Automated Reasoning for Explainable al

Joao Marques-Silva

ANITI, Univ. Toulouse, France

January 16, 2020

A disclaimer

A disclaimer - recent \& not so recent work...

Quantification \& CEGAR (QBF, QMaxSAT, etc.)

Function Synthesis (Min DNF cover, ...)

Optimization (MaxSAT, MinSAT, PBO, WBO, etc.)

Propositional Encodings, Backbones, Autarkies, Minimal models, etc.

Enumeration

 (MUSes, MCSes, etc.)Proof Systems
(DRMaxSAT, etc.)
Primes, Abduction,
DLs, etc.

A disclaimer - new area of research, since 2018...

Quantification \& CEGAR (QBF, QMaxSAT, etc.)

Function Synthesis

(Min DNF cover, ...)

Model Checking, Synthesizing Invariants, ATPG, Reconfiguration

Enumeration (MUSes, MCSes, etc.)

Proof Systems
(DRMaxSAT, etc.)
Primes, Abduction,
DLs, etc.
Explainability \& Interpretability in ML

A disclaimer - new area of research, since 2018...

Quantification \& CEGAR
Function Synthesis

Inconsistency (MUS, MCS, etc.)
(QBF, QMaxSAT, etc.)
(Min DNF cover, ...)

Model Checking, Synthesizing Invariants, ATPG, Reconfiguration

Propositional Encodings, Backbones, Autarkies, Minimal models, etc.

Primes, Abduction, DLs, etc.

Proof Systems
(DRMaxSAT, etc.)

Optimization (MaxSAT, MinSAT, PBO, WBO, etc.)

Recent \& ongoing ML successes

(0) DeepMind \because AlphaGo

AlphaGo Zero \& Alpha Zero

Image \& Speech Recognition
ILSVRC top-5 Error on ImageNet

But ML models are brittle - adversarial examples

Goodfellow et al., ICLR'15

But ML models are brittle - adversarial examples

Goodfellow et al., ICLR'15

Eykholt et al'18

Aung et al'17

But ML models are brittle - adversarial examples

Adversarial examples can be very problematic

Original image

Dermatoscopic image of a benign melanocytic nevus, along with the diagnostic probability computed by a deep neural network.

Benign

Model confidence

Adversarial noise

Perturbation computed by a common adversarial attack technique.

Adversarial example

Combined image of nevus and attack perturbation and the diagnostic probabilities from the same deep neural network.

Model confidence
Finlayson et al., Nature 2019

Also, some ML models are interpretable

decision|rule lists|sets decision trees; ...

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hike (H)
e_{1}	0	0	1	0	0
e_{2}	1	0	0	0	1
e_{3}	0	0	1	1	0
e_{4}	1	0	0	1	1
e_{5}	0	1	1	0	0
e_{6}	0	1	1	1	0
e_{7}	1	1	0	1	1

Also, some ML models are interpretable

$$
\begin{array}{l|l}
\hline \text { decision|rule lists|sets } & \text { if } \neg \text { Meeting then Hike } \\
\text { decision trees; ... } & \text { if } \neg \text { Vacation then } \neg \text { Hike }
\end{array}
$$

Ex.	Vacation (V)	Concert (C)	Meeting (M)	Expo (E)	Hire (H)
e_{1}	0	0	1	0	0
e_{2}	1	0	0	0	1
e_{3}	0	0	1	1	0
e_{4}	1	0	0	1	1
e_{5}	0	1	1	1	1
e_{6}	0	1	0	1	0
e_{7}	1	1	1		

But other ML models are not (interpretable)...

ML meets AR

"Combining machine learning with logic is the challenge of the day"

M. Vardi, MLmFM'18 Summit

ML meets AR - a challenge for the next decade?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

ML meets AR - a challenge for the next decade?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

ML meets AR - a challenge for the next decade?

"Combining machine learning with logic is the challenge of the day"
M. Vardi, MLmFM'18 Summit

Machine Learning System

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

 of 27 April 2016on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

 of 27 April 2016on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)
European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance)
European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

- We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016

 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)(Text with EEA relevance)

European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

A new bill would force companies to check their algorithms for bias

We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

Explainable Artificial Intelligence (XAI)

David Gunning
DARPA/I2O
Program Update November 2017

Why XAI?

In order to only improve their robust- the council $\substack{\text { on the } \\ \text { move }}$ we must not only develop ways to make ness, ${ }^{5}$ but also develop, In te. Intelligi- tron ion en gus the free
European Union regulation their reasoning ins spot AI that makes and a "right bility will help us sporisutional drift or Bypecomanem mistakes due to mentations of goals mpanies to check their

Data Protection Regulation will have the routine use of machine-learni of effect as la algorithms. Slated to take effect as la across the European Union in 2018,
will place restrictions on automate individual decision making (that is, algorithms that make decisions based on user-level predictors) that "signifiscantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation. acilitate control by humans in human A AI ingly common collate, intelligibility will teams. Further n learn from AI. Finally, help humans lea sons to want intellithere are legal reason European GDPR gimble AI, including the to assign liability
 when AI errs.

DARPA

XAI \& EU guidelines

Ethics guidelines for trustworthy Al

Following the publication of the draft ethics guidelines in December 2018 to which more than 500 comments were received, the independent expert group presents today their ethics guidelines for trustworthy artificial intelligence.

