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Motivation: real-time synthesis

Environment ‖ Controller?? |= Spec

Arena ‖ Environment’s strategy ‖ Controller’s strategy?? |= Büchi

Two-player game

Real-time requirements/environment =⇒ real-time controller
Two-player timed game
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Example: Train Control

1

1By Maximilian Dörrbecker (Chumwa), CC BY-SA 2.5
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https://commons.wikimedia.org/w/index.php?curid=6799961
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Example: Train Control
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Timed Automata
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Timed Automaton

Finite set of clocks : {x} Global invariant x ∈ [0, 3]

`1

start
`2

�

`3

`4

`5

x 6 2
x := 0

x > 1 x > 2

x 6 1
x := 0

x > 1
x := 0x := 0
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x 6 2
x := 0

x > 1 x > 2

x 6 1
x := 0

x > 1
x := 0x := 0

(`2, x = 0) 1.4−−−−−→ (`2, x = 1.4) `2→`3−−−−−→ (�, x = 1.4)→ · · ·
time elapse transition
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Train Control as a Timed Automaton

`0

start

`1

`2

`3

200 6 x 6 300
900 6 y 6 1000
x := 0; y := 0

200 6 x 6 300
x := 0

200 6 x 6 300
x := 0

200 6 x 6 300
x := 0Büchi objective

A
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Train Control as a Timed Automaton
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[200,300] Station 0

[900,1000]
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Büchi on a finite graph

Finding a path that goes through winning vertices infinitely often
⇔ Finding a winning lasso around one of the targets

`0start `fρ1
ρ2

Double BFS algorithm
I First BFS from `0  find all reachable `f

I From each such `f , launch a second BFS  look for loops around `f
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Regions

Valuations (x = · · · , y = · · · ) ⇔ Points of R2
>0

x

y

1 2

1

2

• •
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Regions

x

y

1 2

1

2

•

Region: set of time-abstract bissimilar points
I finite number of regions
I exponential in the number of clocks
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Region Automaton

`0 `1

`2 `3

`4

`t

0 < x < 1
x := 0

y < 2
1 < x < 2

y := 0

1 < x < 2
x := 0 y = 1

y := 0 x = 1

1 < x < 2, y < 1
x := 0

y = 0
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Region Automaton
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Region Automaton
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Exponential blowup in the size of A
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Complexity results

I Reachability in a timed automaton: PSPACE-complete[Alur and
Dill, 1994]

I ⇒ Büchi emptiness is also PSPACE-complete

I algorithms based on regions are not amenable to implementation
I train example: ∼ 106 regions
I after rescaling: ∼ 104 regions
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Zones

x

y

1 2 3

1

2

3
Difference Bound Matrix (DBM)

0 x y( )0 6 0 6 −1 6 −1
x < 3 6 0 < 1
y < 3 < 1 6 0

1 6 x < 3 ∧ 1 6 y < 3 ∧ x − 1 < y < x + 1
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Zones vs regions

`0start `1 `2
x < 10 ms x > 1 week

I 60 million regions
I 3 zones

Zone Graph:

(`0, 0)start (`1, {x < 1}) (`2, {x > 6 ∗ 107})
x < 1 x > 6 ∗ 107
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Double BFS on the Zone Graph

(`0, 0)start (`f ,Z )

(`f ,Z ′)

ρ1

ρ2

Double BFS algorithm
I First BFS from (`0, 0)  find all reachable (`f ,Z )
I From each such `f , launch a second BFS  look for loops around `f

I For every such ρ2, compute the largest infinitely iterable zone Z ′

I check if Z and Z ′ have an intersection
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Checking iterability of a loop

Fixed point reformulation
The loop ρ is infinitely iterable sarting from valuations in νX . Preρ(X )

Fixed Point computation
Let ρ be a path. We let N = 2(n + 1)2. If PreρN+1(>) ( PreρN (>), then
νX CPreδρ(X ) = ∅.

