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Abstract

We introduce a mathematical framework that allows to test the compatibility between differential data and knowledge on genetic
and metabolic interactions. Within this framework, a behavioral model is represented by a labeled oriented interaction graph; its
predictions can be compared to experimental data. The comparison is qualitative and relies on a system of linear qualitative equations
derived from the interaction graph. We show how to partially solve the qualitative system, how to identify incompatibilities between
the model and the data, and how to detect competitions in the biological processes that are modeled. This approach can be used for

the analysis of transcriptomic, metabolic or proteomic data.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction
1.1. Systems biology: models and data

The field of systems biology appeared as a response to
increasing need for analytical approaches in molecular
biology. Its goals include modeling interactions, under-
standing the behaviour of a system from the interplay of
its components, confronting the prediction of the model
to data, and inferring models from data. Solutions to
these challenges are often interdisciplinary.

The dynamical framework includes simulations and
prediction of behaviours; models can be either qualitative
or quantitative, as reviewed in (de Jong, 2002; Chaves
et al., 2005; King et al., 2005). A first approach makes
use of continuous models: the concentrations of products
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are modeled by continuous functions of time, governed
by differential equations. This framework allows one to
state biological properties of networks, eventually by
using simulation software (Bakker et al., 1997; Eisenthal
and Cornish-Bowden, 1998; Tyson et al., 2003; Mendes,
1997; Tomita et al., 1999). The properties of continuous
models can be studied with convex analysis, linear and
non-linear control techniques (Fell, 1997; Heinrich and
Schuster, 1996; Papin et al., 2004; Angeli et al., 2004).
Stochastic models transform reaction rates into proba-
bilities and concentrations into numbers of molecules,
allowing to understand how noise influences a system
(Rao et al., 2002; Kaern et al., 2005). Finally, in the
discrete models, each component is assumed to have a
small number of qualitative states, and the regulatory
interactions are described by discrete functions. Relevant
discrete frameworks can be boolean (Kauffman, 1993;
Sanchez and Thieffry, 2001), logical (Karp et al., 1996;
Reiser et al., 2001), or Petri networks (Matsuno et al.,
2000; Chaouiya et al., 2004). The bridge between con-
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tinuous and discrete models is made by piecewise linear
differential models (de Jong et al., 2004; Ghoshn and
Andomlin, 2004).

Each of these methods addresses in complementary
ways dynamical properties such as the existence of
attractors (limit cycles or steady states) and the behav-
ior of these with respect to changes in the parameters
(Thomas, 1973; Soulé, 2003; Chaves et al., 2005). They
represent powerful tools to acquire a fine grained knowl-
edge of the system at hand, but they need accurate data
on chemical reactions kinetics or qualitative information.
These data are scarcely available. Furthermore, these
methods are also computationally demanding and their
practical use is restricted to a limited number of vari-
ables.

Model identification addresses a different objective,
that is, to form or modify a model consistently with a
set of data. A first framework for identification con-
sists in building models from scratch, using statisti-
cal techniques such as bayesian networks (Kaminski
and Friedman, 2002; Nachman et al., 2004) or kernels
(Yamanishi et al., 2004); these are particularly accurate
when large amounts of data are available. Another effi-
cient approach formalizes a priori knowledge as partially
specified models. Fitting models to data is obtained by
means of various techniques, depending on the class of
models, that can be discrete (Bay et al., 2003; Zupan
et al., 2001; Bryant et al., 2001; Reiser et al., 2001),
continuous (Batt et al., 2005; Boyer and Viari, 2003;
King et al., 2005) or hybrid (Calzone et al., 2005;
Langley et al., 2005). Qualitative reasoning, hybrid sys-
tem, constraint programming or model-checking allow
either to identify a subset of active processes explain-
ing experimental time-series data (Bay et al., 2003;
Zupan et al., 2001; Bryant et al., 2001; Reiser et al.,
2001) or to correct the models and infer some param-
eters from data (Batt et al., 2005; Chabrier-Rivier et
al., 2004). The identification methods are limited to a
few dozen components. Model correction or parame-
ter regression can cope with up to hundreds of products
(Chabrier-Rivieretal., 2004) provided that the biomolec-
ular mechanisms and supplied kinetic data are accurate
enough.

1.2. Steady state shift experiments and microarray
data

Qualitative data such as DNA microarrays data can-
not be easily used in most of the frameworks described
above for two main reasons. First, the model-based
identification approach has difficulties to take into
account the errors and the variability that commonly

affect measured expression levels in DNA microar-
rays. Secondly, time series data is not easily avail-
able and in many situations (for instance disease
studies on clinical tissues) microarrays provide static
data, meaning that they inform more on steady state
shifts under perturbations than on the dynamics of the
system.

In this paper, we develop a mathematical framework
that allows us to check the compatibility between gene
expression and metabolite concentrations differential
data and a graphical model for the interactions among the
measured products (metabolites and genes). If incom-
patibility is found we propose corrections to data or to
the model. Our mathematical results connect network
topology and the response to steady state shift experi-
ments. Steady state shift experiments are useful tools in
chemistry allowing in principle to recover the reaction
mechanisms (Chevalier et al., 1993). We argue that simi-
lar approaches are well adapted to differential microarray
experiments which compare gene expressions between
two different states.

In our approach DNA microarrays are interpreted
as qualitative data: we only consider the sign of the
difference in the expression levels among the two situa-
tions. Additionally, we can consider qualitative data on
metabolites, provided by biochemical measurements.

Biological literature is rich in knowledge about inter-
actions between molecules. This information is scattered
in many publications and it is not globally compared to
the results of large scale experiments. A reason is the
difficulty to translate the biological knowledge into mod-
els: this requires further information on chemical kinetic
parameters and mechanisms.

In our models, we do not need such details. We simply
use the biological information to build a labeled oriented
graph (interaction graph). The nodes of this graph repre-
sent molecules (such as mRNA, proteins or metabolites).
The edges represent interactions, labeled by their sign.
Edge signs can be interpreted dynamically: a “+” on an
edge between A and B means that an increase of the con-
centration of A increases the rate of production of B. A
“—" on an edge stands for a decreasing effect. The nec-
essary information to build such a graph can be collected
either from interaction databases or can be manually
extracted from the literature (Calvano et al., 2005).

Restricting ourselves to a qualitative framework
allows us to compose the interaction rules, but it also tol-
erates redundancies. Particularly, we can include in the
model information on indirect interactions, that is, the
modeler can add an edge for A to B as soon as he knows
that variations of A affect the variations of B, even if the
underlying mechanism is not known.
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1.3. Qualitative analysis

We present a formal analysis of interaction graphs
based on a mathematical model, that allows to confront
the interaction graph and qualitative data.

We suppose that the dynamics of the system can
be described by a system of differential equations. An
experiment is modeled as a steady state shift of the
differential dynamical system. We perform transforma-
tions on the differential system that allow to connect the
variations of products in a linear system. The quantita-
tive system generalizes the discrete Laplace equation on
graphs. Like for the Laplace equation, we solve the linear
Dirichlet problem (Chung and Yau, 2000; Soardi, 1994;
Campanino and Petritis, 2003). We also solve the non-
linear Dirichlet problem: this means relating the interior
values to the values on the entrance boundary of the ori-
ented graph even when the products variations are large.

We further suppose that experimental information on
products is qualitative, that is, we can find out if the con-
centration of a product has increased, it has decreased,
or it has not changed significantly. In order to exploit
this information, qualitative models are derived from
the interaction graph and from the differential dynam-
ics: we transpose the quantitative equations into a linear
qualitative system in the sign algebra (Kuipers, 1994;
Travé-Massuyes and Dague, 2003). Provided that the
signs of the interactions are constant for states within
the range of experimental variations, the linear qualita-
tive system applies to both small and large variations of
the products.

We have developed several complementary methods
to analyze the system of qualitative equations and to test
whether experimental data are solutions of the system.

e The graph valuation algorithm is an automated
method to partially or totally solve the qualitative
system of equations. When there is no solution,
incompatibilities between the model and the data are
detected, as well as the place where these incompat-
ibilities occur. When a solution exists, the algorithm
predicts the signs of variations of products that have
not been measured.

® The essential balance computation allows us to detect
the variables in the system that are influenced by com-
petitive pathways and to find which pathway wins the
competition. Eventually, this computation detects the
presence of errors in the data.

The modeling and the algorithms will be illustrated on
asimplified model of regulated lipogenesis in liver. Then,
we apply the algorithm to an extended model of lipo-
genesis. With these algorithms, we are able to validate

or correct data and models. Also, they serve to empha-
size products and pathways that have biological dynamic
interest. Further improvements of the algorithms such as
coding of qualitative equations over Galois fields and
applying them to models containing hundreds of prod-
ucts will be presented elsewhere (Veber et al., 2005).

This paper is organized as follows. In Section 2 we
describe our working example which is the regulation
of lipogenesis in liver. Section 3 is devoted to model-
ing assumptions. We introduce the mathematical con-
cepts and we show how the qualitative equations can be
obtained. We detail in Section 4 two methods to solve
the system of qualitative equations derived in Section
3. Section 5 is devoted to an independent method for
analyzing incompatibilities and competitions. Section 6
presents the application of the algorithm to an extended
model of lipogenesis.