About Artificial intelligence

Blog posts
Search

News

XAI \& the principle of explicability

\square

European Commission > Strategy > Digital Single Market > Reports an

Digital Single Market

REPORT/CATi f explicability maintaining users' trus openly commun information, a decision what combinationd and
The principle of exp foulding and maspose of Al sys ffected. Without surputput or dec as ablack box a aditability and
 transparent, the capable to those directly model has g possible. These cability measures le.g. contested. An explantributed to tha circumstances, may be fundamenal onences if that output is erroup presents today their

```
Blog posts
``` of the consequr trustworthy artificial intelligence.

\section*{XAI \& the principle of explicability}

\(\square\)

European Commission > Strategy > Digital Single Market > Reports an
Digital Single Market
- The principle of for building and purpose of Al afecty afled. Withou paricular output or decis to as "blackbox a a a cility, auditability and
 of inputfactors contrion. In those cir capabiliability is needed is highly \({ }^{33}\). require special attention ication on system which explicabili, herwise inaccurate. fund the consequences if that., i, yroup presents today their

News

\section*{Today's talk}

\section*{Goals: Overview our work at intersection of AR \& ML}
- Part \#1: Learning interpretable models (brief)
- Additional detail in our IJCAl'18 \& IJCAR'18 papers
- Part \#2: Rigorous explanations for black-box models
- Additional detail in our AAAl'19 paper
- Part \#3: Assessing heuristic explanations (brief)
- Additional detail in our SAT'19 \& CoRR'19 papers
- Part \#4: Relating explanations with adversarial examples (brief)
- Additional detail in our NIPS'19 paper

\section*{Part 1}

\section*{Learning Interpretable ML Models}

\section*{Outline}

Background

\section*{Decision Sets}

A Word on Decision Trees

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)
- Feature space: \(\mathcal{U} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}\right\}\)

\section*{Classification problems I}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Training data (or examples/instances): \(\mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\}\)
- Binary features: \(\mathcal{F}=\left\{f_{1}, \ldots, f_{k}\right\}\)
- Literals: \(f_{r}\) and \(\neg f_{r}\)
- Feature space: \(\mathcal{U} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}\right\}\)
- Binary classification: \(\mathcal{C}=\left\{c_{0}=0, c_{1}=1\right\}\)
- \(\mathcal{E}\) partitioned into \(\mathcal{E}^{-}\)and \(\mathcal{E}^{+}\)

\section*{Classification problems II}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- \(e_{q} \in \mathcal{E}\) represented as a 2-tuple \(\left(\pi_{q}, \varsigma_{q}\right)\)
- \(\pi_{q} \in \mathcal{U}\) : literals associated with the example
- \(\varsigma_{q} \in\{0,1\}\) is the class of example

\section*{Classification problems II}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- \(e_{q} \in \mathcal{E}\) represented as a 2-tuple \(\left(\pi_{q}, \varsigma_{q}\right)\)
- \(\pi_{q} \in \mathcal{U}\) : literals associated with the example
- \(\varsigma_{q} \in\{0,1\}\) is the class of example
- A literal \(l_{r}\) on a feature \(f_{r}, l_{r} \in\left\{f_{r}, \neg f_{r}\right\}\), discriminates an example \(e_{q}\) if \(\pi_{q}[r]=\neg l_{r}\)
- I.e. feature \(r\) takes the value opposite to the value in the tuple of literals of the example

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Binary features: \(\mathcal{F}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}\)
- \(f_{1} \triangleq V, f_{2} \triangleq C, f_{3} \triangleq M\), and \(f_{4} \triangleq E\)
- \(e_{1}\) is represented by the 2-tuple \(\left(\pi_{1}, \varsigma_{1}\right)\),
- \(\pi_{1}=(\neg \mathrm{V}, \neg \mathrm{C}, \mathrm{M}, \neg \mathrm{E})\)
- \(\varsigma_{1}=0\)
- Literals V, C, \(\neg \mathrm{M}\) and E discriminate \(e_{1}\)
\(\cdot \mathcal{U}=\{\mathrm{V}, \neg \mathrm{V}\} \times\{\mathrm{C}, \neg \mathrm{C}\} \times\{\mathrm{M}, \neg \mathrm{M}\} \times\{\mathrm{E}, \neg \mathrm{E}\}\)

\section*{Goal of explainable classification - our take}

Given training data, learn set of DNFs that correctly classify that data, perform suitably well on unseen data, and offer human-understandable explanations for the predictions made

\section*{Outline}

\section*{Background}

Decision Sets

A Word on Decision Trees

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2 -tuple (\(\pi, \varsigma\)), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule (\(\pi, \varsigma\)) interpreted as:
IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2-tuple (\(\pi, \varsigma\)), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule (\(\pi, \varsigma\)) interpreted as:

IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)
- A decision set \(\mathbb{S}\) is a finite set of rules - unordered

\section*{Itemsets \& decision sets}
- Given \(\mathcal{F}\), an itemset \(\pi\) is an element of \(\mathcal{I} \triangleq \prod_{r=1}^{K}\left\{f_{r}, \neg f_{r}, \mathfrak{u}\right\}\)
- u represents a don't care value
- A rule is a 2-tuple (\(\pi, \varsigma\)), with itemset \(\pi \in \mathcal{I}\), and class \(\varsigma \in \mathcal{C}\) Rule (\(\pi, \varsigma\)) interpreted as:
IF all specified literals in \(\pi\) are true, THEN pick class \(\varsigma\)
- A decision set \(\mathbb{S}\) is a finite set of rules - unordered
- A rule of the form \(\mathfrak{D} \triangleq(\emptyset, \varsigma)\) denotes the default rule of a decision set \(\mathbb{S}\)
- Default rule is optional and used only when other rules do not apply on some feature space point