Idea: pumping argument on a structure that represent the reachability
relation for valuations
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Reachability relation of a path

I For a sequence of transitions ρ, Rρ = {(ν, ν′)|(`, ν) ρ−→ (`′, ν′)}
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Reachability relation of a path

I For a sequence of transitions ρ, Rρ = {(ν, ν′)|(`, ν) ρ−→ (`′, ν′)}
I Example: ρ = `1

2<y<3,y :=0−−−−−−−→ `2
x<2,x :=0−−−−−−→ `1

I Rρ can be expressed with linear inequalities:
(x , y)Rρ(x ′, y ′) : x ′ = 0, y ′ < 2− x , y < 3, y ′ − y < −x

I Not a zone : constraints can involve 3 or 4 clocks
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(x , y)Rρ(x ′, y ′) : x ′ = 0, y ′ < 2− x , y < 3, y ′ − y < −x

I Not a zone : constraints can involve 3 or 4 clocks
I Efficient representations as Constraint Graphs: express constraints

on the last date of reset of clocks and not on their values
I Add a global clock τ , and rewrite constraints, st (x , y)Rρ(x ′, y ′) :
∃τ 6 τ ′, (τ ′ − x ′)− (τ ′ − 0) = 0, (τ ′ − y)− (τ ′ − 0) 6
0, (τ ′ − 0)− (τ − x) < 2, (τ − 0)− (τ ′ − y ′) 6 0, (τ − y)− (τ ′ − y ′) <
−2, (τ ′ − y ′)− (τ − y) < 3, (τ − x)− (τ − 0) 6 0
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Reachability relation of a path

I Example: ρ = `1
2<y<3,y :=0−−−−−−−→ `2

x<2,x :=0−−−−−−→ `1

I Efficient representations as Constraint Graphs: express constraints
on the last date of reset of clocks and not on their values

τ − 0

τ − x

τ − y

◦

◦

◦

◦

◦

◦

τ ′ − 0

τ ′ − x ′

τ ′ − y ′

6 0

6 0
6 0

< 2

< 3

< −2

6 0 6 0
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Reachability relation of a path

I Example: ρ = `1
2<y<3,y :=0−−−−−−−→ `2

x<2,x :=0−−−−−−→ `1

I Efficient representations as Constraint Graphs: express constraints
on the last date of reset of clocks and not on their values

I Enables fast composition of relations: Rρ1 ◦ Rρ2 = Rρ1·ρ2

X0

X1

X2
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◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

(<, 0)
(6, 2)

(<, 0)

(6,−2)

`1
R1 `2

R2 `1
R3 `2

R4 `1

X `
0

X `
1

X `
2

◦

◦

◦

◦

◦

◦

X r
0

X r
1

X r
2

R1 ◦ R2 ◦ R3 ◦ R4
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Robustness
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Robustness
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[200,300][200,300]

[200,300] Station 0

[900,1000]

Station 1

Station 2

[950,975]

Station 3 Robust Büchi
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Robustness
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Robustness

[200,300]

[200,300][200,300]

[200,300] Station 0

[900,1000]

Station 1

Station 2

[800,900]

Station 3 Büchi but not robust

17/27



Robust Büchi

Perturbation Game G(A)δ

I 2 Players: Controller and Environment
I Arena: a Timed Automaton A
I Controller chooses delays and transitions to be taken
I Environment can nudge the delays by adding ε ∈ [−δ,+δ]
I Objective for Controller: Büchi condition
I Objective for Environment: Controller loses

Robust Büchi decision problem
Given A, does there exists δ > 0 such that Controller has a winning
strategy in G(A)δ?