2. Working example: regulation of the synthesis
of fatty acids

Gene regulation associated with fatty acid synthesis
in liver is our working example. The corresponding inter-
actions are intricate and involve hundreds of molecules.
By way of illustration we have kept as nodes of our
illustrative model only the most important biological
molecules and their intermediates. The choice of the
observed molecules was not optimized; we shall see how
our analysis suggests improvements on it.

Two ways of production of fatty acids coexist in liver.
Saturated and mono-unsaturated fatty acids are produced
from citrates due to the presence of a metabolic path-
way composed of four enzymes, namely ATP citrate
liase (ACL), acetyl-Coenzyme A carboxylase (ACC),
fatty acid synthase (FAS ) and Stearoyl-CoA desaturase
1 (SCD1). Polyunsaturated fatty acids (PUFA) such as
arachidonic acid and docosahexaenoic acid are synthe-
sized from essential fatty acids provided by nutrition;
Delta-5 desaturase (D5D) and Delta-6 desaturase (D6D)
catalyze the key steps of the synthesis of PUFA.

PUFAs play pivotal roles in many biological func-
tions. They regulate the expression of genes that impact
on lipid, carbohydrate, and protein metabolism. The
effects of PUFA are mediated directly or indirectly as
shown in the following examples. Direct effects are due
to bindings leading to changes in the trans-activating
activity of nuclear receptors (PPARa, peroxisome pro-
liferator activated receptors; LXRa, liver-X-receptor
a; HNF-4a). Indirect effects result in changes in the
abundance of regulatory transcription factors (SREBP-
Ic, sterol regulatory element binding-protein; ChREBP;
etc.) (Jump, 2004).



156 A. Siegel et al. / BioSystems 84 (2006) 153—174

2.1. Variables in the model

We have considered in our model the transcrip-
tion factors PPARa, LXRa and SREBP-1c¢ (denoted
by PPAR, LXR, SREBP), as they are synthesized from
the corresponding genes. We have included the trans-
activating active forms of these nuclear receptors: LXR-a
(denoting a complex LXRa:RXRe), PPAR-a (complex
PPARa:RXRw) and SREBP-a (cleaved form of SREBP-
1c). We have also considered SCAP (SREBP cleavage
activating protein), a key enzyme involved in the cleav-
age of SREBP-1c. SCAP interacts with another family of
proteins called INSIG, showing the complexity of molec-
ular mechanism. We have included PUFA to symbolize
metabolites. Finally, we have considered the enzymes
ACL, ACC, FAS, SCDI (implied in the fatty acid syn-
thesis from citrate) and D5D, D6D (implied in PUFA
synthesis).

2.2. Interactions in the model

Relations between the variables are as following.
SREBP-a is an activator of the transcription of ACL,
ACC, FAS, SCDI1, D5D and D6D (Nara et al., 2002;
Jump, 2004). LXR-a s an activator of the transcription of
SREBP and FAS. It also indirectly activates ACL, ACC
and SCD1 (Steffensen and Gustafsson, 2004). These
indirect actions are kept in the model because we do
not know whether they are only SREBP-mediated.

PUFA activates the formation of PPAR-a from PPAR.
It inhibits the formation of LXR-a from LXR. It also
inhibits the formation of SREBP-a (by inducing the
degradation of mRNA and inhibiting the cleavage)
(Jump, 2004). SCAP represents the activators of the for-
mation of SREBP-a from SREBP. SCAP is inhibited by
PUFA.

PPAR directly activates the transcription of SCDI,
D5D, D6D (Miller and Ntambi, 1996; Tang et al., 2003;
Matsuzaka et al., 2002).

The activation of SCD1, D5D and D6D by both
SREBP and PPAR is paradoxical because fatty acid
synthesis (partially governed by SREBP) and oxidation
(partially induced by PPAR) are antagonistic in liver.
Nevertheless, PUFA have a regulatory role in oxidation.
Hence, the induction of D5D and D6D gene by PPAR
could be a compensatory response to the increased PUFA
demand caused by induction of fatty acid oxidation.

2.3. Working data set: virtual fasting protocol

Our goal is to test whether data can fit properly with
the full knowledge on the system. Such data can be

an experimental set that have to be analyzed. It could
also simply be a set of hypothetical data whose coher-
ence have to be tested. Here, our working data set is
inspired by the results of fasting extracted from litera-
ture as described hereafter, modified so that a potential
error is introduced.

A compilation of recent literature on lipogenesis regu-
lation indicates that SREBP, ACL, ACC, FAS and SCD1
decline in liver during the fasted state in rodents (Liang et
al., 2002); this state is characterized by an inhibition of
fatty acid synthesis and an activation of the fatty acid
oxidation. However, Tobin et al. (Tobin et al., 2000)
showed that fasting rats for 24 h increased the hepatic
LXR mRNA and Matsuzaka et al. (Matsuzaka et al.,
2002) observe no difference in either the hepatic D5D
or D6D mRNA level between fasted and reefed mouse
livers. Moreover, PUFA levels can be considered to be
increased in liver following starvation because of the
important lipolysis from adipose tissue as shown by Lee
et al. in mice after 72 h fasting (Lee et al., 2004).

So we define our working data as results from a virtual
experimentation on fasted animals compared to fed state
and on which the hepatic mRNA of different genes could
be quantified for example by DNA microarray analysis
and the variation of hepatic PUFA could be measured
by biochemical analysis. Hence, we assume that ACL,
LXR, PPAR and PUFA increase while SREBP, ACC,
FAS and SCDI1 are supposed to decrease, in response
to the fasting. We also assume that D5D and D6D are
unchanged. By doing this, we voluntarily introduce a
data that does not fit with results appearing in the litera-
ture: ACL should decline instead of inclining. This error
is introduced to test whether the analyze is able to notice
it and possibly correct it or not.

3. Steady state shift: qualitative description

We justify here the approach and impose some appli-
cability limits. The basic mathematical object is a qual-
itative graph called the interaction graph. This graph
represents the present knowledge on interactions for
the biological process under study. Experimental data
give variations of the concentrations of some molecules
between two external conditions. The corresponding
nodes of the interaction graph will be called observed
nodes.

Differential model: The model describes the interac-
tions between a set of molecules indexed by a set I =
{1, ..., n}. The concentration of the molecule indexed
by i is X;. The quantity dgf" denotes the speed of varia-
tion of X;.
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We assume that the various concentrations involved
in the model evolve according to a differential dynamics.
The set of control parameters of the dynamics is denoted
by P. The state vector X = (X1, ..., X,) satisfies a dif-
ferential equation
dX

— =FX, P).
" X, P)

3.1. Interaction graph

3.1.1. Qualitative graph

The set of nodes I U {£} gathers all the molecules /
in the model together with an extra generic node &£ to
represent the exterior world.

The set of edges A C (1 U {&}) x (I U {£}) contains
oriented edges joining j to i whenever 3}5’1 # 0. This

description implies that the interaction graph contains no
multi-arcs. Additionally, the set A contains edges from
the exterior world £ to I specifying which are the entrance
nodes of the system. If there is an edge from £to i € I,
the node i is potentially affected by nodes that are not
included in the model. If there is no edge between &
and i, then the node i is supposed to be influenced only
by I. Specifying these edges is an important modeling

hypothesis.

The interaction graph M = (I U {&}, A, s) is signed
by the sign function s(j, i) = sign( gg’}) e {+,—} and
weighted by the interaction coefficient a(j, i) = g}?’j

Notice that the sign function s(j, i) is state dependent
(it depends on the variables X and P). We suppose that
s(j, i) does not change within domains of experimental
interest.

3.1.2. Exterior and parameters

The extra generic node £ (exterior world) represents
molecules that are not included in the model and that
interact with the molecules in the model. P include
external conditions such as food, temperature, stress, or
internal conditions such as particularities of individual
organisms, mutations, etc.

The only difference between £ and P is dynamical.
Indeed, & is rigorously a dynamical variable, while P
is fixed during dynamics. From a static perspective £
and the parameters P represent variables that may shift
the steady state of the model. Throughout this paper
we shall consider that there is no direct effect of P
on the nodes of G: all influences arrive via the exte-
rior £ This modeling hypothesis applies to the ana-
lyzed example. It can be lifted with minor changes.
If the modeler judges this assumption to be not rea-
sonable, he can just add a (non-dynamical) variables

P and connect them to the nodes that are directly
influenced.

3.1.3. Extracting an interaction graph from
biological facts described in the literature

Intuitively, an arc j — i describes the alteration
of the speed of variation of the product i when the
concentration of j is modified. We build the inter-
action graph associated to a given biological ques-
tion from the biological literature. More precisely,
we consider an edge from j to i in the graph when
experimentation in a paper shows that the production
of i is modified after a change in the concentration
of j.

The interaction graph is supplied with negative self-
interaction on all nodes of the graph, implying s(i, i) =
— for any i (in the absence of additional positive
self-regulation). These result for instance from degra-
dation processes or from growth induced dilution. It
will be shown (Theorem 3.6 of Section 3) that nega-
tive self-interaction ensures the existence of a steady
state.

