Rational numbers with purely periodic beta-expansion

Boris Adamczeswki, C. Frougny, A. Siegel, W.Steiner

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 기로 및 X 이익(N

Fractals, Tilings, and Things?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Fractals, Tilings, and Things?

Number theory : expansions in several bases

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Rauzy fractals

Fractals, Tilings, and Things?

Number theory : expansions in several bases

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

Rauzy fractals Self-affine tilings

Fractals, Tilings, and Things?

Number theory : expansions in several bases

K □ ▶ K @ ▶ K 할 X K 할 X (할) 2000

Rauzy fractals Self-affine tilings

Fractals, Tilings, and Things?

Number theory : expansions in several bases

K ロ > K 레 > K 플 > K 플 > 『 콜 → 이익C*

Goal : using fractal geometry to prove irrationality

Who has a regular expansion in base 10 ?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Who has a regular expansion in base 10 ?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x}_{=a_1} + \underbrace{10x}_{=x_1} \right)
$$

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{[10x]}_{=x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{[10x_1]}_{=x_2} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright What are the expansions in [0, 1]?
- \triangleright Who has an eventually periodic expansion?
- \triangleright Who has a finite expansion?
- \triangleright Who has a purely periodic expansion?

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\ldots 9\}^{\mathbb{N}}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- \triangleright Who has an eventually periodic expansion?
- \triangleright Who has a finite expansion?
- \triangleright Who has a purely periodic expansion?

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\ldots 9\}^{\mathbb N}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- \triangleright Who has an eventually periodic expansion? All rational numbers.
- \triangleright Who has a finite expansion?
- \triangleright Who has a purely periodic expansion?

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

K ロ X (日) X 제공 X 제공 X - 공 : X 이익(N)

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\ldots 9\}^{\mathbb N}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- \triangleright Who has an eventually periodic expansion? All rational numbers.
- \triangleright Who has a finite expansion? Rational numbers with denominator 10^n .
- \triangleright Who has a purely periodic expansion?

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\ldots 9\}^{\mathbb N}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- \triangleright Who has an eventually periodic expansion? All rational numbers.
- \triangleright Who has a finite expansion? Rational numbers with denominator 10^n .
- \triangleright Who has a purely periodic expansion? Rational number whose denominator is coprime with 10.

Who has a regular expansion in base 10 ?

Greedy algorithm :

$$
x = \frac{1}{10} \left(\underbrace{10x} + \underbrace{10x} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{10x_1} + \underbrace{10x_1} \right)
$$

\n
$$
= \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\ldots 9\}^{\mathbb N}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- \triangleright Who has an eventually periodic expansion? All rational numbers.
- \triangleright Who has a finite expansion? Rational numbers with denominator 10^n .
- \triangleright Who has a purely periodic expansion? Rational number whose denominator is coprime with 10.

Remark : Numbers with a regular expansion are *uniformly spread in* $[0, 1]$ $(\hbox{similar results hold for any integer base } b)$ $(\hbox{similar results hold for any integer base } b)$ $(\hbox{similar results hold for any integer base } b)$ $(\hbox{similar results hold for any integer base } b)$ $(\hbox{similar results hold for any integer base } b)$ $(\hbox{similar results hold for any integer base } b)$

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\underbrace{\phi x}_{=a_1} \right) + \underbrace{\phi x}_{=x_1} \right)
$$

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
\begin{array}{rcl}\n\mathbf{x} & = & \frac{1}{\phi} \left(\left[\phi \mathbf{x} \right] + \left\{ \phi \mathbf{x} \right\} \right) \\
& = & \frac{a_1}{\phi} + \frac{1}{\phi} \left(\left[\phi \mathbf{x}_1 \right] + \left\{ \phi \mathbf{x}_1 \right\} \right) \\
& = & \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \cdots + \frac{a_n}{\phi^n} + \cdots\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\left[\phi x \right] + \left\{ \phi x \right\} \right)
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\left[\phi x_1 \right] + \left\{ \phi x_1 \right\} \right)
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]?

- \triangleright Who has an eventually periodic expansion?
- \triangleright Who has a finite expansion?
- \triangleright Which rational numbers have a purely periodic expansion ?

