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A disclaimer – new area of research, since 2018...

Many initial ideas...
Comments welcome!
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Recent & ongoing ML successes
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But ML models are brittle — adversarial examples
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But ML models are brittle — adversarial examples
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Adversarial examples can be very problematic

Finlayson et al., Nature 2019
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Also, some ML models are interpretable

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

M?

1

0

V?

0

0

1

1

1

if ¬Meeting then Hike
if ¬Vacation then ¬Hike

decision|rule lists|sets
decision trees; ...
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But other ML models are not (interpretable)...

©DARPA

Which features matter? Are there general explanations??

Why does the NN predict a cat?
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ML meets AR

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

8 / 58



ML meets AR – a challenge for the next decade?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

heuristics; portfolios;
abstractions; tactics; …
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ML meets AR – a challenge for the next decade?

“Combining machine learning with
logic is the challenge of the day”

M. Vardi, MLmFM’18 Summit

Exploit ML Improve AR
(Efficiency)

Exploit AR Improve ML
(Robustness)

heuristics; portfolios;
abstractions; tactics; …

verification; synthesis;
explanations; …

simplify system design

build trust; debug;
aid decision making 

8 / 58



What is eXplainable AI (XAI)?

©DARPA
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XAI & EU guidelines
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XAI & the principle of explicability
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XAI & the principle of explicability

& tens of recent papers!
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Today’s talk

Goals: Overview our work at intersection of AR & ML

• Part #1: Learning interpretable models (brief) [IPNM18, NIPM18]

• Additional detail in our IJCAI’18 & IJCAR’18 papers

• Part #2: Rigorous explanations for black-box models [INM19a]

• Additional detail in our AAAI’19 paper

• Part #3: Assessing heuristic explanations (brief) [NSM+19, INM19b]

• Additional detail in our SAT’19 & CoRR’19 papers

• Part #4: Relating explanations with adversarial examples (brief) [INMS19]

• Additional detail in our NIPS’19 paper
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Part 1

Learning Interpretable ML Models
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Outline

Background

Decision Sets

A Word on Decision Trees
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Classification problems I

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Training data (or examples/instances): E = {e1, . . . , eM}

• Binary features: F = {f1, . . . , fK}
• Literals: fr and ¬fr

• Feature space: U ≜
∏K

r=1{fr,¬fr}

• Binary classification: C = {c0 = 0, c1 = 1}
• E partitioned into E− and E+
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Classification problems II

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• eq ∈ E represented as a 2-tuple (πq, ςq)

• πq ∈ U : literals associated with the example
• ςq ∈ {0, 1} is the class of example

• A literal lr on a feature fr, lr ∈ {fr,¬fr}, discriminates an example eq if πq[r] = ¬lr
• I.e. feature r takes the value opposite to the value in the tuple of literals of the example
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Binary features: F = {f1, f2, f3, f4}
• f1 ≜ V, f2 ≜ C, f3 ≜ M, and f4 ≜ E

• e1 is represented by the 2-tuple (π1, ς1),
• π1 = (¬V,¬C,M,¬E)
• ς1 = 0

• Literals V, C, ¬M and E discriminate e1

• U = {V,¬V} × {C,¬C} × {M,¬M} × {E,¬E}
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Goal of explainable classification – our take

Given training data, learn set of DNFs that correctly classify that data, perform
suitably well on unseen data, and offer human-understandable explanations for
the predictions made
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Outline

Background

Decision Sets

A Word on Decision Trees
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Itemsets & decision sets

• Given F , an itemset π is an element of I ≜
∏K

r=1{fr,¬fr, u}
• u represents a don’t care value

• A rule is a 2-tuple (π, ς), with itemset π ∈ I , and class ς ∈ C
Rule (π, ς) interpreted as:
IF all specified literals in π are true, THEN pick class ς

• A decision set S is a finite set of rules – unordered

• A rule of the form D ≜ (∅, ς) denotes the default rule of a decision set S
• Default rule is optional and used only when other rules do not apply on some feature space
point
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Rule 1: ((u, u,¬M, u), c1)
• Meaning: if ¬Meeting then Hike

• Rule 2: ((¬V, u, u, u), c0)
• Meaning: if ¬Vacation then ¬Hike

• Default rule: (∅, c0)
• Meaning: if all other rules do not apply, then pick ¬Hike
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Issue with unordered rules

• Itemsets π1, π2 ∈ I clash, π1 ∩ π2 = ∅, if for some coordinate r:
• π1[r] = fr and π2[r] = ¬fr, or π1[r] = ¬fr and π2[r] = fr

• Two rules r1 = (π1, ς1) and r2 = (π2, ς2) overlap if π1 and π2 do not clash, i.e.

