empty � symbol (coded 0 in
the example figures).

Finally all these transducers are linked together
in a single model called Tconcept as presented in
Fig. 1.
3.4. Decoding process

The decoding process leading to the output of a
n-best list of concept strings is described here and
illustrated on a small example. When processing
an utterance, the ASR module of the dialogue sys-
tem outputs a word lattice coded as an acceptor
GW. The semiring used is the log semiring and
the weigh function w(p) corresponds to the log of
the score P(YjW)P(W) where Y is a sequence of
acoustic observations,W the string of words repre-
senting the path p, P(YjW) the probability given
by the acoustic models and P(W) the probability
given by a bigram language model. An example
of GW is given in Fig. 2. The likelihood scores at-
tached to each transition are given in �logprob

values.
GW is composed with the transducer Tconcept in

order to obtain the word-to-concept transducer
TWC:TWC = GW � Tconcept, illustrated by Fig. 3.

In this example we consider four kind of con-
ceptual constituents: the functions NEAR (for a
location) and LESS (for an amount) and the to-
kens LOC for location and AMOUNT for monetary
values. These constituents are represented by the
following patterns in this example:

NEAR = pas loin du metro (near metro)

NEAR = pas loin du $NAME (near $NAME)
LOC = Trocadero

LOC = metro Opera

AMOUNT = $NUMBER euros

LESS = moins de $NUMBER (less than

$NUMBER)

with $NAME being any proper name and $NUMBER
any number expression.
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Fig. 1. Word-to-concept transducer Tconcept.
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Fig. 2. Example of word lattice GW output by an ASR module.
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A path Path(I,x,y,F) in TWC (with I the initial
state and F a final state of TWC) is either a word
string if one considers only the input symbols x
or a concept string if one considers the output
symbols y. In order to obtain all the possible inter-
pretations contained in GW, we project TWC on the
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Fig. 3. Example of transducer TWC corresponding to the composition of an acceptor representing a word lattice output by the ASR
module and the word-to-concept transducer Tconcept.
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output symbols, then determinize and minimize
the resulting FSM. The acceptor obtained is called
GC. Because this operation is done on the log
semiring, the weigh of the path Path(I,y,F) is the
sum of the weights of all the paths in TWC produc-
ing y:

½GC�ðyÞ ¼ �
x
½TWC�ðx; yÞ ð3Þ

An example of GC, obtained from the transducer
TWC of Fig. 3 is shown in Fig. 4. For clarity we
omitted in this figure the end tags of the concepts.
The double circled states are the final states.

The n-best list of conceptual interpretations
I1, I2, . . ., In is obtained by first changing the semir-
ing in GC, from log semiring to tropical semiring,
0

1<NEAR>

2
<LESS>

3

5

<BAK>

<BAK>

<LOC>

4

<BAK>

<AMOUNT>

Fig. 4. Example of acceptor GC obtained by projecting the
transducer TWC on the output symbols.
then enumerating the n best paths S1,S2, . . .,Sn in
GC. Each interpretation Ii is a string of labels c rep-
resented by an acceptor Si with the vocabulary in
C. To each Ii is also attached an acceptor GWi

which is the set of paths in TWC that output the
string Ii: [GWi

] = [TWC � Si].
This is represented in Fig. 5.
This set of concept strings is the first step in the

generation process of the structured n-best list of
hypotheses Sn-best which is the final output of our
understanding module.

Notice that phrases for different concepts may
overlap. In fact, the words expressing the meaning
of a function may be essential or very useful for
assessing that a proper name indicates unambigu-
ously a particular type of location, for example,
rather than another type of entity. A certain level
of redundancy may also be very useful for com-
pensating ASR errors. Because of this overlap
some basic concepts (like NEAR and LOC in our
example) are in different interpretations (I1 and
I2 in Fig. 5). It is the second level in our under-
standing process that is going to merge, if possible,
these concepts by applying semantic relations, as
presented in the next section.

Let us point out also that this process has a neg-
ligible impact on the overall speed of the decoding
because the operations on automata and transduc-
ers are very fast.
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Fig. 5. n-Best list of basic conceptual interpretations Ii with their corresponding acceptor GWi.
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4. Application of semantic relations

Once conceptual constituents have been
hypothesised for a spoken sentence, semantic rela-
tions which apply to them have to be identified and
used to instantiate composite semantic structures
and to perform inferences. Composition is itself a
type of inference with which compounds are in-
ferred based on premises represented by compo-
nents. It is worth recalling that relations may
have a support in the lattice of word hypotheses
and the result of an inference has a support too.
This support is the intersection of the supports
of all the premises. A support is always the union
of paths spanning the entire sentence. An inference
may not imply any temporal relation between
premises.