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\frac{(\phi x)}{\phi x} \right) + \frac{\phi x}{\phi x}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\frac{(\phi x_1)}{\phi x_1} \right) + \frac{\phi x_1}{\phi x_1}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{Z}}$ with no two consecutive 1 and not ending with 01010101

(since
$$
1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots
$$
)

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

- \triangleright Who has an eventually periodic expansion?
- \triangleright Who has a finite expansion?
- \triangleright Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\frac{(\phi x)}{\phi x} \right) + \frac{\phi x}{\phi x}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\frac{(\phi x_1)}{\phi x_1} \right) + \frac{\phi x_1}{\phi x_1}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{Z}}$ with no two consecutive 1 and not ending with 01010101

(since
$$
1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots
$$
)

4 D > 4 P > 4 E > 4 E > E + 9 Q O

- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- \triangleright Who has a finite expansion?
- \triangleright Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\frac{[\phi \times]}{\phi} + \frac{\phi \times }{\phi} \right)
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\frac{[\phi \times]}{\phi} + \frac{\phi \times 1}{\phi} \right)
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{Z}}$ with no two consecutive 1 and not ending with 01010101

(since
$$
1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots
$$
)

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- \triangleright Who has a finite expansion? All $x \in \mathbb{Z}[\phi]$
- \triangleright Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\frac{(\phi x)}{\phi x} \right) + \frac{\phi x}{\phi x}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\frac{(\phi x_1)}{\phi x_1} \right) + \frac{\phi x_1}{\phi x_1}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{Z}}$ with no two consecutive 1 and not ending with 01010101

(since
$$
1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots
$$
)

AD A REAKEN E VAN

- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{Q} \cap [0,1]$ (Schmidt :80)

Golden ratio : $\phi = \frac{1 + \sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$
x = \frac{1}{\phi} \left(\frac{(\phi x)}{\phi x} \right) + \frac{\phi x}{\phi x}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\frac{(\phi x_1)}{\phi x_1} \right) + \frac{\phi x_1}{\phi x_1}
$$

\n
$$
= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots
$$

 \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{Z}}$ with no two consecutive 1 and not ending with 01010101

(since
$$
1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots
$$
)

- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{O} \cap [0,1]$ (Schmidt :80)

Still uniformly spread in $[0,1]$

Regular expansions in the golden ratio quadratic unit basis?

AD A REAKEN E VAN

Golden ratio base β : $\beta^2 = a\beta + b$ b $b = \pm 1$ b $\beta > 1$

Greedy algorithm : ϕ -expansions β -expansions

$$
x = \frac{1}{\beta}([\beta x] + {\beta x \choose \beta x}]
$$

\n
$$
= \frac{a_1}{\beta} + \frac{1}{\beta}([\beta x_1] + {\beta x_1 \choose \beta x_1}]
$$

\n
$$
= \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in ${0,1}^{\mathbb{N}}$ with no two consecutive 1 and not ending with 010101.... ??? (since $1=\frac{1}{\phi}+\frac{1}{\phi^2}=\frac{1}{\phi}+\frac{0}{\phi^2}+\frac{1}{\phi^3}+\frac{0}{\phi^3}+\dots)$
- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{O}(\phi)$ (Bertrand :77) ? ? ?
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$???

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{Q} \cap [0,1]$ (Schmidt :80) ? ? ?

Still uniformly spread in $[0, 1]$??

Regular expansions in the golden ratio quadratic unit basis?

Golden ratio base β : $\beta^2 = a\beta + b$ b $b = \pm 1$ b $\beta > 1$ Greedy algorithm : ϕ -expansions β -expansions $x = \frac{1}{\beta}([\beta x] + (\beta x))$ $=$ $\frac{a_1}{\beta} + \frac{1}{\beta} \left(\left[\beta x_1 \right] + \right)$ $=$ a₂ $+ \{\beta x_1\}$ $\overline{z} = x_2$) $=$ $\frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots + \frac{a_n}{\beta^n} + \ldots$

- \triangleright What are the expansions in [0, 1]? Sequences in ${0,1}^{\mathbb{N}}$ with no two consecutive 1 and not ending with 01010101.... Strictly smaller than the infinite expansion of 1. (since $1 = \frac{a_1}{\beta} + \frac{a_2}{\beta} + \frac{a_3}{\beta^3} + \dots$)
- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) Always true
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$ def := β satisfies the property (F); depends on $b = \pm 1$