Such an interaction graph might be incomplete: it is
not necessary to gather all the biological facts in a model.
Actually, we intend to understand whether experimental
data fits with the theoretical model or not.

3.1.4. Example: fasting protocol (Fig. 1)

For the biological problem used as an illustration,
we consider a model M = (I U {£}, A, 5) with vertices
I = {PUFA, LXR, LXR -a, PPAR, PPAR-a, SREBP,
SREBP-a, SCAP, ACL, ACC, FAS, SCD1,D5D, D6D}.
The interaction graph M is shown in Fig. 1. It is obtained
by translating the biological information given in
Section 2. As an example, since the active form of LXR
(that is, LXR-a) is an activator of the transcription of
SREBP, we consider an edge from LXR-a to SREBP,
labeled by “+”. We also consider a positive edge from
SREBP to its active form SREBP-a since increasing
the concentration of SREBP should increase the con-
centration of its active form. There is a positive edge
from LXR-a to ACL because of the activation of ACL
by the active form of LXR. Notice that this action is
taken into account even if it is indirect: no detail on
this action exists in the literature; a possible mechanism
for this action involves SREBP as an intermediate, as
described by the path LXR-a — SREBP — SREBP-a
— ACL. However, since we do not know whether
the action of LXR on ACL is only SREBP-mediated,
the modeler has decided to keep an additional edge
from LXR to ACL, redundant with the path containing
SREBP.
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3.1.5. Paths and loops on graph

A path j~1i is a sequence of nodes {iy,i2,...,ip}
such that (ix, ix+1) € A, i1 = j and i, = i. The nodes
of a path are visited just once. Let the path influence
a j~»; denote the product of interaction coefficients along
a path:

k=p—1

ajoi= [] atic, ixr).

k=1

The sign of the path is s(j~+i) = sign(a j~;).

Aloop is a path with identical terminal nodes i} = i .
In a loop all nodes are visited just once, excepting the
terminal nodes.

3.1.6. Analyzed subgraph, observed nodes

The subset of the nodes in the model on which we
perform the analysis is denoted by G C I. The nodes in
G inherit the connections from M.

EXT

v
PPAR [+]

v
PPAR-a

\

Q
DSD [0]

FAS [-]

Fig. 1. Interaction graph A for a model M =

+, s(3SREBP) = —, s(8SCD1) = —, s(SFAS) = —, s(SACL) =

PUFA [+]
SCAP
SREBP-a
P
D6D [

ACL [+]

The set of observed nodes will be denoted as O.
One can define the nodes variations §X;,i € O, given
by experimental data on O. The sign of these variations
is denoted by s(6X;).

In our example, we consider G = I. Only some
nodes are observed. The variations of observed nodes
are shown in Fig. 1.

O = {PPAR, LXR, ACL, ACC, SREBP, FAS, SCD1,
PUFA, D5D, D6D}.

3.1.7. Entrance boundary

The analyzed subgraph G is naturally partitioned into
two subsets: the entrance boundary of G and the interior
nodes.

The entrance boundary of G, denoted 1" G is formed
by all the nodes of G that are supposed to have entering
connections from the outside:

TG ={ieG|3je TUEP\G, (j,i) € A}.

LXR [+]

LXR-a

/

SREBP [-]

Q %4

” TACC [ SCDI [

(1, A, s) of regulation of the synthesis of fatty acids. The node EXT stands for £ and represents the
exterior world. Self-regulation loops on nodes are omitted for sake of clarity. Observed variations are s(SPPAR) =
+, S(6ACC) =

+, s(SPUFA) = +, s(6SLXR) =

—, 5(6D5D) = 0, s(6D6D) = 0.
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The set of interior nodes is denoted G = G \ 1" G.
Notice that when G = I, the entrance boundary is
entirely made of those nodes that have connections from
E.
In the model M of our working example, the ana-
lyzed subgraph is I. Its entrance boundary is "] =
{PPAR, LXR, PUFA}.

3.1.8. Predecessors
We denote by pred(i) the set of predecessors of i :
pred(i) = {j € TU{E}, j#1, (jii) € AL

3.2. Qualitative linear equations

3.2.1. Steady state shift

In our approach we suppose that the waiting time after
a change of the parameters is sufficient for the biological
system to reach steady state.

Steady states are characterized by:

FX,P)=0. ey

The steady state shift is the result of a change in the
control parameters P. In our example fasting is the only
control parameter. Experimental data are interpreted as
variations, between two steady states, of the variables
associated with observed nodes.

This point of view, which is assumed in the rest of
the paper, is not correct in all situations. It cannot be
assumed for time series where observations are made at
relatively close instants. In such a situation, it is not true
that the system has reached steady state at each instant
when it is observed. For our example, this hypothesis is
justified since data come from metabolism of animals
that where kept under normal diet or fasted during a
long time before the measurements. Furthermore, we
should check carefully if the system is not capable of
autonomous oscillations (limit cycles) in which case
steady state again can not be reached.

3.2.2. Small variation and self-susceptivity

We differentiate Eq. (1) in order to understand how the
steady state changes for small changes in the parameters.
For anode i € I one gets the equation:

X—i—Z (SX +Z

JF
aF

5Pk—0

We can notice that if

there is an edge from j to i 1n the interaction graph that is,
J € pred(i). Let us consider a node i such that 3 oF; o=
the production or the consumption of X; does not depend

directly on the parameters.

Property 3.1. Let us consider a system whose steady
state depends on the parameters. Let i be a node that
satisfies the following conditions:

® the node i is not directly influenced by the parameters

. Do, . OF;
(all influences come via its predecessors), i.e. 4 P
O’

oF,
* (ax

) #o.

then the variation in i can be entirely calculated from the
variations in the predecessors nodes:

oF \ ™! .
oXi=— -5 > alk, i)sXy. )
! kepred(i)
Using a mechanical analogy, x; = — (3?[ ) can be

called self-susceptivity: it is the ratio between the force
produced by the predecessors of i and the variation in
i. As discussed, there are always effects that produce
self-susceptivity (degradation, growth induced dilution,
self-regulation). The variation §X; can be calculated
from the force exerted by the predecessors only if the
self-susceptivity x; is non-zero. A zero self-susceptivity
would represent a non-generic case when the sum of all
these effects cancel exactly.

3.2.3. Sign algebra

If we only know the signs of the variations and of the
interaction coefficients, we intend to find the relations
between the signs of the variations and the signs of the
interaction coefficients. To do so, we transcribe Eq. (2)
into the sign algebra. Remind that s(6X;) stands for the
sign of the variation of X;.

The sign algebra is defined as the set S of subsets of
{0, +, —}, that is,

S§= {0}, {+} {~1}, {0, +}. {0,

We denote by ? = {0, +,
undetermined sign.

The set S is then provided with the sum and product
rules defined on singletons as follows:

{+H+{-1=2

H+{+H =+ {H + {0} ={+}
=+ ==L {0 = (-,
{+ x{=}={-}L{+} x{+} ={+},
(=} x{=} = {+}, {+} x {0} = {0},

{—} x {0} ={0}.

=+ =5 {0, + -}

—} the subset standing for an
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These rules are extended to S by the union rule: (A U
B)+C=(A+C)U(B+C).

An equality in an equation means that the sign cor-
responding to the left hand side (L.h.s.) and the sign of
the right hand side (r.h.s.) have a non-empty intersection
(Kuipers, 1994; Travé-Massuyes and Dague, 2003).

3.2.4. Generalization to large variations

Eq. (2) represents a differential constraint that should
be satisfied by (small) variations of the concentrations
X;. Naturally, we may ask whether there is also a con-
straint among large variations. This is equivalent to
asking whether there is any globally defined function
relating the value X; to the concentrations of its prede-
cessors that we denote by the vector X@. If there is no
direct influence of the parameters P on X, stationarity
of X; reads:

Fi(X;, X"y =0 A3)

We have the following.

Property 3.2. If 35” < —C, C=>0, if there is no

direct influence of P on X; and if F;(0, X®) > 0 then
there is a function ¢; : R’i" — R (n; beAing the number of
predecessors of i) such that X; = ®;(XD). The differen-
tial of D; is:

AF;\ ! F;
d@iz_(ax) > dX;.

Jjepred(i) J

Now, let us suppose that the steady state shifts from
the vector X! to the vector X? and that the projection
of the steady state onto the predecessors of i shifts from
X@D to XE2 1n order to obtain the variation of X; it is
enough to integrate the differential of @; on a segment
C2 connecting X&) X2

aF;\ ! F;
AX; = - —LdX ;. 4
! /Cl,z <axi> 2 ax; ! @

jepred(i) J

3.2.5. Qualitative system of equations
Transcribing Eq. (4) in the sign algebra provides the
following result.

Theorem 3.3. Supposing that the conditions of Property
3.2 are satisfied and supposing that the signs of
g;?/ (¢i(5((i)), )A((i)) are constant on the segment cl?,
then the signs of finite variations of steady state vari-
ables are connected by:

SAX) = > sk, )s(AXp). 5)

kepred(i)

Remark. Although the ends of the segment C'? are
steady states there is no reason for the interior points
to fulfill stationarity equations (they fulfill only one of
the stationarity equations, namely Eq. (3)). Neverthe-
less, supposing that the absolute values of the derivatives
gg, are bounded (which is a natural modeling assump-
tion) it follows from Eq. (4) that the excursion of @;
and therefore of X; is bounded when X® describes the
segment C1:2. This means that the segment C!-? corre-
sponds to a range of states reasonably close to the exper-
imental range, thus justifying the modeling assumption
concerning the signs. This reasoning warns against the
naive interpretation of interaction signs that assumes
constancy of these signs over arbitrary ranges of the
concentrations. The problem is not trivial and should
be considered carefully.