Part of the semantic knowledge is made of
implications expressing specialized formation
rules. For the sake of clarity, an example of infer-
ence using these rules will be developed in this
section. Using the notation proposed in (Jackend-
off, 1990) the category path is inferred by the fol-
lowing rule:

½PATH�!

TO

FROM

NEAR

TOWARD

. . .

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

THING

PLACE

( )" # !

path

2
666666666664

3
777777777775

The rule establishes that, for example, the compo-
sition of the function NEAR with an instance of
PLACE results in an instance of PATH. Every com-
position obtained with formation rules is a well
formed semantic structure. Composition rules
can be used in more complex structured semantic
representations such as KLONE (Brachman and
Schmolze, 1985).
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By inference, an instance of <PATH>: bpath
NEAR(bplaceIN(bthingLOCc)c)ccan be hypothes-
ised by the presence of hypotheses of the function
NEAR and an instance of <PLACE>.

If the hypothesis NEAR is represented with the
acceptor GWNEAR

and <PLACE> by the acceptor
GWPLACE

(obtained with the method presented in
the previous section), then the hypothesis GWPATH

about an instance of <PATH> is generated if and
only if

GWPATH
¼ ½GWNEAR

\ GWPLACE
� 6¼ ;

If the newly generated semantic structures make
applicable new formation rules, the supports of
the corresponding constituents are intersected
and, if the intersection is not empty, added to the
I     I2 1

LOC

I     I 54

AMOUNT

I3

BAK

I     I1 2

NEAR

U

I      I1 2

NEAR + LOC

U

I      I4 5

LESS + AMOUNT

0 1
moins

2
du

0 1
moins

2
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0 1
moins

2le

5

quatre

0 1
moins

2
du

0 1
pas

2
loin

0 1
pas

2
loin

–

–

–

Fig. 6. n-Best list of interpretations (with their corresponding accep
Fig. 5.
set of interpretations. The process is repeated until
no more compounds can be formed.

Each semantic structure Ii represented by
the acceptor GWIi

is scored by the following
posterior probability (with X the set of strings
accepted by GWIi

and Z the set of strings accepted
by WG):

P ðI ijY Þ ¼
�
x2X

½GWIi
�ðxÞ

�
z2Z

½W G�ðzÞ
ð4Þ

For example, from the five interpretations of
Fig. 5, two semantic relations can be applied:

• one for <PLACE>, as presented above, based
on the concepts NEAR (I1) and LOC (I2);
3
Trocadero

3
vingt

4
euros

3

vingt

vingt 4
euros

3
metro

3
du

4
metro

3
du

4

Trocadero

5

metro opera

tor) after application of semantic relations to the n-best list of



Table 1
Example of structured n-best list obtained on the word lattice of
Fig. 2 scored with their posterior probabilities

Rank Interpretation/value Score

I1 bpathNEAR(bplaceIN(bthingLOCc)c)c 0.58
I1.1 LOC(type: subway,value = opera) 0.57
W pas loin du metro opera

(near metro opera)
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• one for the instance <MONEY>:
bmoneyLESS(bthingAMOUNTc)c based on the
concepts LESS (I5) and AMOUNT (I4).

This leads to perform 6 operations on the
acceptors GWi

:

GWI1\I2
¼ ½GW1

\ GW2
� ! NEAR þ LOC

GWI1�I2
¼ ½GW1

� GW2
� ! NEAR

GWI2�I1
¼ ½GW2

� GW1
� ! LOC

GWI4\I5
¼ ½GW4

\ GW5
� ! AMOUNTþ LESS

GWI4�I5
¼ ½GW4

� GW5
� ! AMOUNT

GWI5�I4
¼ ½GW5

� GW4
� ! LESS

Because GWI5�I4
¼ ; only six interpretations are

kept: the 5 ones just obtained plus the interpreta-
tion I3 (BAK) which have not been involved in
any operations. These interpretations are scored
according to their posterior probabilities. On the
FSM of Fig. 2, we obtain:

