Robust Controller Synthesis in Timed Büchi Automata: A Symbolic Approach

Damien Busatto-Gaston

Aix-Marseille Université, LIS

April 4, 2019

joint work with Benjamin Monmege, Pierre-Alain Reynier and Ocan Sankur

Real-time requirements/environment \implies real-time controller

Real-time requirements/environment \implies real-time controller

$\label{eq:Real-time requirements/environment} \Longrightarrow \mbox{ real-time controller} \\ Two-player \mbox{ timed game}$

¹By Maximilian Dörrbecker (Chumwa), CC BY-SA 2.5

Timed Automata

Timed Automaton

Timed Automaton

Train Control as a Timed Automaton

Train Control as a Timed Automaton [900,1000] Station 0 [200,300] [200,300] Station 3 Station 1 \mathcal{A} [200,300] [200,300] Station 2

6/27

Büchi on a finite graph

Finding a path that goes through winning vertices infinitely often ⇔ Finding a winning lasso around one of the targets

start
$$\rightarrow \ell_0$$
 ρ_1 ρ_2

Double BFS algorithm

- First BFS from $\ell_0 \rightsquigarrow$ find all reachable ℓ_f
- From each such ℓ_f , launch a second BFS \rightsquigarrow look for loops around ℓ_f

Regions

Regions

Regions

Region: set of time-abstract bissimilar points

- finite number of regions
- exponential in the number of clocks

Region Automaton

Region Automaton

Region Automaton

Exponential blowup in the size of $\ensuremath{\mathcal{A}}$

Complexity results

- Reachability in a timed automaton: PSPACE-complete[Alur and Dill, 1994]
- \blacktriangleright \Rightarrow Büchi emptiness is also **PSPACE**-complete

Complexity results

- Reachability in a timed automaton: PSPACE-complete[Alur and Dill, 1994]
- \blacktriangleright \Rightarrow Büchi emptiness is also **PSPACE**-complete
- algorithms based on regions are not amenable to implementation
 - $\blacktriangleright\,$ train example: $\sim 10^{6}$ regions
 - \blacktriangleright after rescaling: $\sim 10^4$ regions

Zones

 $1 \leqslant x < 3$ \land $1 \leqslant y < 3$ \land x - 1 < y < x + 1

Zones vs regions

Zones vs regions

- ▶ 60 million regions
- ► 3 zones

Zones vs regions

- ▶ 60 million regions
- 3 zones

Zone Graph:

Double BFS on the Zone Graph

Double BFS algorithm

- First BFS from $(\ell_0, \mathbf{0}) \rightsquigarrow$ find all reachable (ℓ_f, Z)
- From each such ℓ_f , launch a second BFS \rightsquigarrow look for loops around ℓ_f
- For every such ρ_2 , compute the largest infinitely iterable zone Z'
- check if Z and Z' have an intersection

Checking iterability of a loop

Fixed point reformulation

The loop ρ is infinitely iterable sarting from valuations in νX . $Pre_{\rho}(X)$

Checking iterability of a loop

Fixed point reformulation

The loop ρ is infinitely iterable sarting from valuations in νX . $Pre_{\rho}(X)$

Fixed Point computation

Let ρ be a path. We let $N = 2(n+1)^2$. If $\operatorname{Pre}_{\rho^{N+1}}(\top) \subsetneq \operatorname{Pre}_{\rho^N}(\top)$, then $\nu X \operatorname{CPre}_{\rho}^{\delta}(X) = \emptyset$.

Idea: pumping argument on a structure that represent the reachability relation for valuations

► For a sequence of transitions ρ , $R_{\rho} = \{(\nu, \nu') | (\ell, \nu) \xrightarrow{\rho} (\ell', \nu')\}$

- ▶ For a sequence of transitions ρ , $R_{\rho} = \{(\nu, \nu') | (\ell, \nu) \xrightarrow{\rho} (\ell', \nu')\}$
- $\blacktriangleright \text{ Example: } \rho = \ell_1 \xrightarrow{2 < y < 3, y := 0} \ell_2 \xrightarrow{x < 2, x := 0} \ell_1$
- R_{ρ} can be expressed with linear inequalities: $(x, y)R_{\rho}(x', y'): x' = 0, y' < 2 - x, y < 3, y' - y < -x$
- Not a zone : constraints can involve 3 or 4 clocks