π1 ∩ π2 ̸= ∅

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ⊕: overall where rules agree in prediction
• ⊖: overlap where rules disagree in prediction

• Our goal:
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π1 ∩ π2 ̸= ∅

• Can be restricted to some set, e.g. E

• Forms of overlap:
• ⊕: overall where rules agree in prediction
• ⊖: overlap where rules disagree in prediction

• Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of
overlap, namely ⊖-overlap
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Example

Ex. Vacation (V) Concert (C) Meeting (M) Expo (E) Hike (H)

e1 0 0 1 0 0
e2 1 0 0 0 1
e3 0 0 1 1 0
e4 1 0 0 1 1
e5 0 1 1 0 0
e6 0 1 1 1 0
e7 1 1 0 1 1

• Decision set:
{((¬V, u, u, u), c0), ((u, u,¬M, u), c1)}

• No E⊖-overlap

• But, there exists overlap in feature space
• ⊖-overlap for (¬V,¬C,¬M,¬E) ∈ U \ E

• However, there exists no U⊖-overlap for decision set:
{((V, u, u, u), c1), ((¬V, u, u, u), c0)}
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Succinct explanations

• If a rule fires, the set of literals represents the explanation for the predicted class
• Explanation is succinct : only the literals in the rule used; independent of example

• For the default class, must pick one falsified literal in every rule that predicts a different
class

• Explanation is not succinct : explanation depends on each example

• Obs: Uninteresting to predict c1 as negation of c0 (and vice-versa)
• Explanations also not succinct

24 / 58



Stating our goals

• Assumptions:
• Represent E− with Boolean function E0

• True for each example E−

• Represent E+ with Boolean function E1

• True for each example E+

• Also, let E0 ∧ E1 ⊨ ⊥

• DNF functions to compute:
• F0 for predicting c0, while ensuring E0 ⊨ F0
• F1 for predicting c1, while ensuring E1 ⊨ F1
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An ideal model – MinDS0

• MinDS0:
Find the smallest DNF representations of Boolean functions F0 and F1, measured in the
number of terms, such that:
1. E0 ⊨ F0
2. E1 ⊨ F1
3. F1 ↔ F0 ⊨ ⊥

• No U⊖-overlap

• Obs: MinDS0 ensures succinct explanations
• Computes F0 and F1 (i.e. no negation) and no default rule

• Complexity-wise:
• MinDS0 ∈ ΣP

2

• A conjecture: MinDS0 hard for ΣP
2 (from late 2017)
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Curbing our expectations I

• MinDS4: Minimize F0, given F1 ≡ E1 constant, and such that
1. E0 ⊨ F0
2. F0 ∧ E1 ⊨ ⊥
• No ⊖-overlap;
• No succinct explanations for F1

• MinDS3: Same as MinDS4, but target F1 given F0 ≡ E0 constant
• Also, no ⊖-overlap;
• No succinct explanations for F0

• MinDS2: Minimize both F0 and F1, such that
1. E0 ⊨ F0
2. E1 ⊨ F1
3. F0 ∧ E1 ⊨ ⊥
4. F1 ∧ E0 ⊨ ⊥
• Also, no E⊖-overlap; but (U \ E)⊖-overlap may exist
• All explanations succinct
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Curbing our expectations II

• MinDS1: Minimize both F0 and F1, such that
1. E0 ⊨ F0
2. E1 ⊨ F1
3. F1 ∧ F0 ⊨ ⊥

• No U⊖-overlap
• Default rule may be required for points in U \ E
• And, default rule explanations not succinct

• Complexity-wise:
• Decision formulations of MinDS1, MinDS2, MinDS3, MinDS4 are complete for NP

• In principle, could be solved with MaxSAT
• But no closed MaxSAT models for now
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Experimental setup & initial results