Example. Theorem 3.3 provides the following equa-
tions for the working example M (for ease of nota-
tions, s(AA) is denoted as A). One can apply Theorem
3.3 because the self-susceptivities are positive in the
absence of positive self-regulation. Nodes i that satisfy
the hypothesis of Theorem 3.3 are those which are not
connected to the exterior world £ (implying that the first
condition is satisfied).

System 1

(1) PPAR-a = PPAR + PUFA

(2) LXR-a = -PUFA + LXR

(3) SREBP = LXR-a

(4) SREBP-a= SREBP + SCAP -PUFA
(56) ACL= LXR-a + SREBP-a - PUFA
(6) ACC= LXR-a + SREBP-a - PUFA
(7) FAS= LXR-a + SREBP-a - PUFA
(8) 8SCD1 = LXR-a + SREBP-a - PUFA + PPAR-a
(9) SCAP= -PUFA

(10) D5D= PPAR-a + SREBP-a - PUFA
(11) D6D = PPAR-a + SREBP-a - PUFA

Known values are the following:

Values 1
PPAR=+, PUFA=+, LXR=+, SREBP=-, SCD1=-,
FAS=-, ACL=+, ACC=-, D5D=0, D6D=0

3.3. Influences and their transmission across a
boundary

In order to analyze data, we need to transform the
qualitative system derived in Theorem 3.3 to obtain a
system where the variables are functions of a fixed set of
variables. In general, this kind of system transformation
in the sign algebra is a NP-complete problem (Dormoy,
1988).
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In the following paragraphs we show that quantita-
tively this operation is equivalent to solving the Dirichlet
problem for a discrete operator on the interaction graph.
A solution to the Dirichlet problem can be found under
mild conditions. We use this result for deriving a large
class of qualitative systems.

3.3.1. Transmission of influences on graphs

One can read Eq. (2) as the propagation of influence
on the interaction graph: the concentration variation of
the molecule i is an average of the influences from its pre-
decessors. Let us define as follows the discrete operator
L:RI - R

(L§X); = 8X; + (aF) > alk, i)sXy. (6)

oX kepred(i)

Then Eq. (2) reads L6X = 0 which is analogous to
the Laplace equation on graphs. Let us remind that
the Laplace equation fulfills an analogous property: the
value of an harmonic function (satisfying the Laplace
equation) in a node is the average of the values of the
function on the predecessors of this node.

The analogy can be pushed further as one may try to
define the influence of the boundary on an interior point
(question known as the Dirichlet problem) (Chung and
Yau, 2000).

Laplace equations on graphs were intensively studied
in connection to electrical networks and random walks
on undirected graphs (Soardi, 1994). Let us notice that
our model describes propagation of influence on oriented
graphs. This could be related to random walks on ori-
ented graphs. Nevertheless, the propagation operators
resulting from random walks have negative non-diagonal
elements (Campanino and Petritis, 2003), while in our
case there are no such constraints on the signs of the
interactions. Little is known on the properties of random
walks on oriented graphs. For instance it is not known
whether the solution to the Dirichlet problem has a rep-
resentation in terms of stopped random walks or not. The
connection between propagation of influences and ran-
dom walks on oriented graphs could thus be profitable
both for biology and for applied mathematics.

3.3.2. Influence of the boundary on the interior

From now, we fix a subnetwork G C I of the model.
We have already defined the entrance boundary 1" G,
formed by all the nodes of G that are supposed to have
entering connections from the outside. The set of interior
nodes was denoted G = G \ 71"G.

By differentiating the components of Eq. (1) corre-
sponding only to the interior nodes of G one gets for

every i € G:
oF; oF;
Zo 0X it Z 0 Xy
jeG keTinG
+ Z —SP 0.
lel\G
g? = Oforalli € G,l € I\ Gandassum-
ing that %ﬁ =0foralli € G it follows:
o JdF; oF;
Vi € G, —8X;,=— 7
' ZQ X / Z 0Xx 7
G keTnG

Eq. (7) is the starting point for the proof of the following
theorem (details can be found in the Appendix A):

Theorem 3.4. (Linear Dirichlet solution) Let G be a
subgraph of I. Let A be the restrlctzon of the ]acoblan
of F to the interior nodes: AJ = ax i, j € G. Let us

suppose that:

e det(A) #0,
® there is no direct influence of the parameters on the
interior nodes of G, i.e. gﬁ: =0,Vi e G.

Then, the response of i € G to small changes on the
boundary of G is given by:

3X; = Z Z ajvl Xjs ®)

JETG rieP o

with the following notations:

® P denotes the set of paths included in G, starting
on the boundary and that do not return to the bound-
ary:Pé ={jvi=>01=Jj,....iks...,ip=10),ik ¢

TG, Vk > 1};

= [17] atix, irg1); ]
o Cjui = (—1horoitl __ded
detA (i
modulus” of the internal path k(j)~~i where

o k(j) € G is the second node after j of the path j~+i;

o l(jy~i the length of the path k(j)~i, i.e. the num-
ber of arcs;

o detA{k(j)Mi}c is the principal minor obtained by
eliminating all the lines and all the columns whose
indices are in the path k(j)y~i from the jacobian
A. Conventionally, if the resulting minor is empty
we choose it equal to one: detAGoc =1.

® ajrsi

denotes the “path
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If k(j) = i the path modulus becomes the node mod-

ulus (ofi = —detd
detAyje

If we consider G = {i} U pred(i) to be the set of a
predecessors of a node i we obtain the Property 3.1 as a
corollary.

3.4. Moduli and sign algebra

3.4.1. Path modulus

Eq. (8) describes the influence on an interior node of
variations on the boundary. j acts with a force a j~,;6X ;
on the node i, along the path j~i. This force is bigger

. . . oF;
when the product of interaction coefficients % along
'k

the path is bigger.

C( jy~i 1s the ratio force/response and therefore can
be called path modulus. According to Theorem 3.4, the
contribution to the modulus comes only from the internal
part of the path: k(j)~i. If the internal part reduces to
a point (k(j) = i, meaning that the path from j to i is a
direct arc), then the contribution to the modulus comes
from the node i only: the path modulus becomes node
modulus. A large path (or node) modulus implies a small
response at the end of the path, even if the force is big.
Therefore, the modulus can be related to sensitivity.

3.4.2. Signs of moduli

One way to test the compatibility between micro-
array data and interaction models is to compare predicted
and observed signs of the variations. In order to do so, we
need to know the signs of the path moduli. The following
property is very useful:

Property 3.5. Ifthe interior of the subgraph G contains
no positive loops, then all internal path moduli C k()i
and node moduli C; in Theorem 3.4 are strictly positive.

If G has no positive self-loops, than all the self-
susceptivities x; are positive.

Following a reasoning similar to the one leading to
Property 3.2 and to Theorem 3.3, and using Property
3.5 and Theorem 3.4, we can write down (under some
conditions) linear qualitative equations valid for large
variations.

Let X, X be the set of variables internal to G, and
on the entrance boundary, respectively. If the parameters
P have direct influence on the interior of G, then the sta-
tionarity equations for G (non-linear Dirichlet problem)
read:

Fg()of(;,j(c):o (&)

where F is the restriction of F'to G.

Let us suppose that steady state shifts from X! to
X? and that the projection of the steady state onto the
boundary variables shifts from X! to X2.

Then, we obtain (see Appendix A) the following.

Theorem 3.6. Suppose that

® the parameter variations have no direct influence on
the interior of G, i.e. g—gi =0,Vi e é;

e the restriction of the Jacobian of F to G is non-
singular;

® the interaction graph has no positive loops in the inte-
rior of G;

® the restriction of F to G has the form

Fo =vy°(Xg. X¢) — AgXg (10)
where ¥ is bounded and satisfies
vO(...X;=0,....X5)>0,VieG (11)

and A is a diagonal matrix with positive entries;

Then there is a function ®g such that 5((; = @G(Xg)
gives the unique solution of the non-linear Dirichlet
problem (Eq. (9)).

If furthermore the signs s(j~1) of the path influences
from the boundary to the interior point i are constant
for )cgg on a segment connecting )A(};, XZG and Xg =
DG(Xg), then the signs of the finite variations of the
internal variables X; satisfy the following relation for
everyi € G:

SAXD) = > Y s(jois(AX)). (12)

jeTnG j“’ﬁepg

Remark. The decomposition in Eq. (10) corresponds
to a regulation term ¥ and to a linear dissipation term
AgXg. The condition Eq. (11) naturally confines the
dynamics to positive concentrations. A remark similar
to the one for Theorem 3.3 holds as to the boundedness
of the variations of X; when the boundary variables
describe the segment from X! to X2.

