Rational numbers with purely periodic beta-expansion

Boris Adamczeswki, C. Frougny, A. Siegel, W.Steiner

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Fractals,

Tilings,

and Things?

Fractals,

Tilings,

and Things?

Number theory : expansions in several bases

Fractals,Tilings,and Things?Rauzy
fractalsNumber theory :
expansions in
several bases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Fractals,

Tilings,

Rauzy fractals Self-affine tilings

and Things?

Number theory : expansions in several bases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Fractals,	Tilings,	and Things?
Rauzy	Self-affine	Number theory :
fractals	tilings	expansions in

Goal : using fractal geometry to prove irrationality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Who has a regular expansion in base 10?

<□ > < @ > < E > < E > E のQ @

Who has a regular expansion in base 10?

(ロ)、

Greedy algorithm :

$$x = \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right)$$

Who has a regular expansion in base 10?

Greedy algorithm :

$$x = \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right)$$

= $\frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right)$
= $\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots$

(ロ)、

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

- What are the expansions in [0,1[?
- Who has an eventually periodic expansion?
- Who has a finite expansion?
- Who has a purely periodic expansion?

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

- ▶ What are the expansions in [0, 1[? Sequences in $\{0, 1...9\}^{\mathbb{N}}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- Who has an eventually periodic expansion ?
- ▶ Who has a finite expansion?
- Who has a purely periodic expansion ?

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

- ▶ What are the expansions in [0, 1[? Sequences in $\{0, 1...9\}^{\mathbb{N}}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- Who has an eventually periodic expansion ? All rational numbers.
- Who has a finite expansion?
- Who has a purely periodic expansion ?

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ What are the expansions in [0, 1[? Sequences in $\{0, 1...9\}^{\mathbb{N}}$ except those ending with 999999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- Who has an eventually periodic expansion ? All rational numbers.
- Who has a finite expansion ? Rational numbers with denominator 10ⁿ.
- Who has a purely periodic expansion?

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ What are the expansions in [0, 1[? Sequences in $\{0, 1...9\}^{\mathbb{N}}$ except those ending with 999999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- Who has an eventually periodic expansion ? All rational numbers.
- Who has a finite expansion?
 Rational numbers with denominator 10ⁿ.
- Who has a purely periodic expansion? Rational number whose denominator is coprime with 10.

Who has a regular expansion in base 10?

Greedy algorithm :

$$\begin{array}{rcl} x & = & \frac{1}{10} \left(\underbrace{[10x]}_{=a_1} + \underbrace{\{10x\}}_{=x_1} \right) \\ & = & \frac{a_1}{10} + \frac{1}{100} \left(\underbrace{[10x_1]}_{=a_2} + \underbrace{\{10x_1\}}_{=x_2} \right) \\ & = & \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \dots \end{array}$$

- ▶ What are the expansions in [0, 1[? Sequences in $\{0, 1...9\}^{\mathbb{N}}$ except those ending with 99999..... Since $1 = \frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} + \ldots$
- Who has an eventually periodic expansion ? All rational numbers.
- Who has a finite expansion?
 Rational numbers with denominator 10ⁿ.
- Who has a purely periodic expansion ? Rational number whose denominator is coprime with 10.

Remark : Numbers with a regular expansion are **uniformly spread in** [0,1] (similar results hold for any integer base b)

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Greedy algorithm : ϕ -expansions

$$x = \frac{1}{\phi} \left(\underbrace{[\phi x]}_{=a_1} + \underbrace{\{\phi x\}}_{=x_1} \right)$$

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} x &= \frac{1}{\phi}(\underbrace{[\phi x]}_{=a_1} + \underbrace{\{\phi x\}}_{=x_1}) \\ &= \frac{a_1}{\phi} + \frac{1}{\phi}(\underbrace{[\phi x_1]}_{=a_2} + \underbrace{\{\phi x_1\}}_{=x_2}) \\ &= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \dot{\mathbf{x}} &= \frac{1}{\phi} \left(\left[\phi \mathbf{x} \right] + \left\{ \phi \mathbf{x} \right\} \right) \\ &= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\left[\phi \mathbf{x}_1 \right] + \left\{ \phi \mathbf{x}_1 \right\} \right) \\ &= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0,1[?

- Who has an eventually periodic expansion?
- Who has a finite expansion?
- Which rational numbers have a purely periodic expansion ?