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Rule 1: \(\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), \mathrm{c}_{1}\right)\)
- Meaning: if \(\neg\) Meeting then Hike
- Rule 2: ((\(\left.\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\)
- Meaning: if \(\neg\) Vacation then \(\neg\) Hike

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Rule 1: \(\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\)
- Meaning: if \(\neg\) Meeting then Hike
- Rule 2: ((\(\left.\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\)
- Meaning: if \(\neg\) Vacation then \(\neg\) Hike
- Default rule: \(\left(\emptyset, c_{0}\right)\)
- Meaning: if all other rules do not apply, then pick \(\neg\) Hike

\section*{Issue with unordered rules}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\emptyset\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\emptyset\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \emptyset
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\emptyset\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \emptyset
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)
- Forms of overlap:
- \(\oplus\) : overall where rules agree in prediction
- \(\ominus\) : overlap where rules disagree in prediction

\section*{Issue with unordered rules - overlap}
- Itemsets \(\pi_{1}, \pi_{2} \in \mathcal{I}\) clash, \(\pi_{1} \cap \pi_{2}=\emptyset\), if for some coordinate \(r\) :
- \(\pi_{1}[r]=f_{r}\) and \(\pi_{2}[r]=\neg f_{r}\), or \(\pi_{1}[r]=\neg f_{r}\) and \(\pi_{2}[r]=f_{r}\)
- Two rules \(r_{1}=\left(\pi_{1}, \varsigma_{1}\right)\) and \(r_{2}=\left(\pi_{2}, \varsigma_{2}\right)\) overlap if \(\pi_{1}\) and \(\pi_{2}\) do not clash, i.e.
\[
\pi_{1} \cap \pi_{2} \neq \emptyset
\]
- Can be restricted to some set, e.g. \(\mathcal{E}\)
- Forms of overlap:
- \(\oplus\) : overall where rules agree in prediction
- \(\ominus\) : overlap where rules disagree in prediction
- Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of overlap, namely \(\ominus\)-overlap

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg V, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg M, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus \text {-overlap }}\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg \mathbb{V}, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus}\)-overlap
- But, there exists overlap in feature space
- \(\ominus\)-overlap for \((\neg \mathrm{V}, \neg \mathrm{C}, \neg \mathrm{M}, \neg \mathrm{E}) \in \mathcal{U} \backslash \mathcal{E}\)

\section*{Example}
\begin{tabular}{|c|c|c|c|c||c|}
\hline Ex. & Vacation (V) & Concert (C) & Meeting (M) & Expo (E) & Hike (H) \\
\hline \hline\(e_{1}\) & 0 & 0 & 1 & 0 & 0 \\
\hline\(e_{2}\) & 1 & 0 & 0 & 0 & 1 \\
\hline\(e_{3}\) & 0 & 0 & 1 & 1 & 0 \\
\hline\(e_{4}\) & 1 & 0 & 0 & 1 & 1 \\
\hline\(e_{5}\) & 0 & 1 & 1 & 0 & 0 \\
\hline\(e_{6}\) & 0 & 1 & 1 & 1 & 0 \\
\hline\(e_{7}\) & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}
- Decision set:
\[
\left\{\left((\neg \mathrm{V}, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right),\left((\mathfrak{u}, \mathfrak{u}, \neg \mathrm{M}, \mathfrak{u}), c_{1}\right)\right\}
\]
- No \(\mathcal{E}^{\ominus \text {-overlap }}\)
- But, there exists overlap in feature space
- \(\ominus\)-overlap for \((\neg \mathrm{V}, \neg \mathrm{C}, \neg \mathrm{M}, \neg \mathrm{E}) \in \mathcal{U} \backslash \mathcal{E}\)
- However, there exists no \(\mathcal{U}^{\ominus}\)-overlap for decision set:
\[
\left\{\left((V, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{1}\right),\left((\neg \vee, \mathfrak{u}, \mathfrak{u}, \mathfrak{u}), c_{0}\right)\right\}
\]

\section*{Succinct explanations}
- If a rule fires, the set of literals represents the explanation for the predicted class
- Explanation is succinct : only the literals in the rule used; independent of example
- For the default class, must pick one falsified literal in every rule that predicts a different class
- Explanation is not succinct : explanation depends on each example
- Obs: Uninteresting to predict \(c_{1}\) as negation of \(c_{0}\) (and vice-versa)
- Explanations also not succinct

\section*{Stating our goals}
- Assumptions:
- Represent \(\mathcal{E}^{-}\)with Boolean function \(E^{0}\)
- True for each example \(\mathcal{E}^{-}\)
- Represent \(\mathcal{E}^{+}\)with Boolean function \(E^{1}\)
- True for each example \(\mathcal{E}^{+}\)
- Also, let \(E^{0} \wedge E^{1} \vDash \perp\)