4. Model and data compatibility

In this section we introduce two methods of qual-
itative analysis of biological systems and experimental
data. These methods use the systems of qualitative equa-
tions generated by Theorem 3.3.

Nevertheless, Theorem 3.6 can be used to gener-
ate other systems of qualitative equations. Indeed, it is
enough to consider any covering of the network I by
subgraphs {G ;} j=1, . Then, the Eq. (12) written for all
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nodes i € G and for all subgraphs G ; provide another
system of qualitative equations.

Hence, even if algorithms for incompatibility are pre-
sented for system 1 in this section, they can be easily
adapted for another system of qualitative equations as
well.

4.1. Solving qualitative systems

Let us recall the qualitative equations provided by
Theorem 3.3.

System 1

(1) PPAR-a = PPAR + PUFA

(2) LXR-a = -PUFA + LXR

(3) SREBP = LXR-a

(4) SREBP-a= SREBP + SCAP -PUFA

(5) ACL= LXR-a + SREBP-a - PUFA

(6) ACC= LXR-a + SREBP-a - PUFA

(7) FAS= LXR-a + SREBP-a - PUFA

(8) SCD1 = LXR-a + SREBP-a - PUFA + PPAR-a
(9) SCAP= -PUFA

(10) D5D= PPAR-a + SREBP-a - PUFA

(11) D6D = PPAR-a + SREBP-a - PUFA
PPAR=+, PUFA=+, LXR=+, SREBP=-, SCD1=-,
FAS=-, ACL=+, ACC=-, D5D=0, D6D=0

4.1.1. Compatible system
A valuation of the qualitative system is called com-
patible if it satisfies:

1. all nodes are determined (have values different
from ?);

2. all the observed nodes are given the observed values;

3. the qualitative Eq. (5) are fulfilled.

Solving the qualitative system means finding all compat-
ible valuations. If there is no compatible valuation, the
system is said to be incompatible.

The interest of finding compatible valuations lies in
the following property: any solution of the quantitative
system provides a compatible valuation. Consequently,
the incompatibility of the qualitative system implies that
the quantitative system is incompatible as well. This
immediately indicates a contradiction between the model
and the observations. Furthermore, the signs correspond-
ing to a solution of the quantitative system should be
given by one of the solutions of the qualitative system.

Let us notice that when the system is compatible, the
number of compatible valuations can be big and this
could bring very limited information on the biological
system. In general we would like to know which kind of
information one can extract from compatible valuations.

In order to do this an useful concept is the following
notion of competition.

4.1.2. Competitions

We say that there is a competition or a balance on a
node i if the right side of the Eq. (5) is equal to “?”. The
biological interpretation of this indetermination is that
the node 7 is submitted to competitive actions of different
signs. An example is provided by the node LXR-a in the
working example, that satisfies:

PUFA = +,
LXR =+,
LXR-a = —PUFA + LXR =?

Determining the sign of the balanced node says which
paths win the competition. If the variation of the balanced
node is zero we say that the competition is neutral. If this
variation is negative (positive) we say that the negative
(positive) paths win the competition, or that the com-
petition leans toward the negative (positive) direction.
The information on competitions has biological interest,
because it replaces undetermined actions by determined
ones and facilitates the understanding of the interaction
graph.

In the next subsections we use simple rules of qualita-
tive algebra to solve System 1 and extract information on
competitions. Then, we propose an algorithmic approach
to solve the system obtained from Theorem 3.3 by using
these rules systematically. Algorithmic methods related
to competitions are detailed in Section 5.

4.2. Hand solving of qualitative equations

Let us solve System 1 by using the rules of the sign
algebra and the following computation rule:

Property 4.1. If A= X + B and if the sign of A is
opposite to the sign of B, then the sign of X is determined
and it is equal to the sign of A.

The result of the application of these rules to System
1 is summarized as following.

Property 4.2. System [ is not compatible with the
observed variations.

Simple change of the sign of ACL (ACL= —)
renders it compatible and determined. The values
of non-observed variables are PPAR-a = +, LXR-a =
—, SCAP = —, SREBP-a = —.

In this case there are competitions on LXR-a,
SCDI that are observed to lean towards the negative
directions. There are also competitions on D5D, D6D
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that are observed to be neutral. There is no competition
on FAS, ACC and ACL.

Proof. From Eq. (1) PPAR-a = +. From Eq. (3)
LXR-a = SREBP = —. From Eq. (9) SCAP = —. From
Eq. (4) SREBP-a = —.

We have already some biologically interesting results:
by Eq. (2), LXR-a is supposed to be undetermined, that
is, the result of a competition between the positive action
of LXR and the negative action of PUFA. Using Eq. (3)
we have shown that the competition on LXR-a should
lean toward the negative direction. From Eq. (8) it fol-
lows that there is a competition on SCD1. Data on SCD1
implies that this competition leans toward the negative
direction.

From Eq. (5) and Property 4.1, SREBP-a=+. This
is inconsistent with the previously found value, which
proves that the system is incompatible. There is neces-
sarily an error, either in the interactions or in the data. Let
us assume that the interactions are correct. Then, consid-
ering that data on ACL is wrong is the simplest way to
make the system compatible (because Eqs. (6) and (7)
do not force signs of FAS and ACC).

With the correction ACL = —, the unknown values
are determined in the same way as before. From Eq. (1)
PPAR-a=+. From Eq. (3) LXR-a=SREBP=—. From
Eq. (9), SCAP=—. From Eq. (4) SREBP-a=—. Now
Eq. (5) is satisfied with no competition. The same is
true for Eqgs. (6) and (7): there are no competitions on
ACC and FAS. From Egs. (2) and (8) we find that there
are competitions on LXR-a, SCD1 which leans towards
the negative direction. From Eqgs. (10) and (11) we find
that there are competitions on DSD, D6D. The observed
variations of D5D, D6D are vanishing, therefore these
competitions are neutral. 0

Manual resolution of a qualitative system is only pos-
sible for small examples. In the next section we describe
an algorithm that allows the systematic application of
these rules to large systems.

4.3. Graph valuation algorithm

4.3.1. Basic ideas underlying the algorithm

A natural way to reduce the number of unknowns
in a system of equations is to proceed by elim-
ination. This means to compute the value of one
unknown from an equation and then substitute this
value in all the other equations. Unfortunately, in the
sign algebra, the usual elimination rules do not apply
(qualitative equality of undetermined quantities is not
transitive).

In the proposed algorithm, we will rely on the rules
used in Section 4.2. Let us formulate them more pre-
cisely.

e Eq. (5) implies that the sign of AX; is determined
if s(k, i)s(AXy) are determined and have the same
value for all the predecessors k of the node i. This first
elementary rule is used in the forward propagation
step of the algorithm.

e The second rule follows from Property 4.3. Suppose
that

AX; = sk, )s(AXp) + Y sl D)s(AX)).
£k

If both the signs of leﬁk s(1,)s(AX)) and s(AX;)
are determined and if they are opposite then
sk, )s(AXy) = s(AX;). The second rule is used in
the backward propagation step of the algorithm.

In the case of a sign algebra with 0 value, the first rule
is unchanged while the second one needs a straightfor-
ward adaptation.

4.3.2. The graph valuation algorithm

1. Initialization: All the nodes are given a value in
{4+, —, ?}. Observed nodes are initialized with the
value corresponding to the observed variations of the
concentration of the molecules. The other nodes are
initialized with the value ?. The value associated with
a node i is denoted val(i).

Let us consider two sets of nodes U and T. The
nodes with values in {4+, —} are put in 7. The remain-
ing nodes (with value “?””) are put in U.

2. Forward propagation: Create a set F that contains
every node of U that is also a successor of a node in
T.

Repeat: Find a node i in F which has at least
a predecessor and such that for all predecessors j
of i, s(j, i)val(j) = +, or for all predecessors j of i,
s(j, iyval(j) = —. Then
o set val(i) = s(j, i)val(}),

o remove i from F,
o remove the successors of i which are in U and put

them in F,

o putiinT.
until no node found

3. Backward propagation: Create a set B that contains
every node of U that is also a predecessor of a node
inT.

Repeat: Find a node j in B which has a successor i
in 7, such that val(i) x Zkepred(i),k;éj s(k, iyval(k) =
—or Zkepred(i)_’k# s(k, iyval(k) = 0. Then
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o val(j) = s(j, ival(i),
o remove j from B,
o remove the predecessors of j which are in U and
put them in B,
o putjinT.
until no node found
4. Alternate propagations. Alternate forward and back-
ward propagations until no new value is added to 7.

Notice that each time that a node is valuated, it is
moved to 7 and it never returns to F or B. T'is an increas-
ing subset of a finite set, so that the algorithm stops.

4.3.3. Application to the detection of
incompatibilities

All the valuations introduced by the algorithm are
unique sign choices compatible with the equations pro-
vided by Theorem 3.3. By doing so, no compatible val-
uation is lost. More precisely:

Property 4.3. The graph valuation algorithm provides
a new graph such that any compatible valuation of the
nodes in the initial graph is a compatible valuation of
the new graph.

Nevertheless, nothing guarantees that a compatible
valuation exists, i.e. that all Eq. (5) are satisfied. The
resulting graph may contain incompatibilities. These
incompatibilities are detected simply by checking Eq.
(5) on each node.