・ロト・日本・日本・日本・日本・今日・

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \mathbf{x} &= \frac{1}{\phi} \left([\phi \mathbf{x}] + \{\phi \mathbf{x}\} \right) \\ &= \frac{\mathbf{a}_1}{\phi} + \frac{1}{\phi} \left([\phi \mathbf{x}_1] + \{\phi \mathbf{x}_1\} \right) \\ &= \frac{\mathbf{a}_1}{\phi} + \frac{\mathbf{a}_2}{\phi^2} + \dots + \frac{\mathbf{a}_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0, 1[? Sequences in {0,1}^ℤ with no two consecutive 1 and not ending with 01010101....

(since
$$1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$$
)

・ロト・日本・日本・日本・日本・今日・

- Who has an eventually periodic expansion?
- Who has a finite expansion?
- Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \mathbf{x} &= \frac{1}{\phi} \left([\phi \mathbf{x}] + \{\phi \mathbf{x}\} \right) \\ &= \frac{\mathbf{a}_1}{\phi} + \frac{1}{\phi} \left([\phi \mathbf{x}_1] + \{\phi \mathbf{x}_1\} \right) \\ &= \frac{\mathbf{a}_1}{\phi} + \frac{\mathbf{a}_2}{\phi^2} + \dots + \frac{\mathbf{a}_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0, 1[? Sequences in {0,1}^ℤ with no two consecutive 1 and not ending with 01010101....

(since
$$1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$$
)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- Who has a finite expansion?
- Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \mathbf{x} &= \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}]}_{=a_1} + \underbrace{\{\phi \mathbf{x}\}}_{=x_1} \right) \\ &= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}_1]}_{=a_2} + \underbrace{\{\phi \mathbf{x}_1\}}_{=x_2} \right) \\ &= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0,1[? Sequences in {0,1}^ℤ with no two consecutive 1 and not ending with 01010101....

(since
$$1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$$
)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- ► Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$

Which rational numbers have a purely periodic expansion ?

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \mathbf{x} &= \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}]}_{=a_1} + \underbrace{\{\phi \mathbf{x}\}}_{=x_1} \right) \\ &= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}_1]}_{=a_2} + \underbrace{\{\phi \mathbf{x}_1\}}_{=x_2} \right) \\ &= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0,1[? Sequences in {0,1}^ℤ with no two consecutive 1 and not ending with 01010101....

(since
$$1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$$
)

- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$

Which rational numbers have a purely periodic expansion? All x ∈ Q ∩ [0, 1] (Schmidt :80)

Golden ratio : $\phi = \frac{1+\sqrt{5}}{2}$

Greedy algorithm : ϕ -expansions

$$\begin{aligned} \mathbf{x} &= \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}]}_{=a_1} + \underbrace{\{\phi \mathbf{x}\}}_{=x_1} \right) \\ &= \frac{a_1}{\phi} + \frac{1}{\phi} \left(\underbrace{[\phi \mathbf{x}_1]}_{=a_2} + \underbrace{\{\phi \mathbf{x}_1\}}_{=x_2} \right) \\ &= \frac{a_1}{\phi} + \frac{a_2}{\phi^2} + \dots + \frac{a_n}{\phi^n} + \dots \end{aligned}$$

What are the expansions in [0,1[? Sequences in {0,1}^ℤ with no two consecutive 1 and not ending with 01010101....

(since
$$1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$$
)

- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77)
- Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$

Which rational numbers have a purely periodic expansion ? All x ∈ Q ∩ [0, 1] (Schmidt :80)

Still uniformly spread in [0,1]

Regular expansions in the golden ratio quadratic unit

basis?

Golden ratio Base β : $\beta^2 = a\beta + b$ $b = \pm 1$ $\beta > 1$

Greedy algorithm : ϕ -expansions β -expansions

$$x = \frac{1}{\beta} \left(\begin{bmatrix} \beta x \\ \beta x \end{bmatrix} + \underbrace{\{\beta x\}}_{=a_1} \right)$$
$$= \frac{a_1}{\beta} + \frac{1}{\beta} \left(\begin{bmatrix} \beta x_1 \\ \beta x_1 \end{bmatrix} + \underbrace{\{\beta x_1\}}_{=a_2} \right)$$
$$= \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$$

- ▶ What are the expansions in [0,1[? Sequences in $\{0,1\}^{\mathbb{N}}$ with no two consecutive 1 and not ending with 01010101.... ??? (since $1 = \frac{1}{\phi} + \frac{1}{\phi^2} = \frac{1}{\phi} + \frac{0}{\phi^2} + \frac{1}{\phi^3} + \frac{0}{\phi^3} + \dots$)
- Who has an eventually periodic expansion? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) ???
- Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$???

Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{Q} \cap [0, 1]$ (Schmidt :80) ???

Still uniformly spread in [0, 1] ?? Regular expansions in the golden ratio quadratic unit

basis?

Golden ratio Base β : $\beta^2 = a\beta + b$ $b = \pm 1$ $\beta > 1$ Greedy algorithm : ϕ -expansions β -expansions $x = \frac{1}{\beta} ([\beta x] + \{\beta x\})$ $= \frac{a_1}{\beta} + \frac{1}{\beta} \left(\begin{bmatrix} \beta x_1 \end{bmatrix} + \underbrace{\{\beta x_1\}}_{=a_2} + \underbrace{\{\beta x_1\}}_{=x_2} \right)$ $= \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$

- ▶ What are the expansions in [0,1]? Sequences in $\{0,1\}^{\mathbb{N}}$ with no two consecutive 1 and not ending with 01010101.... Strictly smaller than the infinite expansion of 1. (since $1 = \frac{a_1}{\beta} + \frac{a_2}{\beta} + \frac{a_3}{\beta^3} + \dots$)
- Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) Always true
- Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$ def := β satisfies the property (F); depends on $b = \pm 1$

Which rational numbers have a purely periodic expansion? All $x \in \mathbb{Q} \cap [0, 1]$ (Schmidt :80) all or none depending on (F)

Still uniformly spread in [0,1] (OK) + Dichotomy according to (F) ・ロト・日本・モン・モン・ ヨー うくぐ Regular expansions in any unit Pisot basis?

Base β : $\beta^n = a_{n-1}\beta^{n-1} + \cdots + \pm 1$ $\beta > 1$

Pisot hypothesis : $\beta > 1$ and its Galois conjugates $\beta^{(i)}$ are all strictly smaller than one.

Greedy algorithm : β -expansions

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$$

- What are the expansions in [0,1]? Sequences in {0,1}^N strictly smaller than the infinite expansion of 1. ??
- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) ? ?
- Who has a finite expansion?

All
$$x \in \mathbb{Z}[\phi]$$
 (def := β satisfies the property (F)) ??

Which rational numbers have a purely periodic expansion ? All x ∈ Q ∩ [0, 1] ??

Still uniformly spread in [0,1] **??**

- ロ ト - 4 回 ト - 4 □ - 4

Regular expansions in any unit Pisot basis?

Base β : $\beta^n = a_{n-1}\beta^{n-1} + \cdots + \pm 1$ $\beta > 1$

Pisot hypothesis : $\beta > 1$ and its Galois conjugates $\beta^{(i)}$ are all strictly smaller than one.

Greedy algorithm : β -expansions

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$$

- What are the expansions in [0,1]? Sequences in {0,1}^N strictly smaller than the infinite expansion of 1. ?? OK from Pisot assumption
- ▶ Who has an eventually periodic expansion ? All $x \in \mathbb{Q}(\phi)$ (Bertrand :77) ?? OK from Pisot assumption
- Who has a finite expansion?

All $x \in \mathbb{Z}[\phi]$ (def := β satisfies the property (F)) ?? Conditions for (F) (Frougny&Solomyak :02, Akiyama :02...)

▶ Which rational numbers have a purely periodic expansion ? All $x \in \mathbb{Q} \cap [0, 1]$?? NO !

Still uniformly spread in [0,1] **?? NO!**

basis?

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$$

Which rational numbers have a purely periodic expansion?

Theorem (Akiyama :02) If $\beta^3 = \beta + 1$, there exists $\gamma(\beta) = 0.666\,666\,666\,086\,\ldots$ such that ▶ all $x \in \mathbb{Q} \cap [0, \gamma(\beta)]$ have a purely periodic β -expansion ▶ a sequence $x_n \in \mathbb{Q}$, $\lim x_n = \gamma(\beta)$ does not have a periodic β -expansion.

Purely periodic expansions are NOT uniformly spread in [0,1]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

basis?

$$x = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \dots + \frac{a_n}{\beta^n} + \dots$$

Which rational numbers have a purely periodic expansion?