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{Q} \cap [0, 1]$ (Schmidt :80) all or none depending on (F)

Still uniformly spread in $[0, 1]$ (OK) + Dichotomy according to (F) **A DIA K RIA A E A DIA K RIA K DIA A DIA A BELIEFE DIA A DIA A BELIEFE DIA A DIA A BELIEFE DIA A BELIEFE DIA A BEL**

Base $\beta : \beta^n = a_{n-1}\beta^{n-1} + \cdots + \pm 1$, $\beta > 1$

Pisot hypothesis : $\beta > 1$ and its Galois conjugates $\beta^{(i)}$ are all strictly smaller than one.

Greedy algorithm : β -expansions

$$
x=\frac{a_1}{\beta}+\frac{a_2}{\beta^2}+\cdots+\frac{a_n}{\beta^n}+\ldots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{N}}$ strictly smaller than the infinite expansion of 1. ??
- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) ??
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$ (def := β satisfies the property (F)) ??

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{O} \cap [0,1]$??

Still uniformly spread in $[0, 1]$??

K ロ X (日) X 제공 X 제공 X - 공 : X 이익(N)

Base $\beta : \beta^n = a_{n-1}\beta^{n-1} + \cdots + \pm 1$, $\beta > 1$

Pisot hypothesis : $\beta > 1$ and its Galois conjugates $\beta^{(i)}$ are all strictly smaller than one.

Greedy algorithm : β -expansions

$$
x=\frac{a_1}{\beta}+\frac{a_2}{\beta^2}+\cdots+\frac{a_n}{\beta^n}+\ldots
$$

- \triangleright What are the expansions in [0, 1]? Sequences in $\{0,1\}^{\mathbb{N}}$ strictly smaller than the infinite expansion of 1. ?? OK from Pisot assumption
- \triangleright Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) ?? OK from Pisot assumption
- \triangleright Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$ (def := β satisfies the property (F)) ?? Conditions for (F) (Frougny&Solomyak :02, Akiyama :02...)

 \triangleright Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{O} \cap [0,1]$?? NO!

Still uniformly spread in $[0, 1]$?? NO!

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

$$
x=\frac{a_1}{\beta}+\frac{a_2}{\beta^2}+\cdots+\frac{a_n}{\beta^n}+\ldots
$$

Which rational numbers have a purely periodic expansion ?

Theorem (Akiyama :02) If $\beta^3=\beta+1$, there exists $\gamma(\beta)=0.666\,666\,086\,\dots$ such that \triangleright all $x \in \mathbb{Q} \cap [0, \gamma(\beta)]$ have a purely periodic β -expansion **►** a sequence $x_n \in \mathbb{Q}$, lim $x_n = \gamma(\beta)$ does not have a periodic β -expansion.

Purely periodic expansions are NOT uniformly spread in [0, 1]

$$
x=\frac{a_1}{\beta}+\frac{a_2}{\beta^2}+\cdots+\frac{a_n}{\beta^n}+\ldots
$$

Which rational numbers have a purely periodic expansion ?

Theorem (Akiyama :02) If $\beta^3=\beta+1$, there exists $\gamma(\beta)=0.666\,666\,086\,\dots$ such that \blacktriangleright all $x \in \mathbb{Q} \cap [0, \gamma(\beta)]$ have a purely periodic β -expansion **E** a sequence $x_n \in \mathbb{Q}$, lim $x_n = \gamma(\beta)$ does not have a periodic β -expansion.

Purely periodic expansions are NOT uniformly spread in [0, 1]

AD A REAKEN E VAN

Three new questions.

- In Its there still a dichotomy according to (F) ?
- ► What can be said on $\gamma(\beta)$?
- In It the good conference : Tilings and fractals ? ? ? ? ?

Expand any positive real in base β

$$
x = \underbrace{a_{-k+1}\beta^{k-1} + \cdots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \cdots}_{\beta\text{-fractional part}}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Compact representation of number with no fractional part ?