4.3.4. Criterion to compare model and data 1

If the graph output by the algorithm described below
contains anode where Eq. (5) is not s atisfied, then exper-
imental data and the model are incompatible.

4.3.5. Working example
In the example M the initialization is

PUFA = +,LXR = +,LXR-a =?, PPAR = +,
PPAR-a =?, SREBP = —, SREBP-a =?,
ACL =+, ACC = +,FAS = —,SCD1 = —,
SCAP =?,D5D =?, D6D =?

We assume that the variations of D5D and D6D are not
known.
The forward propagation begins with

F = {PPAR-a, LXR-a, SREBP-a, SCAP, D6D, D5D}

and ends with F = (J, PPAR-a = 4+ (from PUFA = +
and PPAR = +), SREBP-a = — (from SREBP = —)

and SCAP = — (from PUFA = +). D5D and D6D are
removed from F and keep their value ?

The backward propagation begins with B = {LLXR-a}
and ends with B = (), LXR-a = — (from SREBP = —),
or LXR-a =+ (from ACL = +, SREBP-a = — and
PUFA = +). The second forward propagation begins
with F = {D6D, D5D} and stops with F = ¢ but no new
value for D5SD or D6D.

After running the algorithm, if LXR-a= — Eq. (§) is
not satisfied at node ACL and if LXR-a= + Eq. (3) is
not satisfied at node SREBP. This shows a contradiction
between the model and the values assigned to some nodes
by experimental data or hypothesis.

The graph valuation algorithm is not complete for
the resolution of linear qualitative systems. As a conse-
quence, the algorithm concludes only when it detects an
incompatibility or when all the values are determined.

5. Assessment of competitions

The graph valuation algorithm aims at detecting
incompatibilities or producing compatible valuations.
Nevertheless, even when these tasks are successful the
result may be difficult to use. If for instance data is wrong
for a node that happens to be very connected to the rest
of the graph, then many incompatibilities appear and it is
difficult to localize and to correct the error. Also, if there
are not enough observations then compatible valuations
are produced in huge number. It is difficult to extract
useful biological information from this situation.

In this section, we develop another approach, that
exploits the global qualitative information on the prop-
agation of influences on the graph. This approach is
complementary to the graph valuation algorithm since
it identifies competition processes and the places where
these occur.

5.1. Competitions

As already explained, we say that there is a competi-
tion or a balance on a node i if the right side of the Eq. (5)
is equal to “?”. The biological interpretation of this inde-
termination is that the node i is submitted to competitive
actions of different signs.

This definition can be extended to any equation con-
necting 7 to other nodes in the graph instead of Eq. (5)
(related to the predecessors of a node 7). Such equations
are provided by Theorem 3.6 that can be applied to every
subgraph G containing i. Then, we say that there is a com-
petition on a node i when there exists an equation whose
left side is s(6X;) and whose right side is equal to “?”.
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5.2. Set of equations describing the sign of variation
of a variable X,

LetM = (1 U {&}, A, 5) be anetwork with no positive
loop in the interior of 7 and such that the sign function s is
constant within the entire range of parameter variations.
Let us focus on a variable X;, with index i( in the model
M. From Theorem 3.6, as soon as X, is an internal vari-
able of a subgraph G of M, the sign of variation of X;,
can be expressed as a combination of the signs of paths
starting on the boundary of G and never coming back to
it:

VG C I, X, € G, s(AX,,) Z s(j~i0)s(AX ).

jeTinG
\PigeP o
G

13)

The set of equations describing the variable X;, is the
set of Eq. (13) for all subgraphs G such that X;, is an
internal variable of G.

5.3. Example of SREBP

In the working example of lipogenesis, let us consider
the variable X = SREBP. We want to determine all the
subgraphs G that contain X as an internal variable. A
necessary and sufficient condition is that G contains all
the predecessors of X, that is, LXR-a. In each subgraph
G, SREBP is determined by all the paths that start from
the boundary of G and never go back to it. Notice that any
path arriving in SREBP contains LXR-a. If it is longer
than the path LXR-a — SREBP, it must contain PUFA or
LXR, that both belong to the boundary of & (since they
are connected to the exterior). Hence, there are three
paths to SREBP that start from the boundary of such
subgraphs G and never come back to it. They are given
in Table 1, together with the set of equations associated
to SREBP.

5.4. Paths appearing in an Eq. (13)

Let P(M) contain all paths of M that appear in an
equation (13). Hence, a path j~»i belongs to P(M) if
there exists a subgraph G C I such that j belongs to the
boundary of G and j~»i is an internal path of G. The
reasoning detailed in the example allows to characterize
this set. A full proof is given in the Appendix A.

Property 5.1. A path j~i C I belongs to P(M) iff
pred(j) # @ and no node of j~i except possibly j is
connected to the exterior E.

Table 1
System of qualitative equations describing the variations of SREBP;
sign of influences associated to each path

/N

(P1) LXR-a — SREBP,
(P,) PUFA — LXR-a — SREBP,
(P;) LXR — LXR-a — SREBP.

PUFA [+] LXR [+] S(ASREBP)=s(P1)s(ALXR-a)  (14)
)
\ / s(ASREBP) = s(P,)s(APUFA)
(=) (=)
+ s(P3)s(ALXR) (15).
LXR-a &)
SREBP [-]

The graph is restricted to nodes having an influence on SREBP such
that this influence possibly starts from the boundary (PPAR, PUFA,
LXR) but does not come back to it.

If so, there exists a subgraph G such that the varia-
tions of X; satisfy:

S(AX;) = S(AX PsGioi) + Y slkoi)s(AXy).

keT"G
k’\’>ie7?6
NP i

5.5. Example of SREBP-a

Let us fix X = SREBP-a. As an application of
Property 5.1 seven paths start from the boundary of a
graph G such that X € G and the path never come back
to the boundary. They are given in Table 2 together
with the equations describing SREBP-a. Notice that
Egs. (19)—(21) correspond to Egs. (16)—(18) in which
s(P7)s(APUFA) has been replaced by s(P1o)s(ASCAP).
This corresponds to the particular case of SCAP, whose
only predecessor is PUFA, so that SCAP can be con-
sidered either on the boundary or in the interior of a
subgraph G, providing two different equations.

5.6. Influences

Property 5.1 suggests the following definition. For
a path j~i € P(M) we say that s(AX )s(j~1i) is the
influence of j~~i on the variable X;.

Let us also define the sets of positive and negative
influences acting on X;, denoted by Z" (i) and Z~ (i).
TH(i) = (i € POMD). j € O, s(AX (i) = +)
I () ={j~iecPM),je O, s(AX)s(j~i) = —}

The set of all influences is denoted by Z(7).
I() =TT () UI @).



A. Siegel et al. / BioSystems 84 (2006) 153-174

Table 2
System of qualitative equations describing the variations of SREBP-a; sign of influences associated to each path

167

LXR [+] — a4 —o .
s LXR-a SREBP [\
EXT
— /

PUFA [+] — SREBP-a

—_— -

SCAP

(Ps) PUFA — SREBP-a,
(Ps) SREBP —> SREBP-a,
(Pg) PUFA — LXR-a — SREBP — SREBP-a,
(P;) PUFA — SCAP — SREBP-a,
(Pg) LXR-a — SREBP — SREBP-a,
(Ps) LXR — LXR-a — SREBP — SREBP-a,
(P10) SCAP — SREBP-a.
s(ASREBP-a) = s(P4)s(APUFA) + s(Ps)s(ASREBP) + s(P;)s(APUFA)
) ) )
s(ASREBP-a) = s(Pg)s(ALXR-a) + s(P4)s(APUFA) + s(P7)s(APUFA)
&) )
S(ASREBP-a) = s(Pg)s(ALXR) + s(P4)s(APUFA) + s(Pg)s(APUFA) + s(P;)s(APUFA)
+) (=) (=) (=)
s(ASREBP-a) = s(P4)s(APUFA) + s(Ps)s(ASREBP) + s(Py9)s(ASCAP)
) )

S(ASREBP-a) = s(Pg)s(ALXR-a) + s(P4)s(APUFA) + s(P10)s(ASCAP)

(16)
an
(18)
19
(20)

=)

S(ASREBP-a) = s(P9)s(ALXR) + s(P4)s(APUFA) + s(Pg)s(APUFA) + s(P19)s(ASCAP) (21)

+) (=) (=)

5.7. Examples of SREBP and SREBP-a

The  observed  variations  are APUFA =
+, ASREBP =+ and ALXR =+, so that the
positive and the negative influences are

T (SREBP) = {P;}

I~ (SREBP) = { P}

I (SREBP-a) = {Po}

T (SREBP-a) = { P4, Ps, Ps, P7}.

The influence of paths starting from LXR-a and SCAP
is not taken into account since the variations of these
molecules are not observed.

5.8. Counterbalanced influences

In Table 2, the right sides of Egs. (15), (16) and (18)
are undetermined since they are the sums of at least two
terms of different signs. This means that there are com-
petitions on SREBP and SREBP-a. The observation of
SREBP shows that the competition between P, and P;3
leans toward the negative direction: we say that the influ-
ence of P; is counterbalanced by the influence of P;.
Since SREBP-a is not observed, we can say that the
influence of Py is counterbalanced by the influence of
P4, Ps, Pg, P7, but we do not know the inclination of the
competition.