P ðI1 \ I2Þ ¼ 0.58 P ðI1 � I2Þ ¼ 0.21

P ðI3Þ ¼ 0.11 P ðI4 � I5Þ ¼ 0.07

P ðI4 \ I5Þ ¼ 0.028 P ðI2 � I1Þ ¼ 0.002

Fig. 6 shows the six interpretations kept with their
corresponding FSMs. Another method for scoring
semantic interpretations will be introduced in Sec-
tion 6.
I1.2 LOC(type: square,value = Trocadero) 0.01
W pas loin du Trocadero (near the

Trocadero)
I2 NEAR 0.21
W pas loin du metro (near metro)
I3 BAK 0.11
W moins du metro (less metro)
I4 bthingAMOUNTc 0.07
I4.1 AMOUNT(type: euros,value = 80) 0.065
W moins quatre vingt euros

(less eighty euros)
I4.2 AMOUNT(type: euros,value = 20) 0.005
W moins le vingt euros

(less the twenty euros)
I5 bmoneyLESS(bthingAMOUNTc)c 0.028
I5.1 AMOUNT(type: euros,value = 20) 0.028
W moins de vingt euros

(less than twenty euros)
I6 bthingLOCc 0.002
I6.1 LOC(type: square,value = Trocadero) 0.002
W moins du Trocadero

(less the Trocadero)
5. Structured n-best list of semantic

interpretations

The last step in the understanding process gen-
erates the n-best hypothesis list of concept values

for each concept hypothesis. Several values can
be found in an FSM for the same concept. This
is particularly true when the concepts represent
numerical entities like phone numbers or amounts.
It is therefore possible to output not only the best
word string for each interpretation Ii obtained but
rather the n-best list of word strings leading to
different concept values.

Extracting the n-best values can be very useful
in a dialogue context, as some additional informa-
tion (customer data, constraints on the values,
etc.) can be used to select a value among a list of
hypotheses. For example, Rahim et al. (2001)
shows that using a general phone directory for fil-
tering phone number n-best lists automatically ex-
tracted is a very efficient filter: the understanding
accuracy of the phone strings that belong to the
directory is 94.5% (and this represents 61% of
the hypotheses) compared to only 45% accuracy
for those that cannot be found in any phone
directory.

Therefore, the acceptor GWi attached to each
interpretation Ii is composed with a transducer
that output only the different values (mainly proper
names and numerical values) contained in the
FSM. The n-best value strings as well as the corre-
sponding support word strings are then associated
to each Ii in order to build the structured n-best list

of semantic interpretations (Sn-best).
The structured n-best list corresponding to our

example is displayed in Table 1.
This kind of structure can be seen as an abstrac-

tion of all the possible interpretations of an
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utterance. The two main advantages of the seman-
tically structured n-best list compared to standard
n-best list of word strings are as follows:

1. Standard n-best lists are produced by enumerat-
ing the n-best paths produced by the ASR mod-
ule. The scores used are a combination of
acoustic and language model scores; no other
linguistic level is involved. When an n-best word
hypothesis list is generated, the differences
between the hypothesis i and the hypothesis
i + 1 are often very small, made of only one
or a few words. This phenomenon is aggravated
when the ASR word lattice contains a low con-
fidence segment, due for example to an out-
of-vocabulary word, to a noisy input or to a
speech disfluency. On the contrary, in a Spoken
Dialogue context, not all words are important
to the Dialogue Manager while the difference
between the words in the list may be semanti-
cally irrelevant. A particular advantage of using
a structured n-best list Sn-best is that every
hypothesis has a different meaning for the
dialogue manager.

2. By having confidence scores (the posterior
probabilities) for both interpretations at the
concept level and interpretations with concept
values, Snbest can be used by the dialogue man-
ager for answering two kinds of questions:
• are the concepts expected according to the

dialogue state in the list of the possible inter-
pretations of an utterance, and with which
confidence scores?

• for a given concept, what are the possible
values that can be found and with which
confidence scores?
6. Rescoring of semantic structure hypotheses

In order to select a particular interpretation C
from the structured n-best list, it is interesting to
compute the probability P(CjM) that C is correct,
given a set of confidence measures M. The choice
of the confidence measures determines the quality
of the decision strategy. The measures used in this
study are briefly presented in the next sections.
6.1. Confidence measures

6.1.1. Acoustic confidence measure (AC)

This confidence measure relies on the compari-
son of the acoustic likelihood provided by the
speech recognition model for a given hypothesis
to the one that would be provided by a totally
unconstrained phoneme loop model. In order to
be consistent with the general model, the acoustic
units are kept identical and the loop is over con-
text-dependent phonemes. This confidence mea-
sure is used at the utterance level and at the
concept level (see Raymond et al. (2003) for more
details).