\section*{Stating our goals}
- Assumptions:
- Represent \(\mathcal{E}^{-}\)with Boolean function \(E^{0}\)
- True for each example \(\mathcal{E}^{-}\)
- Represent \(\mathcal{E}^{+}\)with Boolean function \(E^{1}\)
- True for each example \(\mathcal{E}^{+}\)
- Also, let \(E^{0} \wedge E^{1} \vDash \perp\)
- DNF functions to compute:
- \(F^{0}\) for predicting \(c_{0}\), while ensuring \(E^{0} \vDash F^{0}\)
- \(F^{1}\) for predicting \(c_{1}\), while ensuring \(E^{1} \vDash F^{1}\)

\section*{An ideal model - MinDS 0}
- \(\mathrm{MinDS}_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \vDash \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap

\section*{An ideal model - MinDS0}
- MinDS \(_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \vDash \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap
- Obs: MinDS \(_{0}\) ensures succinct explanations
- Computes \(F^{0}\) and \(F^{1}\) (i.e. no negation) and no default rule

\section*{An ideal model - MinDS0}
- MinDS \(_{0}\) :

Find the smallest DNF representations of Boolean functions \(F^{0}\) and \(F^{1}\), measured in the number of terms, such that:
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \leftrightarrow F^{0} \vDash \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap
- Obs: MinDS \(0_{0}\) ensures succinct explanations
- Computes \(F^{0}\) and \(F^{1}\) (i.e. no negation) and no default rule
- Complexity-wise:
- \(M_{i n D S} \in \Sigma_{2}^{P}\)
- A conjecture: MinDSo hard for \(\Sigma_{2}^{P}\)

\section*{Curbing our expectations I}
- MinDS 4 : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \vDash F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No \(\ominus\)-overlap;
- No succinct explanations for \(F^{1}\)

\section*{Curbing our expectations I}
- MinDS 4 : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \vDash F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No \(\ominus\)-overlap;
- No succinct explanations for \(F^{1}\)
- \(\mathrm{MinDS}_{3}\) : Same as \(\mathrm{MinDS}_{4}\), but target \(F^{1}\) given \(F^{0} \equiv E^{0}\) constant
- Also, no \(\ominus\)-overlap;
- No succinct explanations for \(F^{0}\)

\section*{Curbing our expectations I}
- MinDS \(_{4}\) : Minimize \(F^{0}\), given \(F^{1} \equiv E^{1}\) constant, and such that
1. \(E^{0} \vDash F^{0}\)
2. \(F^{0} \wedge E^{1} \vDash \perp\)
- No Ө-overlap;
- No succinct explanations for \(F^{1}\)
- \(\mathrm{MinDS}_{3}\) : Same as \(\mathrm{MinDS}_{4}\), but target \(F^{1}\) given \(F^{0} \equiv E^{0}\) constant
- Also, no \(\ominus\)-overlap;
- No succinct explanations for \(F^{0}\)
- MinDS 2 : Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{0} \wedge E^{1} \vDash \perp\)
4. \(F^{1} \wedge E^{0} \vDash \perp\)
- Also, no \(\mathcal{E}^{\ominus}\)-overlap; but \((\mathcal{U} \backslash \mathcal{E})^{\ominus}\)-overlap may exist
- All explanations succinct

\section*{Curbing our expectations II}
- MinDS \({ }_{1}\) : Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \wedge F^{0} \vDash \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap
- Default rule may be required for points in \(\mathcal{U} \backslash \mathcal{E}\)
- And, default rule explanations not succinct

\section*{Curbing our expectations II}
- MinDS \(1_{1}\) : Minimize both \(F^{0}\) and \(F^{1}\), such that
1. \(E^{0} \vDash F^{0}\)
2. \(E^{1} \vDash F^{1}\)
3. \(F^{1} \wedge F^{0} \vDash \perp\)
- No \(\mathcal{U}^{\ominus}\)-overlap
- Default rule may be required for points in \(\mathcal{U} \backslash \mathcal{E}\)
- And, default rule explanations not succinct
- Complexity-wise:
- Decision formulations of MinDS \(_{1}, \mathrm{MinDS}_{2}, \mathrm{MinDS}_{3}, \mathrm{MinDS} S_{4}\) are complete for NP
- In principle, could be solved with MaxSAT
- But no closed MaxSAT models for now

\section*{Experimental setup \& initial results}
- 49 datasets from the PMLB repository
- Assessment of MinDS \(1, M_{1}\) DS \(_{2}\) and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s
- We devised SBPs for the MinDS and the MP92 models
- Comparison with (state of the art) IDS
- Heuristic approach, using smooth local search
- Default settings \& additional settings
- All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory, running Ubuntu Linux
- Timeout of 600 s and memout of 10 GB

\section*{Experimental setup \& initial results}
- 49 datasets from the PMLB repository
- Assessment of MinDS \(1, M_{1}\) DS \(_{2}\) and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s
- We devised SBPs for the MinDS and the MP92 models
- Comparison with (state of the art) IDS
- Heuristic approach, using smooth local search
- Default settings \& additional settings
- All experiments on an Intel Xeon E5-2630 2.60 GHz processor with 64GB of memory, running Ubuntu Linux
- Timeout of 600 s and memout of 10 GB
\begin{tabular}{cccccccc}
\hline MP92 & MP92+SBP & MinDS \(_{2}\) & MinDS \(_{2}+\) SBP & MinDS & MinDS \(_{1}+\) SBP & IDS-supp0.2 & IDS-supp0.5 \\
\hline 42 & 45 & 42 & 45 & 6 & 6 & 0 & 2 \\
\hline
\end{tabular}