This example justifies the following.

Definition 5.2. The set of counterbalanced influences
on i is denoted by C(i). It is defined as follows:

e if i is observed, the influence of j~+i is counterbal-
anced if it is different from the variation of X;, i.e. if
S(AX j)s(j~i) # s(AX;). Then

ifs(AX;) = +thenC(i) = I (i)
ifs(AX;) = —thenC(i) = Z7(i)
ifs(AX;) = OthenC(i) = Z(i).

e If i is not observed, the influence of j~»i is coun-
terbalanced if there exists another path k~»i whose
influence on X; has a different sign, i.e. if Z7 (@) and
Z7 (i) are both nonempty. Then
o if i¢ O, TT(3\)# ¥ and ITT() # @ then C(i) =

(),
o ifi¢ O,IT()# @ orI (i) =¥ then C(i) = 0.

A direct consequence of the definition is that an influ-
ence which is not counterbalanced absorbs all the influ-
ences in the equations it appears in, so that it does not
introduce indetermination’s:

Property 5.3. Ifa path j~i is not counterbalanced then
the sign of its influence on the node i is the same as the
sign of AX;.
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To summarize, influences are counterbalanced when
they compete with other influences. When we can
observe which is the result of this competition, the coun-
terbalanced influence is the dominated one. Influences
are not counterbalanced either if they are non-competing,
or if they dominate their competitors.

Examples. In the example of SREBP-a, positive influ-
ences ZT(SREBP-a) = { Py} compete with negative ones
77 (SREBP-a) = { P4, P5, Ps, P;} for determining the
unknown sign of the variation of SREBP-a. All these
influences are considered to be counterbalanced:

C(SREBP-a) = Z(SREBP-a) = { Py, P4, Ps, Ps, P5).

The observed negative variation of SREBP implies
that positive influences are dominated, hence counter-
balanced:

C(SREBP) = 77 (SREBP) = { P3}.
5.9. Redundant and essential influences

Letus consider the influences of P; and P, on SREBP.
The observed sign of SREBP implies that P; is domi-
nated (thus counterbalanced) by P,. With no loss, we
can skip Pj in our analysis of influences. We can not
skip P>. We say that P, is essential, while P is redun-
dant. Let us now consider the influences of Py and Pg on
SREBP-a. These two influences are competing, but we
do not know which one wins. We decide to consider that
both are redundant.

Generally, we call essential those influences that can
not be skipped without loss. The discussion of the exam-
ples justifies the following.

Definition 5.4. A path is said to have an essential influ-
ence on a node i if it belongs to the set £(i) defined as
follows:

&) = {j~i= (o= Jj j1, -, 1 =1) € Z(i),

Y0 < k <1, j~~ji ¢ C(k)}.

5.10. Essentially balanced nodes

Let us consider LXR-a. It collects two essential influ-
ences of different signs (from PUFA and LXR). We say
that LXR-a is essentially balanced.

Let us also consider SREBP. This node collects two
competing influences: Py and P,. Nevertheless, we know
that P; is dominated, hence redundant. We say that
SREBP is not essentially balanced.

More generally, we have the following.

Definition 5.5. An observed variable X; is said to be
essentially balanced if it collects essential influences that
are also counterbalanced, i.e. if £(i) N C(i) # @.

A non-observed variable X; is said to be essentially
balanced if it collects essential influences with opposite
signs, that is £3i) N ZT (i) # ¥ and EG) NI (i) # 9.

An essential balance on a variable X; gathers com-
peting influences such that no information allows to say
that one of the competing influences has been previously
absorbed in a previous competition. This implies that the
essential balance is localized precisely at the node i. The
variation of X; gives the inclination of the competition.

From the above discussion it follows:

Criterion to compare model and data 2. Let us con-
sider a model of molecular influences. Let us consider
that the interaction graph contains no positive loop made
of nodes that are not connected to the exterior. Let X; be
a variable that collects essential influences, i.e. £(i)d.
Then several situations are possible:

1. X; is essentially balanced. Then there is a non-
redundant competition process localized at i. If X;
is observed, we can say which one of the competing
influences is dominating.

2. X; is not essentially balanced and all the collected
essential influences have the same sign.

If X; is observed then:
(a) if the sign of AX; coincides with the one of the
essential influences then we can say nothing.
(b) if the sign of AX; is different from the one of
the essential influences then there is probably an
error in data.

5.11. Complementarity with the graph valuation
algorithm

As already stated, the assessment of competitions is
not devoted to proving incompatibilities. For instance
the case 2(b) of the Criterion 2 suggests, but does not
prove the presence of an error. Its utility is not obvious
in our simple working example, but should appear from
its application to more complex networks. Case 2(b) of
Criterion 2 is a hint for the location of the error.

Case 1 of Criterion 2 is obviously useful as it allows
to localize non-redundant competitions. These non-
redundant competitions are usually important regulation
checkpoints.



A. Siegel et al. / BioSystems 84 (2006) 153—174 169

5.12. Working example and biological discussion

Computation on the graph related to the working
examples M of regulation of lipid synthesis showed that
there are competitions on nine nodes among 11: LXR-a,
SREBP, SREBP-a, ACL, ACC, FAS, SCD1, D5D, D6D.
However, some of these competitions are redundant.
Among the 32 counterbalanced paths, 20 are essential.
Essentially balanced nodes are LXR-a, ACL and SCD1,
D5D and D6D:

e [.XR-a collects non-redundant competitive paths.

e ACL collects four essential negative influences and
no essential positive influence. This suggests that the
data on ACL is false.

The system has to be studied more precisely, in
order to check whether there is a real incompatibility
between the model and the data. A way to do this is by
using the methods of the previous section. An alterna-
tive way is a refined assessment of competitions (see
Section 5.13).

e SCDI1, D5D and D6D are observed nodes that col-
lect essential negative and positive influences. This
suggests that a non-redundant competition occurs on
each of these nodes.

The observed negative variation on SCD1 suggests
that the negative path through SREBP dominates the
positive path through PPAR.

Consequently, two points can be extracted from such
an analysis: at the SCDI level, the negative pathway
containing SREBP dominates the positive pathway con-
taining PPAR. At the ACL level, the data on ACL should
be checked carefully or paths in the model leading to
ACL should be studied in detail.

5.13. Improvements

Our discussion of competitions aims at identifing and
localizing essential competitions. Let us describe mod-
ifications of the definitions that allow us to refine the
analysis.

Definitions 5.2 and 5.4 declare redundant influences
that compete with others, even if the result of the com-
petition is unknown. We have did so in order to local-
ize essential competitions: once they occur somewhere,
competitions are transported along the graph as non-
essential.

With altered definitions we can identify and local-
ize incompatibilities. Let us change the Definition 5.2 of
counterbalanced influences by skipping its second part.
This means deciding that influences of different signs

on an unobserved node are not counterbalanced. Then,
according to Definition 5.4, the redundant influences are
only those that are dominated somewhere. Hence the
case 2(b) of the Criterion 2 identifies an incompatibility:
it is impossible to act with non-dominated influences of
even sign on a node and to obtain a different sign on
the node. This is actually the case of the node ACL in
our working example. This node collects non-dominated
negative influences and one dominated positive influ-
ence.

Thus, by altering Definitions 5.2 and 5.4 we can detect
incompatilities, but we can no longer localize competi-
tions. In order to satisfy both purposes we can introduce
two types of redundancy, one suitable for incompatibility
detection, the other for localizing competitions.

6. Application to an extended model of the
synthesis of fatty acids

We applied the graph valuation algorithm and the
essential balance computation to an extended model of
the synthesis of fatty acids shown in Fig. 2. The model
contains 59 products and 110 interactions implied in the
synthesis metabolism. The product list includes ACL,
ACC, D5D, D6D, FAS, LXR, PPAR, PUFA, SCAP,
SCD1 that were introduced in the working example given
in Fig. 1. Compared to the working example, this new
model includes neither the active forms of SREBP and
LXR, nor SCAP. The model was obtained as a compila-
tion of interactions extracted from the litterature. Notice
that in this model, only the nodes without predecessors
(that is, INS and retinoid) are connected to the exterior.
Hence, we suppose implicitely that the model is com-
plete enough to explain all the possible actions among
products.

We have used a theoretical experimental set of mea-
surements for 16 products, built as a result of a virtual
experimentation on fasted animals. Hence, we suppose
that PUFA, PPAR, LXR, ACL increase while ACC, D6D,
FAS and SREBP decrease.

6.1. Backward—forward algorithm

The backward—forward algorithm states that the sys-
tem of qualitative equations is incompatible with the set
of data. The qualitative equation that cannot be satisfied
by the data is the equation corresponding to ACL.