6.1.2. Linguistic confidence measure (LC)

In order to assess the impact of the absence of
observed trigrams as a potential cause of recogni-
tion errors, a Language Model consistency mea-
sure is introduced. This measure, inspired by
measures proposed in (Estève et al., 2003), is sim-
ply, for a given word string candidate, the ratio be-
tween the number of trigrams observed in the
training corpus of the language model vs. the total
number of trigrams in the same word string. Its
computation is very fast and the confidence scores
obtained from it give interesting results as
presented in (Estève et al., 2003).

6.1.3. Semantic confidence measure (SC)

Several studies have shown that text classifica-
tion tools (like Support Vector Machines or Boost-
ing algorithms) can be an efficient way of labeling
an utterance transcription with a semantic label
such as a call-type (Haffner et al., 2003) in a
Spoken Dialogue context. In our case, the seman-
tic labels attached to an utterance are the different
concepts handled by the Dialogue Manager. One
classifier is trained for each concept tag in the
following way.

Each utterance of a training corpus is labeled
with a tag, manually checked, indicating if a given
concept occurs or not in the utterance. In order to
let the classifier model the context of occurrence of
a concept rather than its value we removed most of
the concept headwords from the list of criterion
used by the classifier. We also added to the training
corpora the automatic transcriptions of the
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utterances in order to increase the robustness of the
classifier to noisy data output by the ASR engine.

During the decision process, if the interpreta-
tion evaluated contains two concepts c1 and c2,
then the classifiers corresponding to c1 and c2 are
used to give to the utterance a confidence score
of containing these two concepts.

The text classifier used in the experimental sec-
tion is a decision-tree classifier based on the
semantic classification trees introduced for the
ATIS task by Kuhn and De Mori (1995) and used
for semantic disambiguation in (Béchet et al.,
2000).

6.1.4. Rank and posterior probability confidence

measures (R, PP)

To the previous confidence measures we added
the confidence scores attached to the structured
n-best lists:

• the rank of each candidate in the n-best. This
rank contains two numbers: the rank of the
interpretation of the utterance and the rank of
the utterance among those having the same
interpretation.

• the posterior probability estimated on the word
lattice for each interpretation and utterance.

6.1.5. Dialogue context confidence measure (DC)

The dialogue context represents the focus of the
ongoing dialogue. Concepts can be in the system
focus (or belief) or outside it in case of misrecogni-
tion from the system or context switch from the
user. However, in-focus concepts are more likely
to occur than the others. In order to use this infor-
mation, the dialogue context is attached to each
utterance of our training corpus by means of labels
that indicate the kind of concepts expected in the
following turn. A priori distribution of concepts
according to dialogue context labels are estimated
on the training corpus and used as confidence mea-
sures during the decoding process.

6.2. Decision tree based strategy

As the statistical dependencies between confi-
dence measures are difficult to establish, their
values are transformed into symbols by vector
quantization (VQ) and conjunctions of these sym-
bols expressing relevant statistical dependencies
are represented by a decision tree trained with a
development set of examples.

To train this tree a corpus is built where each
example is an interpretation C extracted from the
structured n-best lists of hypotheses Snbest ob-
tained on a development corpus of utterances.
Each interpretation C is represented by the follow-
ing features:

• a set M of discredited values corresponding to
the confidence measures presented in the previ-
ous section;

• a label, which is either correct (Cc) if C contains
no errors according to the reference corpus, or
incorrect (Ce) otherwise.