\section*{Outline}

\section*{Background}

\section*{Decision Sets}

A Word on Decision Trees

\section*{Propositional encodings for DTs}
- Proposed tight encoding for computing smallest decision tree
- Encoding also serves to pick the structure of the binary tree
- Encoding much tighter (and more general) than earlier work
\begin{tabular}{|c|c|c|c|c|c|}
\hline SAT & Weather & Mouse & Cancer & Car & Income \\
\hline \hline DT2* & 27 K & 3.5 M & 92 G & 842 M & 354 G \\
DT1 & 190 K & 1.2 M & 5.2 M & 4.1 M & 1.2 G \\
\hline
\end{tabular}
- Several recent alternative proposals
- At least one outperforms our approach

\section*{Part 2}

Computing Rigorous Explanations

\section*{Our approach}
\begin{tabular}{|c|c|c|c|}
\hline Component & Representation & Notes \\
\hline
\end{tabular}

\section*{Relating with abduction}

What we know
\(\mathcal{C} \wedge \mathcal{F} \vDash \mathcal{E}\)

\section*{Relating with abduction}
What we know
\(\mathcal{C} \wedge \mathcal{F} \vDash \mathcal{E}\)
\begin{tabular}{lll}
& Hypotheses & \(\mathcal{C}\) \\
Propositional & Theory & \(\mathcal{F}\) \\
Abduction & Manifestation & \(\mathcal{E}\) \\
Goal & Find \(\mathcal{C}_{m} \subseteq \mathcal{C}\), s.t. & \(\mathcal{C}_{m} \wedge \mathcal{F} \not \models \perp \wedge \mathcal{C}_{m} \wedge \mathcal{F} \vDash \mathcal{E}\)
\end{tabular}

\section*{Relating with abduction}
What we know
\(\mathcal{C} \wedge \mathcal{F} \vDash \mathcal{E}\)
\begin{tabular}{lll}
Propositional & Hypotheses & \(\mathcal{C}\) \\
Abduction & Theory & \(\mathcal{F}\) \\
& Manifestation & \(\mathcal{E}\) \\
Goal & Find \(\mathcal{C}_{m} \subseteq \mathcal{C}\), s.t. & \(\mathcal{C}_{m} \wedge \mathcal{F} \not \models \perp \wedge \mathcal{C}_{m} \wedge \mathcal{F} \vDash \mathcal{E}\)
\end{tabular}
\begin{tabular}{ll}
But, & \(\mathcal{C}_{m} \wedge \mathcal{F} \not \models \perp\) is tautology \\
And, & \(\mathcal{C}_{m} \wedge \mathcal{F} \vDash \mathcal{E}\) iff \(\mathcal{C}_{m} \vDash \mathcal{F} \rightarrow \mathcal{E}\) \\
Thus, & \(\mathcal{C}_{m}\) is prime implicant of \(\mathcal{F} \rightarrow \mathcal{E}\)
\end{tabular}

\section*{Relating with abduction}
What we know
\(\mathcal{C} \wedge \mathcal{F} \vDash \mathcal{E}\)
\begin{tabular}{ll}
\begin{tabular}{ll}
Propositional \\
Abduction
\end{tabular} & \begin{tabular}{l}
Hypotheses \\
Theory \\
Manifestation
\end{tabular} \\
Goal & Find \(\mathcal{C}_{m} \subseteq \mathcal{C}\), s.t. \\
& \\
But, & \(\mathcal{C}_{m} \wedge \mathcal{F} \not \models \perp\) is tautology \\
And, & \(\mathcal{C}_{m} \wedge \mathcal{F} \vDash \mathcal{E}\) iff \(\mathcal{C}_{m} \vDash \mathcal{F} \rightarrow \mathcal{E}\) \\
\(\mathcal{C}_{m}\) is prime implicant of \(\mathcal{F} \rightarrow \mathcal{E}\)
\end{tabular}

We can compute subset-/cardinality-minimal (prime) implicants

\section*{Relating with abduction}
What we know
\(\mathcal{C} \wedge \mathcal{F} \vDash \mathcal{E}\)

We can compute subset-/cardinality-minimal (prime) implicants - i.e. explanations!

\section*{Computing one subset-minimal explanation}
```

Input: formula }\mathcal{F}\mathrm{ , input cube }\mathcal{C}\mathrm{ , prediction }\mathcal{E
Output: Subset-minimal explanation }\mp@subsup{\mathcal{C}}{m}{}\subseteq\mathcal{C
begin
for l }\in\mathcal{C}
if Entails(\mathcal{C}\{l},\mathcal{F}->\mathcal{E}):
\mathcal { C } \leftarrow \mathcal { C } \ \{ l \}
return }\mathcal{C
end

```

\section*{Computing one subset-minimal explanation}

Input: formula \(\mathcal{F}\), input cube \(\mathcal{C}\), prediction \(\mathcal{E}\) Output: Subset-minimal explanation \(\mathcal{C}_{m} \subseteq \mathcal{C}\)
begin
for \(l \in \mathcal{C}\) :
if Entails \((\mathcal{C} \backslash\{l\}, \mathcal{F} \rightarrow \mathcal{E})\) : \(\mathcal{C} \leftarrow \mathcal{C} \backslash\{l\}\)
return \(\mathcal{C}\)
end

