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|[Environment| || |Controller??| = Spec
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Two-player game

Real-time requirements/environment = real-time controller
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Example: Train Control
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https://commons.wikimedia.org/w/index.php?curid=6799961
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Timed Automata
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Timed Automaton

Finite set of clocks : {x} Global invariant x € [0, 3]
x <1 x>1

x:=0 x:=0 x:=0
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Timed Automaton

Finite set of clocks : {x} Global invariant x € [0, 3]

x <1 x>1
x:=0 x:=0 x:=0

(l2,x =0) SR BN (b2, x = 1.4) %(/,X: 1.4) — -

time elapse transition

5/27



Train Control as a Timed Automaton

start

200 < x < 300
900 < y < 1000
x:=0;y:=0
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Train Control as a Timed Automaton
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Train Control as a Timed Automaton
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Blichi on a finite graph

Finding a path that goes through winning vertices infinitely often
< Finding a winning lasso around one of the targets

IO S ) et

Double BFS algorithm

» First BFS from ¢ ~~ find all reachable ¢
» From each such /¢, launch a second BFS ~~ look for loops around /¢
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Regions
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Regions
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Regions

> X

1 2

Region: set of time-abstract bissimilar points
> finite number of regions

» exponential in the number of clocks
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Region Automaton
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Region Automaton
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Region Automaton
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Complexity results

» Reachability in a timed automaton: PSPACE-complete[Alur and
Dill, 1994]

» = Biichi emptiness is also PSPACE-complete
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Complexity results

» Reachability in a timed automaton: PSPACE-complete[Alur and
Dill, 1994]

» = Biichi emptiness is also PSPACE-complete

» algorithms based on regions are not amenable to implementation

> train example: ~ 10° regions
> after rescaling: ~ 10* regions
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y
3
Difference Bound Matrix (DBM)

2 0 X y

0 /<0 <-1 <-1

x<<3 <0 <1>
1 y \<3 <1 <0

> X

1<x<3 AN 1I<y<3 AN x—-1<y<x+1
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Zones vs regions

start —{ (g @ @
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Zones vs regions

start —{ (g @ @
x <1 U x> 6x%107

» 60 million regions

» 3 zones

Zone Graph:

start —»| 61,{X< 1}) U, {x > 6% 107
‘ preryeTae il D
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Double BFS on the Zone Graph

start o @
L

Double BFS algorithm
» First BFS from (£y,0) ~> find all reachable (¢f, Z)

» From each such /¢, launch a second BFS ~~ look for loops around /¢
» For every such p, compute the largest infinitely iterable zone Z’

» check if Z and Z’ have an intersection
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Checking iterability of a loop

Fixed point reformulation
The loop p is infinitely iterable sarting from valuations in vX. Pre,(X)
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Checking iterability of a loop
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Fixed point reformulation
The loop p is infinitely iterable sarting from valuations in v.X. Pre,(X)

Fixed Point computation
Let p be a path. We let N = 2(n+ 1)2. If Pre u:1(T) C Pre,n(T), then
vX CPreg(X) = 0.

Idea: pumping argument on a structure that represent the reachability
relation for valuations



Reachability relation of a path

» For a sequence of transitions p, R, = {(v,")|(¢,v) & (¢,v)}
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Reachability relation of a path

v

For a sequence of transitions p, R, = {(v,')|({,v) & (¢',1)}
2<y<3,y:=0
2 2

R, can be expressed with linear inequalities:
COYIR(Xy') X' =0,y <2—x, y<3,y —y <—x

x<2,x:=0

v

Example: p = {4

v

» Not a zone : constraints can involve 3 or 4 clocks
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Reachability relation of a path

2<y<3,y:=0 x<2,x:=0

4 40

> R, can be expressed with linear inequalities:
COYIR(Xy') s X' =0,y <2—x, y<3, ¥y —y <—x

> Example: p=4;

» Not a zone : constraints can involve 3 or 4 clocks

» Efficient representations as Constraint Graphs: express constraints
on the last date of reset of clocks and not on their values

> Add a global clock 7, and rewrite constraints, st (x, y)R,(x",y’) :
S < (= x) = (7 = 0) =0, (7' —y) — (7'~ 0) <
0, (7"-0)—(r—x)<2, (1=0)— (7" —=y") <0, (t—y)— (7 —y) <
=2, (7" =y)—(r—y)<3, (t—x)—(r—0) <0
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Reachability relation of a path

2<y<3,y:=0 x<2,x:=0

4o 0

» Efficient representations as Constraint Graphs: express constraints
on the last date of reset of clocks and not on their values
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> Example: p=4{;
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Reachability relation of a path

2<y<3,y:=0 x<2,x:=0

4 0

» Efficient representations as Constraint Graphs: express constraints
on the last date of reset of clocks and not on their values

> Example: p=4{;

