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This document presents the most interesting parts of my readings on concept learning
and mining. A concept is in this case a classification of instances between the one that
satisfy its rules (and instantiate the concept) and the one that do not. I focused mainly on
learning methods using finite state machine as models, and oriented my reading towards
the addition of explicit time.

Concept learning seems to motivates works from very different communities, so instead
of trying to organize all of it as a coherent whole, I propose a list of approaches, trying
to give insights and group works based on different features. This is then completed by
a list of articles.

1 Reading Keys

In this section, the papers are organized using 4 lecture keys. First, different applica-
tions are presented. Next, the algorithms are listed, and some emphasis is given to the
theoretical articles and their connections. Eventually, the different kinds of models are
mentioned and compared.

1.1 Applications

1.1.1 Cyber-Physical Production Systems

A cyber-physical production system (CPPS) is a usual component of industrial produc-
tion chains. Being able to efficiently test it, and to detect faults and failures is hence
of the utmost importance for both economical and security reasons. For this reason,
some work as been done in the learning of their specifications [Mai14; MNE15; NL15;
WLN17; MNJ+11; TDH00; CO94]. CPPSs testing has in general been a motivation for
the development of algorithms learning automata from positive examples only. Indeed,
acquiring negative examples is often simply unfeasible or incredibly costly (a word out of
the language is an unfeasible execution of the system). While it has been long proved that
negative examples are necessary to infer the class of regular languages [Gol67], it is also
known that some languages can be learned with probability one [Ang88]. Since this re-
sult, researchers have tried to obtain an efficient algorithm to learn probabilistic automata
from positive examples only. One of the best known algorithms is ALERGIA [CO94].
The idea of this algorithm is first to compute a prefix tree acceptor representing every
available execution, and then to merge some states in a top-down manner (from the root
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to the leafs). Nodes are merged when the sub-tree rooted in them have a similar language
with high probability.

The main limitation of this algorithm is to check only local information in order
to perform the merges. This forbids to obtain a bound on the divergence between the
language depicted in the samples and the obtained one. The algorithm MDI (Minimal Di-
vergence Inference) [TDH00] proposes to correct this by computing the Kullback-Leibler
divergence at each step. The criterion to merge nodes becomes ’is the reduction of the
model interesting enough to suffer the divergence’. It hence tries to balance between
model complexity and entropy, or generalization and precision.

So far, the model learned were probabilistic (deterministic) automata. But as often
with industrial processes, CPPSs have important real-time constraints. For this reason,
researchers have tried to explicitly include time in their models. One of the early at-
tempts is the BUTLA (Bottom Up Timing Learning Algorithm) [MNJ+11], that learns a
probabilistic timed automaton. The merging strategy is bottom-up to avoid the recursive
compatibility checks in the subtrees. The introduction of time motivates the apparition
of a new operator: the split operator, that separates a transition in disjoints timed do-
mains. The authors rely on domain specific knowledge to advocate a split performed to
separate modes in the probability distribution of a transition rather than a difference in
the sub-automata. This idea is re-exploited in [MNE15] to propose a preprocessing of
the data to separate the different modes, suppressing the splitting operation.

All the aforementioned methods are offline. Yet, the modern CPPSs can generate a
great number of data in a very short time, hence motivating the investigation of online
learning algorithms [Mai14]. This forces to adapt the previous techniques, as they all
rely on the construction of the prefix tree acceptor, representing every available samples.
OTALA [Mai14] is an online adaptation of BUTLA, allowing online passive learning
from positive examples only in an incremental way. It learns a deterministic real time
automaton (only one clock, reset at every transition). Notably, it requires a stopping
criterion if the data can be provided in an endless stream. OTALA has next been extended
to a parallel framework [WLN17] by trying to measure the correlation between events in
different components.

[NL15] is to my knowledge the most recent overview of the learning methods for
CPPSs. It identifies 3 key-points for the domain and deduce a research agenda from
them:

• A general learnable model is needed for CPPSs,

• this model should deal with timed and hybrid constraints,

• more work should be done at the level of the component, instead of always focusing
on root causes.

Research leads:

� Modeling should be data-driven (requires a joint work from learning and diagnosis
communities)

� Hybrid models with an explicit modeling of time should be investigated

� The needs of experts should be taken into account, providing symptoms of the
problems atop of the root cause explanation.
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1.1.2 Software Analysis and Test

Software analysis has for long been an important application of formal methods. In the
case of model learning, the specificity of software is that it allows to leverage some black-
box hypotheses by making assumption on the structure of the observed object. One
interesting point is that this specificity can be used to learn more complex models (such
as automata with multiple clocks). There are two main models that can be learned out
of a software

Specification A specification describes what is possible with a given piece of code. It
is supposed to describe every possible behaviors, and probably some of the failing
executions.