Theorem (Akiyama :02) If $\beta^3 = \beta + 1$, there exists $\gamma(\beta) = 0.666\,666\,666\,086\,\ldots$ such that ▶ all $x \in \mathbb{Q} \cap [0, \gamma(\beta)]$ have a purely periodic β -expansion

▶ a sequence $x_n \in \mathbb{Q}$, $\lim x_n = \gamma(\beta)$ does not have a periodic β -expansion.

Purely periodic expansions are NOT uniformly spread in [0,1]

Three new questions.

- Is there still a dichotomy according to (F)?
- What can be said on $\gamma(\beta)$?
- Is it the good conference : Tilings and fractals?????

Expand any positive real in base β

$$x = \underbrace{\mathbf{a}_{-k+1}\beta^{k-1} + \dots + \mathbf{a}_{-1}\beta + \mathbf{a}_{0}}_{\beta\text{-integral part}} + \underbrace{\mathbf{a}_{1}\beta^{-1} + \mathbf{a}_{2}\beta^{-2} + \dots}_{\beta\text{-fractional part}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Compact representation of number with no fractional part?

Expand any positive real in base β

$$x = \underbrace{a_{-k+1}\beta^{k-1} + \dots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \dots}_{\beta\text{-fractional part}}.$$

Compact representation of number with no fractional part?

• Galois conjugates of β r-1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

Expand any positive real in base β

$$x = \underbrace{a_{-k+1}\beta^{k-1} + \dots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \dots}_{\beta\text{-fractional part}}.$$

Compact representation of number with no fractional part?

• Galois conjugates of β r-1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

• Canonical embedding : replace every polynomial in β by its conjugates

$$egin{array}{rll} \xi: \ \mathbb{Q}(eta) &
ightarrow \ \mathbb{R}^{r-1} imes \mathbb{C}^{s} \ & x & \mapsto & (\sigma_{2}(x), \dots, \sigma_{r+s}(x)). \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Smallest Pisot number : $\xi : P(\beta) \in \mathbb{R} \mapsto P(\beta^{(2)}) \in \mathbb{C}$

Expand any positive real in base β

$$x = \underbrace{a_{-k+1}\beta^{k-1} + \dots + a_{-1}\beta + a_0}_{\beta\text{-integral part}} + \underbrace{a_1\beta^{-1} + a_2\beta^{-2} + \dots}_{\beta\text{-fractional part}}.$$

Compact representation of number with no fractional part?

• Galois conjugates of β r-1 real conjugates and 2s complex conjugates. Pisot assumption : $|\beta^{(i)}| < 1$

Example : smallest Pisot number $\beta^3 = \beta + 1$. Two complex conjugates $\beta^{(2)}, \overline{\beta^{(2)}}$.

• Canonical embedding : replace every polynomial in β by its conjugates

$$egin{array}{rl} \xi: \ \mathbb{Q}(eta) & o & \mathbb{R}^{r-1} imes \mathbb{C}^s \ x & \mapsto & (\sigma_2(x), \dots, \sigma_{r+s}(x)). \end{array}$$

Smallest Pisot number : $\xi: P(\beta) \in \mathbb{R} \mapsto P(\beta^{(2)}) \in \mathbb{C}$

Central tile (Rauzy :81, Thurston :89, Akiyama :98)

 $\mathcal{T} := \overline{\{\xi (\text{integral part of a positive number})\}}$

Smallest PP : $\xi(\beta^n) = (\beta^{(2)})^n \in \mathcal{T}, \ \xi(\beta^5 + 1) = \beta^{(5)} + 1 \in \mathcal{T}$ but $\beta^2 + 1$ is not an integer part : $(\beta^{(2^2)} + 1 \notin \mathcal{T})$

Replace polynomials in β by polynomials in its conjugates and take the closure of reals with no fractional part

Tilings!

 $x \in \mathbb{Z}[\beta]$ $\mathcal{T}(x) := \overline{\{\xi (\text{reals with the same fractional part as } x)\}}$

- Finite number of tiles (admissibility condition)
- Covering of the space

Theorem (Akiyama&Rao&Steiner :06)

Let β be a unit cubic Pisot number. Then the covering by central tiles is a tiling.

Fractals and things?

Strong relation between periodicity and the central tile

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Property (F) iff 0 is an inner point (Akiyama :02).

Fractals and things?

Strong relation between periodicity and the central tile

- Property (F) iff 0 is an inner point (Akiyama :02).
- Purely periodic expansions : searching for a natural extension
 - subdivise the central tile according to the admissibility condition

build a suspension

Fractals and things?