The decision tree is trained in order to minimize
the impurity of the distribution of the correct and
incorrect examples after expanding a tree node.
The questions attached to each node are related
to the symbols expressing the various confidence
measures describing each example. This process
stops when no further drop in impurity can be
achieved or when the size of the set of samples at-
tached to a node is below a given threshold. At
the end of the training process, a score consisting
in the proportion of positive examples is associated
to a leaf. This proportion is an estimation of the
probability that the interpretation of a sentence
leading to that leaf is correct. This probability is
conditioned by the function of confidence measures
which is the conjunction of the symbols associated
to the branches of the path from the root to the leaf:

PðCcjMÞ ¼ P ðCc;MÞ
PðCc;MÞ þ P ðCe;MÞ ð5Þ

At each leaf of the tree, this probability P(CcjM) is
computed and a decision of acceptance can be
made if it is above a given threshold.
7. Dialogue strategy

Once concepts have been hypothesised, a dia-
logue system has to decide what action to perform.
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Let A = aj be the set of actions a system can per-
form. Some of them can be requests for clarifica-
tion or repetition. In particular, the system may
request the repetition of the entire utterance. Per-
forming an action has a certain risk and the deci-
sion about the action to perform has to be the
one that minimizes the risk of user dissatisfaction.

It is thus possible that some or all the hypothes-
ised components of a conceptual structure C do
not correspond to the user intention because the
word sequence W based on which the conceptual
hypothesis has been generated contains some er-
rors. In particular, there are requests for clarifica-
tion or repetition which should be performed right
after the interpretation of an utterance in order to
reduce the stress of the user. It is important to no-
tice that actions consisting in requests for clarifica-
tion or repetition mostly depend on the probability
that the interpretation of an utterance is correct,
rather than on the utterance interpretation.

The decoding process described in Section 3.4
provides a number of hypotheses scored with their
posterior probabilities. To each hypotheses is at-
tached the set of confidence measures M. P(CcjM)
is computed for these hypotheses as presented in
the previous section. The results can be used to de-
cide to accept an interpretation or to formulate a
clarification question which may imply more
hypotheses.

For the sake of simplicity only two actions are
considered: accepting the hypothesis with the high-
est P(CcjM) or rejecting it. The risk associated to
the acceptation decision is called qfa and corre-
sponds to the cost of a false acceptation of an
incorrect interpretation. Similarly the risk associ-
ated to the rejection decision is called qfr and cor-
responds to the cost of a false rejection of a correct
interpretation. In a spoken dialogue context, qfa is
supposed to be higher than qfr.

The choice of the action to perform is deter-
mined by a threshold d on P(CcjM). This threshold
is tuned on a development corpus by minimizing
the total risk R expressed as follows:

R ¼ qfa �
N fa

N total

þ qfr �
N fr

N total

ð6Þ

Nfa and Nfr are the numbers of false acceptation
and false rejection decisions on the development
corpus for a given value of d. Ntotal is the total
number of examples available for tuning the
strategy.

The final goal of the strategy is to make negligi-
ble Nfa and the best set of confidence measures is
the one that minimizes Nfr. In fact, the cost of
these cases is lower because the corresponding
action has to be a request for repetition.

Instead of simply discarding an utterance if
P(CcjM) is below d, another strategy is investi-
gated which consists of estimating the probability
that the conceptual interpretation alone (without
the concept values) is correct. This probability
can be estimated the same way as P(CcjM) and
can be used to choose a third kind of actions:
accepting the conceptual meaning of an utterance
but asking for clarifications about the values of
the concepts.

A final decision about the strategy to be
adopted should be based on statistics on system
performance to be collected and updated after
deploying the system on the telephone network.
8. Experiments

Experiments are carried out on a dialogue cor-
pus provided by France Telecom R&D and
collected for a tourism telephone service (Sadek
et al., 1996). Two corpora, extracted from this
dialogue corpus, are used in this study:

• a development corpus, made of 2.1k utterances,
containing for each utterance the word lattice
output by the France Telecom speech recog-
nizer, the best word string in the lattice with
an average word error rate (WER) of 25.8 and
the reference transcription with the list of
concepts occurring in it;

• a test corpus, made of 1.7k utterances, contain-
ing also word lattices, best word strings with an
average WER of 27.0 and the reference tran-
scriptions with conceptual information.

The development corpus is used to train the
decision tree used in the decision module as
presented in Section 6.2.

The task has a vocabulary of 2200 words.
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The results are given according to the under-
standing error rate (UER) measure. This measure
is related to the normalized values of the concepts
detected. These values are obtained thanks to a set
of rules that translate the word strings detected as
concepts into tokens representing the values. To
each concept is associated a single value.

With C being the interpretation of an utterance
of the test corpus, UER is defined as follows:

UER ¼ Sc þ Sv þ Dc þ Ic
T

� 100 ð7Þ

where Sc indicates the substitution of an attribute
of C, Sv the substitution of a concept value, Dc

indicates deletion of an attribute and Ic indicates
insertion. T is the total number of concepts in
the reference corpus.