Normal use A behavior model of normal use describes how a piece of code (say an
object, or a class) is indeed used. It does not aims completeness, but instead
focuses on what the user indeed does.

These models can be used for a broad range of software engineering tasks, such as gen-
erating test cases, identifying anomalies, detecting inefficiencies or helping debugging.
Different approaches have hence collaborated to obtain formal models of software in a
formal way [PMM17; SNF17; DKM+12; DKM+10; LMP08; BF72; CW98; WML02]. As
for CPPSs, learning is mainly done from positive examples, although exceptions and er-
rors are now considered as part of these positive examples by some papers, making the
approach a bit broader.

One of the earliest works underlying learning for software is the k-Tail algorithm, first
introduced in the 70s from a very theoretic point of view [BF72] as a variation on the
work of Nerode [Ner58]. The algorithm was then reformulated in [CW98] and compared
with two other approaches (based on neural networks and Markov chains) for the learning
of software models. This algorithm proposes to synthesize a model ”locally”, by focusing
on subsets of their behaviors. More precisely, the algorithms compares nodes in two
traces by looking at their ”k-future”, the k next nodes in this execution. If they are
equals, then the nodes are merged. This approach was then extended to models with
parameters [LMP08] with the gk-Tail algorithm and to timed models, with the Timed
k-Tail algorithm [PMM17]. These two algorithm propose to construct intervals between
the values of parameters - clocks that are merged. In the case of Timed k-Tail, it is
interesting to notice that this approach allows to learn a model with multiple clocks
(while still minimizing their number during the construction), mostly designed to target
nested behaviors. It is interesting to notice that the authors propose two different ways
to approximate the guards: by constructing a probability distribution and selecting an
interval with a high probability to include the possible duration of an execution, or simply
by enlarging the interval by a factor ε.

An other interesting approach is proposed in [DKM+10] where the authors propose to
combine test and learning. A first model of the system is generated from the result of a
test suite, and then mutations of the test suite are generated (such that all methods are
called in all states). This allows to enrich the model. This work was then extended to
avoid the need for an initial test suite and generate different types of new tests [DKM+12].
This extension allows to iterate on the learning / testing loop and generate new tests. The
comparison of these methods is performed in the latter article. As they use a coverage
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criterion to direct their tests, the methodology of this work is of great interest to interleave
test and learning even in other frameworks. This approach is implemented in a tool named
TAUTOKO.

Other approaches exists, closer to the abstract interpretation. We will not detail
them here, but two pointers are worth mentioning. A tool named TREM implements
a set of methods to learn regular expressions as specifications [SNF17]. The user can
propose a general scheme, which is then instantiated automatically. This is especially
useful to learn invariants, that are under the focus of a part of the software learning
community. From an other point of view, some approaches propose to combine static
analysis and dynamic learning of finite states machines to learn an API for high level
languages [WML02] (their applications are on JAVA). The authors highlight that both
approaches can obtain different insights on the behavior of a piece of code.

1.1.3 General Specification Mining

Some works are directly focused on specification mining without targeting any given
application. As motivated by the applications, as the one already presented, most spec-
ification mining articles consider passive learning tasks from positive examples. The
ALERGIA [CO94] and MDI [TDH00] algorithms were of those, even if they were pre-
sented earlier to ground the latter algorithms more focused on CPPSs. Same goes for
the Nerode [Ner58] and k-Tail [BF72] algorithms in their first versions on the software
side. Other works exists. [VWW08] describes the general scheme of offline learning of
deterministic real-time automata that is shared by a lot of other works. They propose
to use statistical tests to decide on merges and splits (specifically they reuse the already
used Chi-square test and add a Kolmogorov-Smirnov test to further exploit the timed
information).