> Enables fast composition of relations: R, o R,, = R,,.p,

123 Re 4 Ra 123 Re 4y RioRyoR30R,
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Robustness
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Robustness
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Robustness
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Robust Bichi

Perturbation Game G(A)°

2 Players: Controller and Environment

Arena: a Timed Automaton A

Controller chooses delays and transitions to be taken
Environment can nudge the delays by adding € € [-§, +4]
Objective for Controller: Biichi condition

vV v v v Vv Y

Objective for Environment: Controller loses
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Perturbation Game G(A)°

2 Players: Controller and Environment

Arena: a Timed Automaton A

Controller chooses delays and transitions to be taken
Environment can nudge the delays by adding € € [-§, +4]
Objective for Controller: Biichi condition

vV v v v Vv Y

Objective for Environment: Controller loses

Robust Biichi decision problem

Given A, does there exists § > 0 such that Controller has a winning
strategy in G(A)°7?

Robust controller synthesis

Given A, construct a strategy for Controller that will win in G(A)° for an
arbitrarily small 6 > 0



Existing work

» Robust Biichi is PSPACE-complete [Bouyer, Markey, Reynier, and
Sankur, 2013]
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Existing work

v

Robust Biichi is PSPACE-complete [Bouyer, Markey, Reynier, and
Sankur, 2013]

v

proof heavilly relies on regions

v

Search for robust aperiodic cycles in the region abstraction
notion of folded orbit graph (FOG)

v
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Existing work

» Robust Biichi is PSPACE-complete [Bouyer, Markey, Reynier, and
Sankur, 2013]

» proof heavilly relies on regions

» We want to solve this with zone-based techniques
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Finding robust lassos

start —> D1 @
w
* %)

Double BFS algorithm
» First BFS from (4y,0) ~~ find all reachable (¢f, Z)

» From each such /¢, launch a second BFS ~~ look for loops around ¢
> when a lasso p1p% is found, check if it is robust

> If not, keep going
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Checking robustness of a path

> Pre,(Z):the largest zone that reaches Z when one follows p (no
perturbation)

> Shrink®(Z): set of valuation that can ensure being in Z after
perturbation in [—4, +]
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Checking robustness of a path
> Pre,(Z):the largest zone that reaches Z when one follows p (no

perturbation)
> Shrink®(Z): set of valuation that can ensure being in Z after

perturbation in [—d, +J]

3\
7

1 2 3

> CPrei(Z):the largest zone where Controller can ensure reaching Z
by following p in G(A)°
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Checking robustness of a path

v

Pre,(Z):the largest zone that reaches Z when one follows p (no
perturbation)

v

Shrink?(Z): set of valuation that can ensure being in Z after
perturbation in [—4, +]

CPref,(Z):the largest zone where Controller can ensure reaching Z
by following p in G(A)°

v

> § is not fixed, CPreZ(Z) is represented as a Shrunk DBM
0 X y
0 <0 <-1-§ <-1-9
x << 3-94 <0 <1 >
y \<3-9¢ <1 <0
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Checking robustness of a lasso

Fixed point reformulation
The lasso p1p§ is robustly iterable iff 0 € CPreil(uX CPreZZ(X))?
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Checking robustness of a lasso
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Fixed point reformulation
The lasso p1p4 is robustly iterable iff 0 € CPreil(VX CPreZZ(X))?

Fixed Point computation

Let p be a path and § be a non-negative rational number. We let
N = 2(n+1)2. If CPredu(T) S CPredu(T), then vX CPre(X) = 0.

Idea: pumping argument on a structure that represent the reachability
relation for valuations in the perturbation game



Branching constraint graph
Idea: pumping argument on a structure that represent the reachability
relation for valuations in the perturbation game
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Stopping the BFS

» using zone inclusion is not complete

start

P1

P2
pr3

» solution: keep track of the whole reachability relation R along paths
(gfv V)Rp(gl’ l/)

> check for inclusion of R, into R,,

» This can be done with constraint graphs!
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Checking equality /inclusion of relations

T — X
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» from constraint graph to polyhedra in R?" ?

» A —i+ kK —j+I<min(a+ e+ a)
i\l ke

» constraint graph = canonical representation of R in O(n*)
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Our results
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Robustness of a lasso

We can solve the robust controller synthesis problem for a given lasso in
time complexity polynomial in the number of clocks and in the length of
the lasso.

Maximal perturbation of a robust lasso
We can compute the largest admissible perturbation of a lasso.

Robustness of a lasso
We can solve the robust controller synthesis problem (for Biichi) using
zone exploration techniques.



Conclusion

Implementation

» Prototype tool based on TChecker and UPPAAL’'s DBM Library

» Can handle small instances of the train example

> 2 trains: up to 30 stations

> 4 trains: up to 6 stations
» — about 10° locations in the associated timed automaton

Possible improvements

» Smarter Biichi algorithm

» Run explorations in parallel
» Extrapolation techniques to remove the bounded clocks requirement
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