Expand any positive real in base β

$$
x = \underbrace{a_{-k+1}\beta^{k-1} + \cdots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \cdots}_{\beta\text{-fractional part}}.
$$

Compact representation of number with no fractional part ?

► Galois conjugates of β r – 1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

K ロ ▶ K @ ▶ K 할 X K 할 X → 할 X → 9 Q Q ^

Expand any positive real in base β

$$
x = \underbrace{a_{-k+1}\beta^{k-1} + \cdots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \cdots}_{\beta\text{-fractional part}}.
$$

Compact representation of number with no fractional part ?

 \triangleright Galois conjugates of β r − 1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

F Canonical embedding : replace every polynomial in β by its conjugates

$$
\begin{array}{rcl} \xi:&\mathbb{Q}(\beta) &\to&\mathbb{R}^{r-1}\times\mathbb{C}^{\mathsf{s}}\\ &\times&\mapsto&(\sigma_2(\mathsf{x}),\ldots,\sigma_{r+\mathsf{s}}(\mathsf{x})).\end{array}
$$

Smallest Pisot number : $\xi: P(\beta) \in \mathbb{R} \mapsto P(\beta^{(2)}) \in \mathbb{C}$

Expand any positive real in base β

$$
x = \underbrace{a_{-k+1}\beta^{k-1} + \cdots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \cdots}_{\beta\text{-fractional part}}.
$$

Compact representation of number with no fractional part ?

 \triangleright Galois conjugates of β r − 1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

F Canonical embedding : replace every polynomial in β by its conjugates

$$
\xi: \mathbb{Q}(\beta) \rightarrow \mathbb{R}^{r-1} \times \mathbb{C}^s
$$

$$
x \rightarrow (\sigma_2(x), \ldots, \sigma_{r+s}(x)).
$$

Smallest Pisot number : $\xi: P(\beta) \in \mathbb{R} \mapsto P(\beta^{(2)}) \in \mathbb{C}$

 \triangleright Central tile (Rauzy :81, Thurston :89, Akiyama :98)

 $\mathcal{T} := \{ \xi \text{ (integral part of a positive number)} \}$

Smallest PP : $\xi(\beta^n) = (\beta^{(2)})^n \in \mathcal{T}$, $\xi(\beta^5 + 1) = \beta^{(5)} + 1 \in \mathcal{T}$ but β^2+1 is not an integer part : $(\beta^{(2^2}+1\not\in \mathcal{T}\, ?$ $(\beta^{(2^2}+1\not\in \mathcal{T}\, ?$ $(\beta^{(2^2}+1\not\in \mathcal{T}\, ?$ $(\beta^{(2^2}+1\not\in \mathcal{T}\, ?$

Replace polynomials in β by polynomials in its conjugates and take the closure of reals with no fractional part

K ロ > K 레 > K 플 > K 콜 > - 콜 - K 이익(*)

Tilings !

 $x \in \mathbb{Z}[\beta]$ $\mathcal{T}(x) := \overline{\{\xi(\text{reals with the same fractional part as } x)\}}$

- \blacktriangleright Finite number of tiles (admissibility condition)
- \triangleright Covering of the space

Theorem (Akiyama&Rao&Steiner :06)

Let β be a unit cubic Pisot number. Then the covering by central tiles is a tiling. \exists (\exists) (\exists) (\exists) (\exists)

 2990

Fractals and things ?

Strong relation between periodicity and the central tile

イロト イ母 トイミト イミト・(型) つめの

Property (F) iff 0 is an inner point (Akiyama :02).

Fractals and things ?

Strong relation between periodicity and the central tile

- Property (F) iff 0 is an inner point (Akiyama :02).
- \triangleright Purely periodic expansions : searching for a natural extension
	- \triangleright subdivise the central tile according to the admissibility condition

AD A REAKEN E VAN

 \blacktriangleright build a suspension

Fractals and things ?

Strong relation between periodicity and the central tile

- Property (F) iff 0 is an inner point (Akiyama :02).
- \triangleright Purely periodic expansions : searching for a natural extension
	- \triangleright subdivise the central tile according to the admissibility condition
	- \blacktriangleright build a suspension

Ito&Rao :04 $x \in \mathbb{Q}(\beta)$ purely periodic roughly means that $-\xi(x)$ lies in the central tile.