- Example: $\rho = \ell_1 \xrightarrow{2 < y < 3, y := 0} \ell_2 \xrightarrow{x < 2, x := 0} \ell_1$
- R_{ρ} can be expressed with linear inequalities: $(x, y)R_{\rho}(x', y'): x' = 0, y' < 2 - x, y < 3, y' - y < -x$
- Not a zone : constraints can involve 3 or 4 clocks
- Efficient representations as Constraint Graphs: express constraints on the last date of reset of clocks and not on their values
- ► Add a global clock τ , and rewrite constraints, st $(x, y)R_{\rho}(x', y')$: $\exists \tau \leq \tau', (\tau' - x') - (\tau' - 0) = 0, (\tau' - y) - (\tau' - 0) \leq 0, (\tau' - 0) - (\tau - x) < 2, (\tau - 0) - (\tau' - y') \leq 0, (\tau - y) - (\tau' - y') < -2, (\tau' - y') - (\tau - y) < 3, (\tau - x) - (\tau - 0) \leq 0$

• Example:
$$\rho = \ell_1 \xrightarrow{2 < y < 3, y := 0} \ell_2 \xrightarrow{x < 2, x := 0} \ell_1$$

 Efficient representations as Constraint Graphs: express constraints on the last date of reset of clocks and not on their values

• Example:
$$\rho = \ell_1 \xrightarrow{2 < y < 3, y := 0} \ell_2 \xrightarrow{x < 2, x := 0} \ell_1$$

- Efficient representations as Constraint Graphs: express constraints on the last date of reset of clocks and not on their values
- ► Enables fast composition of relations: R_{ρ1} ∘ R_{ρ2} = R_{ρ1} · ρ2

Robust Büchi

Perturbation Game $\mathcal{G}(\mathcal{A})^{\delta}$

- 2 Players: Controller and Environment
- ▶ Arena: a Timed Automaton A
- Controller chooses delays and transitions to be taken
- \blacktriangleright Environment can nudge the delays by adding $\varepsilon \in [-\delta,+\delta]$
- Objective for Controller: Büchi condition
- Objective for Environment: Controller loses

Robust Büchi

Perturbation Game $\mathcal{G}(\mathcal{A})^{\delta}$

- > 2 Players: Controller and Environment
- Arena: a Timed Automaton \mathcal{A}
- Controller chooses delays and transitions to be taken
- \blacktriangleright Environment can nudge the delays by adding $\varepsilon \in [-\delta,+\delta]$
- Objective for Controller: Büchi condition
- Objective for Environment: Controller loses

Robust Büchi decision problem

Given A, does there exists $\delta > 0$ such that Controller has a winning strategy in $\mathcal{G}(A)^{\delta}$?

Robust Büchi

Perturbation Game $\mathcal{G}(\mathcal{A})^{\delta}$

- 2 Players: Controller and Environment
- Arena: a Timed Automaton \mathcal{A}
- Controller chooses delays and transitions to be taken
- \blacktriangleright Environment can nudge the delays by adding $\varepsilon \in [-\delta,+\delta]$
- Objective for Controller: Büchi condition
- Objective for Environment: Controller loses

Robust Büchi decision problem

Given A, does there exists $\delta > 0$ such that Controller has a winning strategy in $\mathcal{G}(A)^{\delta}$?

Robust controller synthesis

Given A, construct a strategy for Controller that will win in $\mathcal{G}(\mathcal{A})^\delta$ for an arbitrarily small $\delta>0$

- Robust Büchi is PSPACE-complete [Bouyer, Markey, Reynier, and Sankur, 2013]
- proof heavilly relies on regions
- Search for robust aperiodic cycles in the region abstraction
- notion of folded orbit graph (FOG)

 Robust Büchi is PSPACE-complete [Bouyer, Markey, Reynier, and Sankur, 2013]

- proof heavily relies on regions
- Search for robust aperiodic cycles in the region abstraction
- notion of folded orbit graph (FOG)