\section*{Computing one cardinality-minimal explanation}
```

Input: formula \mathcal{F}, input cube \mathcal{C}}\mathrm{ , prediction }\mathcal{E
Output: Cardinality-minimal explanation }\mp@subsup{\mathcal{C}}{m}{}\subseteq\mathcal{C
\Gamma \leftarrow \emptyset
while true do
\mathcal{C}
// Implicit hitting set dualization
if Entails(\mathcal{C}
return }\mp@subsup{\mathcal{C}}{m}{
else:
\mu\leftarrowGetAssignment()
\mathcal{C}
\Gamma\leftarrow\Gamma\cup\mathcal{C}
end

```

\section*{Computing one cardinality-minimal explanation}

Input: formula \(\mathcal{F}\), input cube \(\mathcal{C}\), prediction \(\mathcal{E}\)
Output: Cardinality-minimal explanation \(\mathcal{C}_{m} \subseteq \mathcal{C}\)
\(\Gamma \leftarrow \emptyset\)
while true do
\(\mathcal{C}_{m} \leftarrow\) MinimumHS \((\Gamma)\)
// Implicit hitting set dualization
if Entails \(\left(\mathcal{C}_{m}, \mathcal{F} \rightarrow \mathcal{E}\right)\) : return \(\mathcal{C}_{m}\)
else:
\(\mu \leftarrow\) GetAssignment()
\(\mathcal{C}_{T} \leftarrow\) PickFalseLits \(\left(\mathcal{C} \backslash \mathcal{C}_{m}, \mu\right)\)
\(\Gamma \leftarrow \Gamma \cup \mathcal{C}_{T}\)
end

\section*{Encodings NNs}

- Each layer (except first) viewed as a block
- Compute \(\mathbf{x}^{\prime}\) given input \(\mathbf{x}\), weights matrix \(\mathbf{A}\), and bias vector \(\mathbf{b}\)
- Compute output \(\mathbf{y}\) given \(\mathbf{x}^{\prime}\) and activation function

\section*{Encodings NNs}
\begin{tabular}{ccc}
Input & Hidden & Output \\
layer & layer & layer
\end{tabular}
- Each layer (except first) viewed as a block
- Compute \(\mathbf{x}^{\prime}\) given input \(\mathbf{x}\), weights matrix \(\mathbf{A}\), and bias vector \(\mathbf{b}\)
- Compute output \(\mathbf{y}\) given \(\mathbf{x}^{\prime}\) and activation function
- Each unit uses a ReLU activation function

\section*{Encoding NNs using MILP}

Computation for a NN ReLU block:
\[
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \\
& \mathbf{y}=\max \left(\mathbf{x}^{\prime}, \mathbf{0}\right)
\end{aligned}
\]

\section*{Encoding NNs using MILP}

Computation for a NN ReLU block:
\[
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \\
& \mathbf{y}=\max \left(\mathbf{x}^{\prime}, \mathbf{0}\right)
\end{aligned}
\]

Encoding each block:
\[
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} x_{j}+b_{i}=y_{i}-s_{i} \\
& z_{i}=1 \rightarrow y_{i} \leq 0 \\
& z_{i}=0 \rightarrow s_{i} \leq 0 \\
& y_{i} \geq 0, s_{i} \geq 0, z_{i} \in\{0,1\}
\end{aligned}
\]

\section*{Sample of experimental results}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Dataset} & & & \multicolumn{3}{|r|}{Minimal explanation} & \multicolumn{3}{|l|}{Minimum explanation} \\
\hline & & & size & SMT (s) & MILP (s) & size & SMT (s) & MILP (s) \\
\hline \multirow{3}{*}{australian} & \multirow{3}{*}{(14)} & m & 1 & 0.03 & 0.05 & - & - & - \\
\hline & & a & 8.79 & 1.38 & 0.33 & - & - & - \\
\hline & & M & 14 & 17.00 & 1.43 & - & - & - \\
\hline \multirow{3}{*}{backache} & \multirow{3}{*}{(32)} & m & 13 & 0.13 & 0.14 & - & - & - \\
\hline & & a & 19.28 & 5.08 & 0.85 & - & - & - \\
\hline & & M & 26 & 22.21 & 2.75 & - & - & - \\
\hline \multirow{3}{*}{breast-cancer} & \multirow{3}{*}{(9)} & m & 3 & 0.02 & 0.04 & 3 & 0.02 & 0.03 \\
\hline & & a & 5.15 & 0.65 & 0.20 & 4.86 & 2.18 & 0.41 \\
\hline & & M & 9 & 6.11 & 0.41 & 9 & 24.80 & 1.81 \\
\hline \multirow{3}{*}{cleve} & \multirow{3}{*}{(13)} & m & 4 & 0.05 & 0.07 & 4 & - & 0.07 \\
\hline & & a & 8.62 & 3.32 & 0.32 & 7.89 & - & 5.14 \\
\hline & & M & 13 & 60.74 & 0.60 & 13 & - & 39.06 \\
\hline \multirow{3}{*}{hepatitis} & \multirow{3}{*}{(19)} & m & 6 & 0.02 & 0.04 & 4 & 0.01 & 0.04 \\
\hline & & a & 11.42 & 0.07 & 0.06 & 9.39 & 4.07 & 2.89 \\
\hline & & M & 19 & 0.26 & 0.20 & 19 & 27.05 & 22.23 \\
\hline \multirow{3}{*}{voting} & \multirow{3}{*}{(16)} & m & 3 & 0.01 & 0.02 & 3 & 0.01 & 0.02 \\
\hline & & a & 4.56 & 0.04 & 0.13 & 3.46 & 0.3 & 0.25 \\
\hline & & M & 11 & 0.10 & 0.37 & 11 & 1.25 & 1.77 \\
\hline \multirow{3}{*}{spect} & \multirow{3}{*}{(22)} & m & 3 & 0.02 & 0.02 & 3 & 0.02 & 0.04 \\
\hline & & a & 7.31 & 0.13 & 0.07 & 6.44 & 1.61 & 0.67 \\
\hline & & M & 20 & 0.88 & 0.29 & 20 & 8.97 & 10.73 \\
\hline
\end{tabular}