• 49 datasets from the PMLB repository
• Assessment of MinDS1, MinDS2 and MP92, w/ and w/o SBPs

• A basic model MP92 developed in the 90s [KKRR92]

• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB
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• We devised SBPs for the MinDS and the MP92 models
• Comparison with (state of the art) IDS [LBL16]

• Heuristic approach, using smooth local search
• Default settings & additional settings

• All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

• Timeout of 600s and memout of 10GB

MP92 MP92+SBP MinDS2 MinDS2+SBP MinDS1 MinDS1+SBP IDS-supp0.2 IDS-supp0.5

42 45 42 45 6 6 0 2
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Outline

Background

Decision Sets

A Word on Decision Trees
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Propositional encodings for DTs

• Proposed tight encoding for computing smallest decision tree [NIPM18]

• Encoding also serves to pick the structure of the binary tree

• Encoding much tighter (and more general) than earlier work [BHO09]

SAT Weather Mouse Cancer Car Income
DT2∗ 27K 3.5M 92G 842M 354G
DT1 190K 1.2M 5.2M 4.1M 1.2G

• Several recent alternative proposals [VZ19, HRS19, VNP+19]

• At least one outperforms our approach [VNP+19]
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Part 2

Computing Rigorous Explanations
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Our approach AAAI’19

Component Representation Notes

C Conjunction of literals, i.e.
cube

F
Model encoding, e.g.
SAT/SMT/CP/ILP/FOL

E Predicted class, i.e. literal
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Relating with abduction

What we know C ∧ F ⊨ E

Propositional
Abduction

Hypotheses C
Theory F

Manifestation E

Goal Find Cm ⊆ C, s.t. Cm ∧ F ⊭ ⊥ ∧ Cm ∧ F ⊨ E

But, Cm ∧ F ⊭ ⊥ is tautology
And, Cm ∧ F ⊨ E iff Cm ⊨ F →E
Thus, Cm is prime implicant of F →E

We can compute subset-/cardinality-minimal (prime) implicants

– i.e. explanations!
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What we know C ∧ F ⊨ E

Propositional
Abduction

Hypotheses C
Theory F

Manifestation E

Goal Find Cm ⊆ C, s.t. Cm ∧ F ⊭ ⊥ ∧ Cm ∧ F ⊨ E

But, Cm ∧ F ⊭ ⊥ is tautology
And, Cm ∧ F ⊨ E iff Cm ⊨ F →E
Thus, Cm is prime implicant of F →E

We can compute subset-/cardinality-minimal (prime) implicants – i.e. explanations!

Obs: For any instance consis-
tent with Cm, and given the
model F , the prediction is E !
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Computing one subset-minimal explanation

Input: formula F , input cube C, prediction E
Output: Subset-minimal explanation Cm ⊆ C

begin
for l ∈ C :

if Entails(C \ {l},F → E) :
C ← C \ {l}

return C
end
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Computing one cardinality-minimal explanation

Input: formula F , input cube C, prediction E
Output: Cardinality-minimal explanation Cm ⊆ C

Γ← ∅
while true do
Cm ← MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,F → E) :

return Cm
else:

µ← GetAssignment()
CT ← PickFalseLits(C \ Cm, µ)
Γ← Γ ∪ CT

end
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Γ← ∅
while true do
Cm ← MinimumHS(Γ) // Implicit hitting set dualization
if Entails(Cm,F → E) :

return Cm
else:

µ← GetAssignment()
CT ← PickFalseLits(C \ Cm, µ)
Γ← Γ ∪ CT

end Computes
smallest
prime

36 / 58



Encodings NNs

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• Each layer (except first) viewed as a block

• Compute x′ given input x, weights matrix A, and bias vector b
• Compute output y given x′ and activation function

• Each unit uses a ReLU activation function [NH10]
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Encoding NNs using MILP

Computation for a NN ReLU block:

x′ = A · x + b
y = max(x′,0)

Encoding each block: [FJ18]

n∑
j=1

ai,jxj + bi = yi − si

zi = 1→ yi ≤ 0

zi = 0→ si ≤ 0

yi ≥ 0, si ≥ 0, zi ∈ {0, 1}

Simpler encodings exist, but not as effective [KBD+17]
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Sample of experimental results