- Robust Büchi is PSPACE-complete [Bouyer, Markey, Reynier, and Sankur, 2013]
- proof heavilly relies on regions
- We want to solve this with zone-based techniques

Finding robust lassos

Double BFS algorithm

- First BFS from $(\ell_0, \mathbf{0}) \rightsquigarrow$ find all reachable (ℓ_f, Z)
- From each such ℓ_f , launch a second BFS \rightsquigarrow look for loops around ℓ_f
- when a lasso $\rho_1 \rho_2^{\omega}$ is found, check if it is robust
- If not, keep going

Checking robustness of a path

- Pre_ρ(Z):the largest zone that reaches Z when one follows ρ (no perturbation)
- Shrink^δ(Z): set of valuation that can ensure being in Z after perturbation in [−δ, +δ]

Checking robustness of a path

- ▶ Pre_ρ(Z):the largest zone that reaches Z when one follows ρ (no perturbation)
- Shrink^δ(Z): set of valuation that can ensure being in Z after perturbation in [−δ, +δ]

CPre^δ_ρ(Z):the largest zone where Controller can ensure reaching Z by following ρ in G(A)^δ

Checking robustness of a path

- Pre_ρ(Z):the largest zone that reaches Z when one follows ρ (no perturbation)
- Shrink^δ(Z): set of valuation that can ensure being in Z after perturbation in [−δ, +δ]
- CPre^δ_ρ(Z):the largest zone where Controller can ensure reaching Z by following ρ in G(A)^δ
- δ is not fixed, $\operatorname{CPre}_{\rho}^{\delta}(Z)$ is represented as a **Shrunk DBM**

Checking robustness of a lasso

Fixed point reformulation

The lasso $\rho_1 \rho_2^{\omega}$ is robustly iterable iff $\mathbf{0} \in \mathsf{CPre}_{\rho_1}^{\delta}(\nu X \ \mathsf{CPre}_{\rho_2}^{\delta}(X))$?

Checking robustness of a lasso

Fixed point reformulation

The lasso $\rho_1 \rho_2^{\omega}$ is robustly iterable iff $\mathbf{0} \in \mathsf{CPre}_{\rho_1}^{\delta}(\nu X \ \mathsf{CPre}_{\rho_2}^{\delta}(X))$?

Fixed Point computation

Let ρ be a path and δ be a non-negative rational number. We let $N = 2(n+1)^2$. If $\operatorname{CPre}_{\rho^{N+1}}^{\delta}(\top) \subsetneq \operatorname{CPre}_{\rho^{N}}^{\delta}(\top)$, then $\nu X \operatorname{CPre}_{\rho}^{\delta}(X) = \emptyset$.

Idea: pumping argument on a structure that represent the reachability relation for valuations in the perturbation game

Branching constraint graph

Idea: pumping argument on a structure that represent the reachability relation for valuations in the perturbation game

Stopping the BFS

using zone inclusion is not complete

- ► solution: keep track of the whole reachability relation *R* along paths $(\ell_f, \nu) R_\rho(\ell_1, \nu')$
- check for inclusion of R_{ρ_1} into R_{ρ_2}
- This can be done with constraint graphs!

Checking equality/inclusion of relations

• from constraint graph to polyhedra in \mathbb{R}^{2n} ?

•
$$\bigwedge_{i,j',k',l} -i + k' - j' + l \leq \min(c_1 + c_2, c_3 + c_4)$$

• constraint graph \Rightarrow canonical representation of R in $O(n^4)$

Our results

Robustness of a lasso

We can solve the robust controller synthesis problem for a given lasso in time complexity polynomial in the number of clocks and in the length of the lasso.

Maximal perturbation of a robust lasso

We can compute the largest admissible perturbation of a lasso.

Robustness of a lasso

We can solve the robust controller synthesis problem (for Büchi) using zone exploration techniques.

Conclusion

Implementation

- Prototype tool based on TChecker and UPPAAL's DBM Library
- Can handle small instances of the train example
 - 2 trains: up to 30 stations
 - 4 trains: up to 6 stations
 - \blacktriangleright \rightarrow about 10^3 locations in the associated timed automaton

Possible improvements

- Smarter Büchi algorithm
- Run explorations in parallel
- Extrapolation techniques to remove the bounded clocks requirement