The greater distance with the applications pushes these more general articles to get
rid of the implementations in favor of more theoretical analysis. For example, [CT04]
proposes a state merging method based on the Kullback-Leibler divergence to learn a
probabilistic determinist automata, similar as MDI, but review the positive and negative
complexity result and proves with their algorithm that these automata are PAC-learnable
(Probably Approximately Correct learning). We reproduce the definition for KL diver-
gence of [CT04]:

Definition 1.1: PAC learnability

Given a class of stochastic languages or distributions C over Σ∗ , an algorithm
A KL-Probably Approximately Correctly (KL-PAC)-learns C if there is a poly-
nomial q such that for all c in C , all ε > 0 and δ > 0, A is given a sam-
ple Sm and produces a hypothesis H, such that Pr[D(c||H) > ε] < δ whenever
m > q(1/ε, 1/δ, |c|), where |c| is some measure of the complexity of the target
and D(c||H) = Σs∈Smc(s)log(c(s)/H(s)) is the KL-divergencea, with running time
bounded by a polynomial in m plus the total length of the strings in Sm .

ac(s) stands for the probability of the word s in the language of c
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1.1.4 Active Learning

The active learning framework differs greatly from specification mining. It was introduced
by D. Angluin [Ang87] to leverage the restrictions found on learning from random given
samples by Gold [Gol67; Gol78]. The author argues that in a human learning process
you can assume the learner to be ”helpful”, and interacts with the learner. She takes
the example of a human specialist trying to train an expert system. To quantify this
helpfulness would not make a lot of sense, but Angluin proposes a ”minimally adequate
teacher” (MAT) that would be able to answer two types of questions

• Membership queries, where the learner proposes a word. The teacher then replies
yes or no depending on the word being part of the language to learn.

• Equivalence queries correspond to conjectures from the learner, who wants to know
whether or not the model it has learned yields the correct language. The teacher
answers either yes, or provide a counterexample to direct the learner.

This teacher allows Angluin to define the L∗ algorithm, that can learn regular languages.
This algorithm identifies nodes by using Nerode’s congruence. Established as a proof of
concept it was afterward refined to obtain a better data structure [RS89; KV94].

The principal difficulties to obtain a teacher are come from the equivalence queries.
Indeed this requires the teacher to dispose of a model (presumed perfect) of the targeted
language, and to be able to communicate with the learner not only with examples, but
with models, and hence to share a modelling language with it. The author proposes to
use a criterion of approximate identification to replace the ability to answer equivalence
queries by a random sampling oracle.

Learner Teacher

Inclusion ω?

Equivalence L?

result

Y/Counterexample

Figure 1: The active learning framework

Extending the MAT framework, an algorithm to learn a black box input-output system
with active learning has recently been proposed [JV17]. The model used is the one of
mealy machines with timers (with some restrictions on determinism and null delays).
The answers to membership queries correspond to words that are produced from the
provided inputs instead of yes/no answers. The learning uses an equivalence between a
timed and an untimed semantic of mealy machines. This allows to use an untimed learner
on a timed teacher, by the mean of an adapter module. A group of researchers centered
around the Radboud university of Nijmegen (including F. Vaandrager) are working on
the integration of model-based testing in (active) learning methods1, arguing that tests
and learning are complementary tools.

1http://www.sws.cs.ru.nl/Teaching/LearningAndTesting
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Olga Grinchtein’s thesis [Gri08] proposes an other approach to the active learning
of timed systems, this times by focusing on event recording automata (ERAs). The
highlighted interest of this class of TAs is that the set of clocks and their resets are
known. The author proposes algorithms for two kind of models: deterministic ERA
(DERA) and event deterministic ERA (EDERA), that only allow 1 outgoing transition
with a given letter in a given locality.

1.1.5 Miscellaneous

The formal approach to learning is applied in a broad variety of fields, and some (very
partial) pointers are mentioned here. Some researchers have tried to use timed automata
(using UPPAAL) to model ”third generation neurons” [CDD17] targeted to neuro-science
studies. Their main interest was to use the formal models to reproduce behaviors observed
in real neurons, and then connect them to be able to share their impulses. The interest
of the TAs is their ability to accumulate inputs over-time (in a discrete variable) and
”spike” (release an output) according to conditions on both time and accumulated inputs.
Although the proposed models do not manage mimic every kind of neuron behaviors, the
authors seemed to find the results encouraging. The modeling using TAs has replaced
previous ones, that came mostly from analysis (differential equation models and hybrid
models) and statistics (more ’usual’ neural networks).

More closely related to learning, some researchers have tried to use formal learning
to combine learning, abstraction, test and modeling while keeping an expert user in the
center of the acquisition loop. This has been applied to the active learning of large
scale software such as commercial games [XSH+05], which the present the interest to
have a loosely defined ’enjoyability’ goal, that can only be evaluated by experts. This
makes the learned model central for visualization purposes and calls for an interactive
method instead of a monolithic tool. The authors focus on rule-based learning (trying to
learn implications out of a scenario). While the approach and the presence of a working
implementation show the wide applicability of the model learning methods, the article
unfortunately lacks the space to conduct an interesting technical development.