Theorem (Ito&Rao :04)

Let β be a Pisot unit and $x \in [0,1)$. The β -expansion of x is purely periodic if and only if $x \in \mathbb{Q}(\beta)$ and

$$
(-\xi(x),x)\in \mathcal{E}_{\beta}:=\bigcup_{i=0}^{n+m-1}T_i\times [0,T_{\beta}^i(1)).
$$

Back to purely periodic expansions

Reminder $1 \times \in \mathbb{Q}(\beta)$ purely periodic means that $-\xi(x)$ lies in the central tile.

Reminder 2 $\gamma(\beta)$ is the lenght of the largest interval issued from 0 that contains only purely periodic expansions

New question : What is the largest diagonal contained in the suspension ?

Back to purely periodic expansions

Reminder $1 \times \in \mathbb{Q}(\beta)$ purely periodic means that $-\xi(x)$ lies in the central tile.

Reminder 2 $\gamma(\beta)$ is the lenght of the largest interval issued from 0 that contains only purely periodic expansions

New question : What is the largest diagonal contained in the suspension ?

Corollary

When the tiling property holds, $\gamma(\beta)$ lies at the intersection of two tiles and a rational line in the tiling.

Self-similar properties

Definition (Spiral point)

A point $z \in \mathcal{T}$ is a spiral point if for all ε and θ , both $Int(\mathcal{T})$ and the complement $\mathcal{C}(\mathcal{T})$ meet the ray $z+[0,\varepsilon)e^{i\theta}:=\big\{z+\rho e^{i\theta}\mid \rho\in [0,\varepsilon)\big\}.$

Admissibility condition yields self-similar IFS and then spiral properties

Lemma

Let β be a cubic Pisot number with a complex Galois conjugate α . Then every point in $\mathbb{O}(\alpha)$ that belongs to the boundary of T is a spiral point with respect to this tile.

Dichotomy with respect to (F)

If 0 is on the boundary :

- \blacktriangleright The boundary has a spiral shape on 0
- \triangleright Points on the horizontal line out of the central tile. Small rationals with non purely periodic expansion

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ

 299

Dichotomy with respect to (F)

If 0 is on the boundary :

- \blacktriangleright The boundary has a spiral shape on 0
- \triangleright Points on the horizontal line out of the central tile. Small rationals with non purely periodic expansion

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 $2Q$

There is still a dichotomy in the cubic case

Theorem

Let β be a cubic Pisot unit. Then, one of the following holds :

- (i) β satisfies (F) and $\gamma(\beta) > 0$,
- (ii) β does not satisfy (F) and $\gamma(\beta) = 0$.

Irrationality

If $\gamma(\beta)$ is rational :

- **Fig.** The boundary has a spiral shape on $-\gamma(\beta)$
- Points smaller than $\gamma(\beta)$ out of the central tile.
	- The interval $-[0, \gamma(\beta)]$ cannot be fully included in the tile

メロト メ都 トメ 差 トメ 差 ト

 299

Irrationality

If $\gamma(\beta)$ is rational :

- **F** The boundary has a spiral shape on $-\gamma(\beta)$
- **Points smaller than** $\gamma(\beta)$ **out of the central tile.**
	- The interval $-[0, \gamma(\beta)]$ cannot be fully included in the tile

The "086" in $\gamma(\beta)$ was not a computational error Purely periodic expansion are definitively not randomly spread in [0, 1]

Theorem

Let β be a cubic Pisot unit satisfying (F) and such that the number field $\mathbb{Q}(\beta)$ is not totally real. Then, $\gamma(\beta)$ is irrational. In particular, $0 < \gamma(\beta) < 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

The beginning of a long history ?

Fractal and tilings bring unexpected proofs of irrationality

- \triangleright Non cubic case self-affine structure instead of self-similar. Intersection of a line with a the tile ? Shape of the boundary ?
- \triangleright Non unit case. Suspension with p-adic representations. No more dichotomy with respect to (F) .
- \blacktriangleright Fractals and numeration
	- \triangleright Best simultaneous approximations : largest ball in the fractal.
	- \triangleright Radix expansions : hierarchy of IFS. Which property remains?

KORK EX KEY KEY KORA

 \blacktriangleright Tiling condition ?