Dataset Minimal explanation Minimum explanation

size SMT (s) MILP (s) size SMT (s) MILP (s)

australian (14)
m 1 0.03 0.05 — — —
a 8.79 1.38 0.33 — — —
M 14 17.00 1.43 — — —

backache (32)
m 13 0.13 0.14 — — —
a 19.28 5.08 0.85 — — —
M 26 22.21 2.75 — — —

breast-cancer (9)
m 3 0.02 0.04 3 0.02 0.03
a 5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81

cleve (13)
m 4 0.05 0.07 4 — 0.07
a 8.62 3.32 0.32 7.89 — 5.14
M 13 60.74 0.60 13 — 39.06

hepatitis (19)
m 6 0.02 0.04 4 0.01 0.04
a 11.42 0.07 0.06 9.39 4.07 2.89
M 19 0.26 0.20 19 27.05 22.23

voting (16)
m 3 0.01 0.02 3 0.01 0.02
a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77

spect (22)
m 3 0.02 0.02 3 0.02 0.04
a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73
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Part 3

Assessing Heuristic Explanations
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Computing heuristic explanations

• Many (highly visible) heuristic explanation approaches:
• LIME [RSG16]

• SHAP [LL17]

• Anchor [RSG18]

• ...

• Q: How to assess the quality of heuristic explanations? [NSM+19, INM19b]
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A first experiment CoRR’19

What is the global quality of heuristic explana-
tions in light of computed local explanations?
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Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and

1. If it does not (i.e. it’s optimistic), then fix it
2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43 / 58



Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and

1. If it does not (i.e. it’s optimistic), then fix it
2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43 / 58



Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and

1. If it does not (i.e. it’s optimistic), then fix it
2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43 / 58



Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and
1. If it does not (i.e. it’s optimistic), then fix it

2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43 / 58



Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and
1. If it does not (i.e. it’s optimistic), then fix it
2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it

3. Otherwise, report the local explanation as a global explanation

43 / 58



Approach

• Learn ML model
• Focused on boosted trees obtained with XGBoost

• Compute local explanation for some instance

• Use our abduction-based approach to assess whether local explanation holds globally,
and
1. If it does not (i.e. it’s optimistic), then fix it
2. It it holds but has redundant literals (i.e. it’s pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43 / 58



An example – zoo dataset

amphibian

tail?

-0.0547288768

0.007924526

yes

no

bird

feathers?

0.285283029

-0.0547288768

yes

no

bug

6 legs?

0.184210524

-0.0552432425

yes

no

fish

fins?

0.19463414

-0.0549824126

yes

no

invertebrate

backbone?

-0.0550289042

0.108808279

yes

no

mammal

milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no
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0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Example instance:

IF (animal_name = pitviper) ∧ ¬hair ∧ ¬feathers ∧ eggs ∧ ¬milk ∧
¬airborne ∧ ¬aquatic ∧ predator ∧ ¬toothed ∧ backbone ∧ breathes ∧
venomous ∧ ¬fins ∧ (legs = 0) ∧ tail ∧ ¬domestic ∧ ¬catsize

THEN (class = reptile)
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0.311460674
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yes
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reptile

venomous?

0.028965516

-0.0444687866

yes

no

• Explanation obtained with Anchor [RSG18]

IF ¬hair ∧ ¬milk ∧ ¬toothed ∧ ¬fins
THEN (class = reptile)
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milk?

0.311460674

-0.0536704734

yes

no

reptile

venomous?

0.028965516

-0.0444687866

yes

no

• But, explanation incorrectly holds on another instance (from training data)

IF (animal_name = toad) ∧ ¬hair ∧ ¬feathers ∧ eggs ∧ ¬milk ∧
¬airborne ∧ ¬aquatic ∧ ¬predator ∧ ¬toothed ∧ backbone ∧ breathes ∧
¬venomous ∧ ¬fins ∧ (legs = 4) ∧ ¬tail ∧ ¬domestic ∧ ¬catsize

THEN (class = amphibian)
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Some results