Fifteen concept tags are used in these
experiments.

8.1. Comparison between standard vs. structured

n-best lists of hypotheses

Fig. 7 shows the comparison between a stan-
dard and a structured n-best list Snbest obtained
on our test corpus. This curve shows the lowest
understanding error rate (UER) that can be found
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structured according to the utterance interpretations.
in a n-best list of word hypotheses. This measure is
called the Oracle error rate. It is defined as follows,
for a list L of N hypotheses H1,H2, . . .,HN:

OracleðLÞ ¼ min
1<¼i<¼N

UERðHiÞ ð8Þ

Different values of n are compared. In this experi-
ment the lowest bound that can be reached is the
oracle value of the whole word lattice, and its va-
lue is 4%. As we can see, Snbest outperforms signif-
icantly the standard n-best list: for n = 5 the oracle
value for Snbest is already near the lowest bound, at
4.5%, while the standard n-best reaches the same
value for n = 35. This results shows that the aver-
age length of the structured n-best lists is quite low
(around five hypotheses). Snbest is an effective sum-
mary of all the information contained in the word
lattice output by the ASR module.

It is interesting to plot the relative error rate
reduction obtained by manually choosing the Ora-
cle hypothesis at the understanding (UER) and at
the word (WER) level. Fig. 8 shows such curves.
At n = 5, a 60% relative error rate reduction is ob-
tained at the understanding level with Snbest (com-
pared to 40% with the standard list) but this leads
to only 6.5% relative reduction in WER. It is clear
here that the WER measure is not an adequate
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measure in a Spoken Dialogue context as a signif-
icant reduction in the Understanding Error Rate
might have very little impact on the word error
rate.
8.2. Evaluation of the rescoring strategy

Table 2 shows the results obtained with a
rescoring strategy that selects, from Snbest, the
hypothesis with the highest P(CcjM) (M being a
set of confidence measures). The baseline results
are obtained with a standard maximum-likelihood
approach choosing the hypothesis maximizing the
probability P(CjY). No rejection is performed in
this experiment and the size of the structured n-
best list was limited to 10 interpretations.
Table 2
Understanding error rate results with and without rescoring on
structured n-best lists

Corpus Baseline Rescoring UER reduction %

Devt. 10.9 8.4 22.9
Test 11.3 9.7 14.2
The gain obtained after rescoring is significant
and justifies the 2-step approach that first extract
an n-best list of interpretations based on P(CjY)
and then choose the one with the highest confi-
dence according to a large set of confidence mea-
sures M.
8.3. Evaluation of the decision strategy

In this experiment we evaluate the decision
strategy consisting of accepting or rejecting an
hypothesis C thanks to a threshold on the proba-
bility P(CcjM). Fig. 9 shows the curve UER vs.
utterance rejection on the test corpus. As we can
see very significant improvements can be achieved
with very little utterance rejection. For example, at
a 10% utterance rejection operating point, the
UER on the development corpus drops from
9.7% to 7.2% which is a 25% relative improvement.

By using Eq. (6) for finding the operating point
minimizing the risk function (with a cost
qfa = 1.5 · qfr) on the development corpus we
obtain an UER of 7.8% for a rejection rate of
about 5%.
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9. Conclusion

An effective use of FSMs for semantic interpre-
tation has been described. A decoding algorithm
has been proposed which uses FSMs to obtain a
structured n-best list of sentence interpretation.
This list is a short summary of the possible seman-
tic contents of a spoken sentence. It is shown that
comparable interpretation performance can be
obtained with a structured list whose size is practi-
cally an order of magnitude lower than the use of
the corresponding standard n-best list. This simpli-
fication significantly reduces the probability of
interpretation errors. Strategies for selecting an
interpretation in the structured list have been pre-
sented using confidence measures. Automatically
trained decision trees are used to represent statisti-
cal dependences. Posterior probabilities that an
interpretation is correct given a set of confidence
measures are also used in a clarification dialogue
strategy.

As FSM correspond to basic semantic constitu-
ents, they can be composed in various ways to
generate a large number of semantic structures.
Possible FSM compositions are described by
semantic composition rules. More complex struc-
tures can be obtained by introducing new FSMs
and composition rules. This research will continue
with the investigation of new validation and error
correction procedures for semantic interpretation.
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