6.2. Essential balances

The result of the computation of essential balances
is shown in Table 3. Six products are essentially bal-
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Fig. 2. Interaction graph for an extended model of regulation of the synthesis of fatty acids. The model contains 59 nodes and 110 interactions.
Sixteen products are supposed to be observed. The list of products is given in Table 3.

anced, among which D5D, D6D, SCD1 and SREBP. In example is shifted in the new model as a balance on the

the working example, an essential balance occured on successor of LXR-a, that is, SREBP.
the active form of LXR, denoted LXR-a; it cannot occur 16 products collect only positive pure influences. Four
in this model since LXR-a is not considered any more. of them were supposed to be positive during the experi-

Hence, the essential balance on LXR-a on the working mentation, which is confirmed by the analysis. The other
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Table 3

Computation of essential influences on the extended model of the synthesis of fatty acids shown in Fig. 2

Essentially balanced Positive essentially influenced

Negatively essentially
influenced

Not essentially influenced

Data=+ PUFA, CPT1A, LXR,
RAETIC, PPAR
Data=- D6D, SREBF1
No data ACS, ABCALI, D5D, ABCD3, APOE, CD5L,
SCD1 ADAMI1, CYP7AL,

FBXO3, FABP1, HMGCS2,
LPL, MTP, UCP2, VLDL_.TG

ACL, FACE, FDFT1

ACC, FAS, HMGCR, LDLR
APOA2, E.FABPFDPS,
G6PC, GPAM, HMGCS,
MAP2K1, MAP3K1, MEI,
PCSK9, S14, THRSP

ACADVL, ALB, BACH, C18_1_n_9,
FABP1_C18_1.n.9, GK, HMGCS1,
INS, KLK15, PIK3CG, PPARG,
PPAT, PTPRB,RGS16, RPL27,
T0901317, retinoid

The computation suggests that competitions occur in D6D, SREBP, ACS, ABCA1, D5D and SCD1. Moreover, the competition should incline in
the negative direction in D6D and SREBP. The computation also suggests that the data about ACL, FACE and FDFT1 have to be corrected. Finally,
the computation suggests that ACS, ABCA1, D5D and SCD1 either incline in the positive direction, or collect a competition process. Similarly,
ABCD3, APOE, CD5L, ADAM11, CYP7A1, FBXO3, FABP1, HMGCS2, LPL, MTP, UCP2 and VLDL_TG either incline in the negative direction,

or collect a competition process.

12 products collect only positive influences, meaning
that either they are balanced, or they incline in the posi-
tive direction.

Nineteen products collect only negative pure influ-
ences. Among them, ACL, FACE and FDFT1 were
supposed to incline in the positive direction during the
experimentation. We suspect that there is an error in the
data.

Nothing can be said about the 17 products that do not
collect eseential influence.

6.3. Backward—forward algorithm on a corrected
set of data

The backward—forward algorithm on the set of data
stated that the set of data was not compatible with the
model. The computation of essential balances suggested
that the data on ACL, FACE and FDFT1 were false.
Hence, we propose as a new set of data the following
set:

PUFA, CPT1A, LXR, RAETI1C, PPAR
[—] D6D, SREBF1, ACC, FAS, HMGCR, LDLR,
ACL, FACE, FDFT1

Then the backward—forward algorithm terminates so
that this set of data is compatible.

Finally, the backward—forward algorithm states that
the inclinaison of nonobserved values suggested by the
essential balanced algorithm is compatible with the inter-
action graph.

[+] PUFA, CPT1A, LXR, RAETIC, PPAR, ACS, ABCAL,
D5D, SCD1, ABCD3, APOE, CD5L, ADAM11, CYP7A1,
FBXO3, FABP1, HMGCS2, LPL, MTP, UCP2, VLDL_TG

[—] D6D, SREBF1, ACC, FAS, HMGCR, LDLR, ACL, FACE,
FDFT1

7. Remarks and conclusion

In this paper we have discussed how a qualitative theo-
retical model of a mixed gene and metabolic network can
be confronted to DNA-microarray and metabolic data.

Using a differential description of dynamics we have
obtained quantitative equations connecting the theoret-
ical variations of genes and metabolic products to the
changes of the external conditions. In their linear ver-
sion, that connects small variations of genes and prod-
ucts, these equations are analogous to the discrete linear
Laplace equations on graphs that have been studied in the
context of Markov chains (Chung and Yau, 2000; Soardi,
1994; Campanino and Petritis, 2003). In order to calcu-
late the variations we have to compute the matrix inverse
of the Jacobian of the differential dynamical system. This
matrix inverse is in fact the discrete Green function of the
problem. Contrary to (Chung and Yau, 2000) we have
not searched for explicit formulas for the Green func-
tion (difficult to obtain for irregular graphs), but we have
emphasized how one node collects influences from the
other nodes. A similar path representation of the Green
function is used in statistical mechanics (Campanino and
Petritis, 2003).

We have extended the quantitative equations to the
case of large variations of the products and we have
established general linear qualitative equations that are
valid both for small and large variations. The validity of
the approach relies on uniform signs of the interaction
coefficients (elements of the Jacobian) within the range
of the experimental conditions.

We have introduced the graph valuation algorithm
that can reduce or solve the qualitative system. The com-
putation rules are not those of usual linear spaces, but
belong to the sign algebra.
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When the qualitative system is incompatible, it is
generally difficult to propose corrections. When it is
compatible, we may obtain many solutions. For this rea-
son we have also introduced a complementary approach
which is the study of competitions. This approach
treats all nodes on equal footing. It does not prove
incompatibilities, but it identifies biologically impor-
tant competition processes and the places where they
occur.

The analysis of the examples taken from the regu-
lation of lipogenesis suggests that this type of methods
could be used to optimize experimental protocols. The
optimization criteria are not formalized here. Neverthe-
less, as a general rule, if a node is observed we would
like to have observations as complete as possible on
its predecessors. In the working example, SCAP is not
observed. Instead, we have predicted the sign of its vari-
ation. The experimental knowledge of SCAP variation
would further facilitate the localization of the discovered
incompatibility between interaction and data.
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Appendix A. Proofs

g;l < —C it follows that

forany fixed X®, F;(X;, X) depends monotonically on
X;. Furthermore, F; becomes negative for large enough
X;. Asitis positive for X; = 0, by the intermediate value
theorem it vanishes somewhere. Eq. (3) has an unique
solution X; = @;(X®) for any X, The differential of
®; follows from the implicit function theorem. ]

Proof of Theorem 3.4. From Eq. (7) it follows:

. IF;
§X; = _Z B Z aT(ZSX’“ (22)
jeé keTinG

Proof of Property 3.2. From

where B= A",

Let us consider the following well-known property of
the inverse matrix (Bloom, 1979):
Ayt = (it D

detA
where M;; is the minor obtained by deleting line i and
column j in matrix A.

(23)

Furthermore, it is a simple exercise (Bloom, 1979) to
show that:

DY [(—1)’1‘“’>ia,-«,>,-det2x(jvﬂ ifi # j

Mji = o U
detA(/‘)C ifi = j.

(24)

where j~»i is any path leading from j to i with no loop,
lj~>; the length of the path, aj~; the product of ele-
ments of A along this path, A( j~i) is the principal minor
defined by the set of indices complementary to those in
the path. Conventionally, detﬁcoc = 1 (determinant of
the empty matrix).

Using Eqgs. (23) and (24) it follows:

detfﬁ ne 0F;
8Xi = — E El} Z(SXk— E E
Py detA 0Xi ~ =,
€ jeG, j#i’t

. detfﬁ{ i~sife OF;
% § ’ —)rig o —— T T sy
l ( T deth 09X
keTG

We can identify in the sum the contributions of direct
(one arc) and indirect (at least two arcs) paths from the
boundary to the interior. Thus:

indirect Qjr direct a (k i)
N 3

Y |3 e 3 o
keTinG L k~oi RO Ty i

from which it follows Eq. (8). (I

Proof of Theorem 3.6. The existence of a solution of
the nonlinear Dirichlet problem Eq. (9) is a rather stan-
dard mathematical result based on Egs. (10) and (11)
(Radulescu et al., 2005). The uniqueness of such a solu-
tion follows from the absence of positive loops in the
interior of G (Thomas’s conjecture proven in (Soulé,
2003)). Thus, the unique solution of Eq. (9) can be repre-
sented as a function Xg = @¢(X ). The differential of
@ is the solution of the linear Dirichlet problem, given
by Eq. (8). Integrating this differential on the segment
connecting X1, X2 and passing to sign algebra we find
Eq. (12). We also need the fact that all internal moduli are
positive which by Property 3.5 follows from the absence
of positive loops. g

Proof of Property 3.5. If there are no positive loops,
then it can be shown (see Soulé (Soulé, 2003)) that the
signs of the principal minors of the Jacobian det A are
alternating. Thus:

sign(det Aje) = (—1)*¢~!
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sign(det A(j«»,')c) — (—1)#C—lroi—l

sign(A ;;) = sign(aj;) = —1

from which it follows that all the moduli are
positive. U

Proof of Property 5.1. If P= j~i=(j, j1,...,10)
contains an intermediate node ji that is connected to
the exterior, then for every subgraph G, ji belongs to the
boundary of G, hence P ¢ PGc.

Conversely, if P contains no intermediate node con-
nected to the exterior £ let G = {jo = J, j1,---» Ju =
i} Ug<k<n pred(jx)}. Then P € PGO, j € 1"G, hence
P € P(M).

In order to prove the second part of the Property,
Theorem 3.6 can be applied to G. ]
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