Explanations

Dataset (# unique) optimistic pessimistic realistic

LIME Anchor LIME Anchor LIME Anchor

adult (5579) 61.3% 80.5% 7.9% 1.6% 30.8% 17.9%
lending (4414) 24.0% 3.0% 0.4% 0.0% 75.6% 97.0%
recidivism (3696) 94.1% 99.4% 4.6% 0.4% 1.3% 0.2%
compas (778) 71.9% 84.4% 20.6% 1.7% 7.5% 13.9%
german (1000) 85.3% 99.7% 14.6% 0.2% 0.1 % 0.1 %
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& Google XAI service
most likely similar...
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A second experiment SAT’19

How often are local explanations
consistent with prediction?
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Approach

• Exploit ML model with SAT-based encoding
• In our case: used binarized neural networks (BNNs)

• Compute local explanations with Anchor (similar results with LIME or SHAP)

• Use (approximate) model counter to assess how often explanation is consistent with
prediction
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Preliminary results

• Anchor often claims ≈ 99% precision
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Preliminary results

• Anchor often claims ≈ 99% precision; out results demonstrate otherwise
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Part 4

Explanations vs. Adversarial Examples
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Overview NIPS’19

• Vast body of work on computing explanations (XPs)
• Mostly heuristic approaches, with recent rigorous solutions

• Vast body of work on coping with adversarial examples (AEs)
• Both heuristic and rigorous approaches

• Can XPs and AEs be somehow related?

• Recent work observed that some connection existed, but formal connection has been elusive

• We recently proposed a (first) link between XPs and AEs [INMS19]

• The work exploits hitting set duality, first studied in model-based diagnosis [Rei87]
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A well-known example

[RN10]

Example Input Attributes Goal
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes
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A well-known example (Cont.)

• 10 features:

{A(lternate),B(ar),W(eekend),H(ungry),Pa(trons),Pr(ice),Ra(in),Re(serv.), T(ype), E(stim.)}

• Example instance (x1, with outcome y1 = Yes):

{A,¬B,¬W,H, (Pa = Some), (Pr = $$$),¬Ra,Re, (T = French), (E = 0–10)}

• A possible decision set (obtained with some off-the-shelf tool, & function*):

IF (Pa = Some) ∧ ¬(E = >60) THEN (Wait = Yes) (R1)
IF W ∧ ¬(Pr = $$$) ∧ ¬(E = >60) THEN (Wait = Yes) (R2)

IF ¬W ∧ ¬(Pa = Some) THEN (Wait = No) (R3)
IF (E = >60) THEN (Wait = No) (R4)
IF ¬(Pa = Some) ∧ (Pr = $$$) THEN (Wait = No) (R5)
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Counterexamples & breaks

• Counterexamples:
A subset-minimal set C of literals is a counterexample (CEx) to a prediction π, if C ⊨(M→ ρ),
with ρ ∈ K ∧ ρ ̸= π

• Breaks:
A literal τi breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with τi

• Back to the example, consider prediction (Wait = Yes):

• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa
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• Back to the example, consider prediction (Wait = Yes):
• Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) ∧ ¬(E = >60)

• Due to (R5), a counterexample is:

¬(Pa = Some) ∧ (Pr = $$$)

• XP S1 = {(Pa = Some),¬(E = >60)} breaks CEx S2 = {¬(Pa = Some), (Pr = $$$)} and
vice-versa
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Some preliminary results

1. Relationship between XPs with CEx’s:

• Each XP breaks every CEx

• Each CEx breaks every XP

∴ XPs can be computed from all CEx’s (by HSD) and vice-versa

2. Given instance I , an AE can be computed from closest CEx
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Revisiting the example

• Restaurant dataset
• ML model is decision set (shown earlier)
• Prediction is (Wait = Yes)

• Global explanations:
1. (Pa = Some) ∧ ¬(E = >60)
2. W ∧ ¬(Pr = $$$) ∧ ¬(E = >60)

• Counterexamples:
1. ¬W ∧ ¬(Pa = Some)
2. (E = >60)
3. ¬(Pa = Some) ∧ (Pr = $$$)

• The XP’s break the CEx’s and vice-versa
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Conclusions & roadmap

• Glimpse of work on learning interpretable ML models (using SAT)
• Smallest decision trees & decision sets

• New approach for finding explanations of black-box models by computing prime
implicants (using ILP&SMT)

• Results for NNs and for BTs

• Hitting set duality between explanations and counterexamples
• Can compute CEx’s from XP’s and AEs from CEx’s

• Our remit@ ANITI:

To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques
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Questions?
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