\section*{Part 3}

\section*{Assessing Heuristic Explanations}

\section*{Computing heuristic explanations}
- Many (highly visible) heuristic explanation approaches:
- LIME
- SHAP
- Anchor

\section*{Computing heuristic explanations}
- Many (highly visible) heuristic explanation approaches:
- LIME
- SHAP
- Anchor
- Q: How to assess the quality of heuristic explanations?

What is the global quality of heuristic explanations in light of computed local explanations?

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute local explanation for some instance

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute local explanation for some instance
- Use our abduction-based approach to assess whether local explanation holds globally, and

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute local explanation for some instance
- Use our abduction-based approach to assess whether local explanation holds globally, and
1. If it does not (i.e. it's optimistic), then fix it

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute local explanation for some instance
- Use our abduction-based approach to assess whether local explanation holds globally, and
1. If it does not (i.e. it's optimistic), then fix it
2. It it holds but has redundant literals (i.e. it's pessimistic), then refine it

\section*{Approach}
- Learn ML model
- Focused on boosted trees obtained with XGBoost
- Compute local explanation for some instance
- Use our abduction-based approach to assess whether local explanation holds globally, and
1. If it does not (i.e. it's optimistic), then fix it
2. It it holds but has redundant literals (i.e. it's pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

\section*{An example - zoo dataset}

- Example instance:

IF \(\quad\) (animal_name \(=\) pitviper) \(\wedge \neg\) hair \(\wedge \neg\) feathers \(\wedge\) eggs \(\wedge \neg\) milk \(\wedge\) \(\neg\) airborne \(\wedge \neg\) aquatic \(\wedge\) predator \(\wedge \neg\) toothed \(\wedge\) backbone \(\wedge\) breathes \(\wedge\) venomous \(\wedge \neg\) fins \(\wedge(\) legs \(=0) \wedge\) tail \(\wedge \neg\) domestic \(\wedge \neg\) catsize
THEN (class = reptile)

\section*{An example - zoo dataset}

- Explanation obtained with Anchor

IF \(\quad \neg\) hair \(\wedge \neg\) milk \(\wedge \neg\) toothed \(\wedge \neg\) fins
THEN (class \(=\) reptile)

\section*{An example - zoo dataset}

- But, explanation incorrectly holds on another instance (from training data)

IF \(\quad(\) animal_name \(=\) toad \() \wedge \neg\) hair \(\wedge \neg\) feathers \(\wedge\) eggs \(\wedge \neg\) milk \(\wedge\) \(\neg\) airborne \(\wedge \neg\) aquatic \(\wedge \neg\) predator \(\wedge \neg\) toothed \(\wedge\) backbone \(\wedge\) breathes \(\wedge\) \(\neg\) venomous \(\wedge \neg\) fins \(\wedge(\) legs \(=4) \wedge \neg\) tail \(\wedge \neg\) domestic \(\wedge \neg\) catsize
THEN (class = amphibian)

\section*{Some results}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Dataset} & \multirow{3}{*}{(\# unique)} & \multicolumn{6}{|c|}{Explanations} \\
\hline & & \multicolumn{2}{|l|}{optimistic} & \multicolumn{2}{|l|}{pessimistic} & \multicolumn{2}{|l|}{realistic} \\
\hline & & LIME & Anchor & LIME & Anchor & LIME & Anchor \\
\hline adult & (5579) & 61.3\% & 80.5\% & 7.9\% & 1.6\% & 30.8\% & 17.9\% \\
\hline lending & (4414) & 24.0\% & 3.0\% & 0.4\% & 0.0\% & 75.6\% & 97.0\% \\
\hline recidivism & (3696) & 94.1\% & 99.4\% & 4.6\% & 0.4\% & 1.3\% & 0.2\% \\
\hline compas & (778) & 71.9\% & 84.4\% & 20.6\% & 1.7\% & 7.5\% & 13.9\% \\
\hline german & (1000) & 85.3\% & 99.7\% & 14.6\% & 0.2\% & 0.1 \% & 0.1 \% \\
\hline
\end{tabular}

\section*{Some results}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Dataset} & \multirow{3}{*}{(\# unique)} & \multicolumn{6}{|c|}{Explanations} \\
\hline & & \multicolumn{2}{|l|}{optimistic} & \multicolumn{2}{|l|}{pessimistic} & \multicolumn{2}{|l|}{realistic} \\
\hline & & LIME & Anchor & LIME & Anchor & LIME & Anchor \\
\hline adult & (5579) & 61.3\% & 80.5\% & 7.9\% & 1.6\% & 30.8\% & 17.9\% \\
\hline lending & (4414) & 24.0\% & 3.0\% & 0.4\% & 0.0\% & 75.6\% & 97.0\% \\
\hline recidivism & (3696) & 94.1\% & 99.4\% & 4.6\% & 0.4\% & 1.3\% & 0.2\% \\
\hline compas & (778) & 71.9\% & 84.4\% & 20.6\% & 1.7\% & 7.5\% & 13.9\% \\
\hline german & (1000) & 85.3\% & 99.7\% & 14.6\% & 0.2\% & 0.1 \% & 0.1 \% \\
\hline
\end{tabular}

How often are local explanations consistent with prediction?