Strong relation between periodicity and the central tile

- Property (F) iff 0 is an inner point (Akiyama :02).
- Purely periodic expansions : searching for a natural extension
 - subdivise the central tile according to the admissibility condition
 - build a suspension

Ito&Rao :04 $x \in \mathbb{Q}(\beta)$ purely periodic roughly means that $-\xi(x)$ lies in the central tile.

Theorem (Ito&Rao :04)

Let β be a Pisot unit and $x \in [0, 1)$. The β -expansion of x is purely periodic if and only if $x \in \mathbb{Q}(\beta)$ and

$$(-\xi(x),x)\in \mathcal{E}_{\beta}:=\bigcup_{i=0}^{n+m-1}\mathcal{T}_i\times [0,\mathcal{T}_{\beta}^i(1)).$$

Back to purely periodic expansions

Reminder $1 \ x \in \mathbb{Q}(\beta)$ purely periodic means that $-\xi(x)$ lies in the central tile.

Reminder 2 $\gamma(\beta)$ is the lenght of the largest interval issued from 0 that contains only purely periodic expansions

New question : What is the largest diagonal contained in the suspension ?

Back to purely periodic expansions

Reminder $1 \ x \in \mathbb{Q}(\beta)$ purely periodic means that $-\xi(x)$ lies in the central tile.

Reminder 2 $\gamma(\beta)$ is the lenght of the largest interval issued from 0 that contains only purely periodic expansions

New question : What is the largest diagonal contained in the suspension ?

Corollary

When the tiling property holds, $\gamma(\beta)$ lies at the intersection of two tiles and a rational line in the tiling.

Self-similar properties

Definition (Spiral point)

A point $z \in \mathcal{T}$ is a *spiral point* if for all ε and θ , both $Int(\mathcal{T})$ and the complement $\mathcal{C}(\mathcal{T})$ meet the ray $z + [0, \varepsilon)e^{i\theta} := \{z + \rho e^{i\theta} \mid \rho \in [0, \varepsilon)\}.$

Admissibility condition yields self-similar IFS and then spiral properties

Lemma

Let β be a cubic Pisot number with a complex Galois conjugate α . Then every point in $\mathbb{Q}(\alpha)$ that belongs to the boundary of \mathcal{T} is a spiral point with respect to this tile.

Dichotomy with respect to (F)

If 0 is on the boundary :

- The boundary has a spiral shape on 0
- Points on the horizontal line out of the central tile. Small rationals with non purely periodic expansion

イロト イ押ト イヨト イヨト

Dichotomy with respect to (F)

If 0 is on the boundary :

- The boundary has a spiral shape on 0
- Points on the horizontal line out of the central tile. Small rationals with non purely periodic expansion

There is still a dichotomy in the cubic case

Theorem

Let β be a cubic Pisot unit. Then, one of the following holds :

- (i) β satisfies (F) and $\gamma(\beta) > 0$,
- (ii) β does not satisfy (F) and $\gamma(\beta) = 0$.

Irrationality

If $\gamma(\beta)$ is rational :

- The boundary has a spiral shape on $-\gamma(\beta)$
- Points smaller than $\gamma(\beta)$ out of the central tile.
 - The interval $-[0,\gamma(eta)]$ cannot be fully included in the tile

Irrationality

If $\gamma(\beta)$ is rational :

- The boundary has a spiral shape on $-\gamma(\beta)$
- Points smaller than $\gamma(\beta)$ out of the central tile.
 - The interval $-[0,\gamma(eta)]$ cannot be fully included in the tile

The "086" in $\gamma(\beta)$ was not a computational error Purely periodic expansion are definitively not randomly spread in [0, 1]

Theorem

Let β be a cubic Pisot unit satisfying (F) and such that the number field $\mathbb{Q}(\beta)$ is not totally real. Then, $\gamma(\beta)$ is irrational. In particular, $0 < \gamma(\beta) < 1$.

The beginning of a long history?

Fractal and tilings bring unexpected proofs of irrationality

- Non cubic case self-affine structure instead of self-similar. Intersection of a line with a the tile ? Shape of the boundary ?
- Non unit case. Suspension with p-adic representations. No more dichotomy with respect to (F).
- Fractals and numeration
 - Best simultaneous approximations : largest ball in the fractal.
 - Radix expansions : hierarchy of IFS. Which property remains?

Tiling condition?