Model learning is also used in medicine. This is not new, with the important use
of Markov’s models. In a recent thesis [Sch13] the modeling is pushed further with the
addition of an explicit modeling of time. The author use probabilistic real time automata
(and subclasses of these) to model the evolution of a disease, taking into account both
timing and discrete (the different symptoms) aspects.

1.2 Algorithms

1.2.1 Overview

This part is focused on the algorithms of the aforementioned articles. They are compared
based on some qualitative criteria in the table Fig. 2 where A/P/pP stands for active
passive or passive from positive examples only learning, and the models abbreviations
refer to A for automata, D for deterministic, P for probabilistic, T for timed, RT for real
time, L for language, R for regular and MM for Mealy machines with timers.

In the table, note that the active learning algorithms are not incremental as a whole,
because they terminate only with a correct model, but the partial hypothesis can be
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Algo On/Off-line A/P/pP Incremental Model Data
ALERGIA Off pP No PDA No

MDI Off pP No PDA No
BUTLA Off pP No PTA No
OTALA On pP Yes PRTA No
k-Tail Off pP No* DA No
gk-Tail Off pP No DA Yes
Tk-Tail Off pP No* TA No

TAUTOKO Off P Yes DA Yes*
TREM Off pP No TL No

L* On A No RL No
[JV17] On A No MMT No

Figure 2: Some of the mentioned algorithms and their characteristic

reused in a incremental way. Similarly the method marked with an asterisk could be
adapted to be incremental.

In TAUTOKO the data are in fact stored in the set of traces and not taken in the
model.

1.2.2 Offline state merging principle

The general principle of the offline passive learning from positive samples algorithms by
state merging - ALERGIA MDI BUTLA on the black box side, the variations on k-Tail
on the software side- is presented, and the two main operations are briefly discussed.

Computation of the PTA Given a finite set S of (finite) words of an unknown
language L, a tree is constructed, generally either as a collection of the traces of S or
its prefix tree acceptor (PTA). The prefix tree acceptor is a deterministic tree simply
recording all the different executions at the same time. An example is given in Fig. 3.
The treatment of the timed component of the behaviours, when it exists, depends on the

start
a

b

a

b

a

Figure 3: PTA for S = {a, b, aaa, aab}

article. Some create a branch for every execution [PMM17], while other construct the
tree without splitting on temporal behaviour and record the clock values on top of it.
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Generalization Once the tree is computed, the model is generalized by merging states
that are ”close”. The way to measure this changes between algorithms. It can be general
(KL divergence...) or local (k-future, subtrees...). In the case of timed models, it is
also important to split merged states with respect to the timing information. This is
generally done according to the differences of observed behaviors for different timing, or
to the different modes of the statistical estimation of the timing.

In Fig. 4, the automaton obtained after a 1-future merge of the PTA displayed in
Fig. 3.

start a

b

a

Figure 4: Automaton obtained after a 1-future merge

1.3 Theoretical results

The complexity of he models that can be learned in the most used settings has been inten-
sively studied. Gold [Gol67] showed that primitive recursive languages can be identified
in the limit by passive learning (with both positive and negative examples) while only
only finite languages can be identified from text (positive examples only) in the limit.

Definition 1.2: Identification in the limit

A language L is said to be identifiable in the limit by a language learnability model
if this models contains an algorithm g that converges in finite time to L if an
allowable training sequence is provided.

The definition of an ”allowable” learning sequence vary depending on the precise
learning framework.

Gold then investigated the learning from a finite set of given data, and found that
DFA learning2 is NP-hard in this framework [Gol78]. Angluin gave a characterization of
the learnability from text [Ang80], and investigated some methods to extend the class of
learnable languages. This led to the active learning and L* algorithm [Ang87] and to the
stochastic learning from text [Ang88].

The PAC framework was first proposed by Valiant in [Val84].
More references can be found in [CT04] for PAC learnability and in [Gri08] for active

learning.

2and minimal DFA learning
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1.4 Models

The theoretical restrictions aforementioned have a direct consequence on the models used
by the learning algorithms. I concentrate here on finite state machines, as they occupied
the most of the bibliography.

First, a great part of the models are deterministic, those that are not usually have a
statistical reason to introduce non-determinism (splitting on two overlapping modes) or
relies on the approximations made on the time. Furthermore, a great number of models
are probabilistic, as this increases the modeling abilities.

In order to model the time, most model restrict themselves to an unique clock (abso-
lute time or real-time automata), or (with the help of active learning or some insight on
the clock structure) extends to event recording. The main exception to this rule could be
the Mealy machines with timers, thanks to the equivalence of expressivity between their
timed and untimed behaviors.
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