Robust controller synthesis
Given A, construct a strategy for Controller that will win in G(A)δ for an
arbitrarily small δ > 0
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Existing work

I Robust Büchi is PSPACE-complete [Bouyer, Markey, Reynier, and
Sankur, 2013]
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Existing work

I Robust Büchi is PSPACE-complete [Bouyer, Markey, Reynier, and
Sankur, 2013]

I proof heavilly relies on regions

I We want to solve this with zone-based techniques
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Finding robust lassos

(`0, 0)start (`f ,Z )

(`f ,Z ′)

ρ1

ρ2

Double BFS algorithm
I First BFS from (`0, 0)  find all reachable (`f ,Z )
I From each such `f , launch a second BFS  look for loops around `f

I when a lasso ρ1ρ
ω
2 is found, check if it is robust

I If not, keep going

20/27



Checking robustness of a path

I Preρ(Z ):the largest zone that reaches Z when one follows ρ (no
perturbation)

I Shrinkδ(Z ): set of valuation that can ensure being in Z after
perturbation in [−δ,+δ]

I CPreδρ(Z ):the largest zone where Controller can ensure reaching Z
by following ρ in G(A)δ

I δ is not fixed, CPreδρ(Z ) is represented as a Shrunk DBM

0 x y( )0 6 0 6 −1− δ 6 −1− δ
x < 3− δ 6 0 < 1
y < 3− δ < 1 6 0
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Checking robustness of a lasso

Fixed point reformulation
The lasso ρ1ρ

ω
2 is robustly iterable iff 0 ∈ CPreδρ1

(νX CPreδρ2
(X ))?

Fixed Point computation
Let ρ be a path and δ be a non-negative rational number. We let
N = 2(n + 1)2. If CPreδρN+1(>) ( CPreδρN (>), then νX CPreδρ(X ) = ∅.

Idea: pumping argument on a structure that represent the reachability
relation for valuations in the perturbation game
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Branching constraint graph
Idea: pumping argument on a structure that represent the reachability
relation for valuations in the perturbation game

◦X0

◦X1

◦X2

◦

◦

◦

G>δ
time

< −δ

◦

◦

◦

◦

◦

◦

Gδ
shrink

Gx162,{x1}
edge

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

G>δ
time

◦
◦

◦

◦
◦

◦

Gδ
shrink

Gx2>2,{x2}
edge

◦
◦

◦

◦
◦

◦

◦
◦

◦
Z

◦
◦

◦
Z

◦
◦

◦
Z

◦
◦

◦
Z

i j

r1

r2

r3

r4

r5
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Stopping the BFS

I using zone inclusion is not complete

(`f ,Z )

start

(`1,Z ′)

ρ1

ρ2

ρ3

I solution: keep track of the whole reachability relation R along paths
(`f , ν)Rρ(`1, ν

′)
I check for inclusion of Rρ1 into Rρ2

I This can be done with constraint graphs!
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Checking equality/inclusion of relations

τ − l

τ − i

◦

◦

◦

◦

◦

◦

τ ′ − k ′

τ ′ − j ′

c1

c2

c3

c4

τ − 0

τ − x

τ − y

◦

◦

◦

◦

◦

◦

τ ′ − 0

τ ′ − x ′

τ ′ − y ′

I from constraint graph to polyhedra in R2n ?
I

∧
i,j′,k′,l

−i + k ′ − j ′ + l 6 min(c1 + c2, c3 + c4)

I constraint graph ⇒ canonical representation of R in O(n4)
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Our results

Robustness of a lasso
We can solve the robust controller synthesis problem for a given lasso in
time complexity polynomial in the number of clocks and in the length of
the lasso.

Maximal perturbation of a robust lasso
We can compute the largest admissible perturbation of a lasso.

Robustness of a lasso
We can solve the robust controller synthesis problem (for Büchi) using
zone exploration techniques.
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Conclusion

Implementation

I Prototype tool based on TChecker and UPPAAL’s DBM Library
I Can handle small instances of the train example

I 2 trains: up to 30 stations
I 4 trains: up to 6 stations
I → about 103 locations in the associated timed automaton

Possible improvements

I Smarter Büchi algorithm
I Run explorations in parallel
I Extrapolation techniques to remove the bounded clocks requirement
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