\section*{Approach}
- Exploit ML model with SAT-based encoding
- In our case: used binarized neural networks (BNNs)
- Compute local explanations with Anchor (similar results with LIME or SHAP)
- Use (approximate) model counter to assess how often explanation is consistent with prediction

\section*{Preliminary results}

- Anchor often claims \(\approx 99 \%\) precision

\section*{Preliminary results}

- Anchor often claims \(\approx 99 \%\) precision; out results demonstrate otherwise

\section*{Part 4}

\section*{Explanations vs. Adversarial Examples}
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPS and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive
- We recently proposed a (first) link between XPs and AEs
- Vast body of work on computing explanations (XPs)
- Mostly heuristic approaches, with recent rigorous solutions
- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches
- Can XPs and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive
- We recently proposed a (first) link between XPs and AEs
- The work exploits hitting set duality, first studied in model-based diagnosis

\section*{A well-known example}
[RN10]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Example} & \multicolumn{10}{|c|}{Input Attributes} & \multirow[t]{2}{*}{Goal WillWait} \\
\hline & Alt & Bar & Fri & Hun & Pat & Price & Rain & Res & Type & Est & \\
\hline \(\chi_{1}\) & Yes & No & No & Yes & Some & \$\$\$ & No & Yes & French & 0-10 & \(y_{1}=\mathrm{Yes}\) \\
\hline \(x_{2}\) & Yes & No & No & Yes & Full & \$ & No & No & Thai & 30-60 & \(y_{2}=\mathrm{No}\) \\
\hline \(\chi_{3}\) & No & Yes & No & No & Some & \$ & No & No & Burger & 0-10 & \(y_{3}=\mathrm{Yes}\) \\
\hline \(x_{4}\) & Yes & No & Yes & Yes & Full & \$ & Yes & No & Thai & 10-30 & \(y_{4}=\mathrm{Yes}\) \\
\hline \(x_{5}\) & Yes & No & Yes & No & Full & \$\$\$ & No & Yes & French & >60 & \(y_{5}=\mathrm{No}\) \\
\hline \(\chi_{6}\) & No & Yes & No & Yes & Some & \$\$ & Yes & Yes & Italian & 0-10 & \(y_{6}=\mathrm{Yes}\) \\
\hline \(x_{7}\) & No & Yes & No & No & None & \$ & Yes & No & Burger & 0-10 & \(y_{7}=\mathrm{No}\) \\
\hline \(x_{8}\) & No & No & No & Yes & Some & \$\$ & Yes & Yes & Thai & 0-10 & \(y_{8}=\mathrm{Yes}\) \\
\hline \(\chi_{9}\) & No & Yes & Yes & No & Full & \$ & Yes & No & Burger & >60 & \(y_{9}=\mathrm{No}\) \\
\hline \(\chi_{10}\) & Yes & Yes & Yes & Yes & Full & \$\$\$ & No & Yes & Italian & 10-30 & \(y_{10}=\mathrm{No}_{0}\) \\
\hline \(\mathrm{x}_{11}\) & No & No & No & No & None & \$ & No & No & Thai & 0-10 & \(y_{11}=\mathrm{N}_{0}\) \\
\hline \(\chi_{12}\) & Yes & Yes & Yes & Yes & Full & \$ & No & No & Burger & 30-60 & \(\mathrm{y}_{12}=\mathrm{Yes}\) \\
\hline
\end{tabular}

\section*{A well-known example (Cont.)}
- 10 features:
\(\{\mathrm{A}(\) Iternate \(), \mathrm{B}(\) ar), W(eekend), H(ungry), Pa (trons), \(\operatorname{Pr}(\) ice \(), \operatorname{Ra}(\) in), \(\operatorname{Re}(\) serv.), T (ype), E(stim.) \(\}\)
- Example instance (\(x_{1}\), with outcome \(\left.y_{1}=Y e s\right)\) :
\[
\{\mathrm{A}, \neg \mathrm{~B}, \neg \mathrm{~W}, \mathrm{H},(\mathrm{~Pa}=\text { Some }),(\operatorname{Pr}=\$ \$ \$), \neg \mathrm{Ra}, \mathrm{Re},(\mathrm{~T}=\text { French }),(\mathrm{E}=0-10)\}
\]
- A possible decision set (obtained with some off-the-shelf tool, \& function*):
\[
\begin{array}{lll}
\text { IF } & (\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60) & \text { THEN } \\
\text { IF } & (\text { Wait }=Y \mathrm{Yes}) \\
\text { IF } & \neg \neg(\operatorname{Pr}=\$ \$ \$) \wedge \neg(\mathrm{E}=>60) & \text { THEN } \\
\text { (Wait }=\mathrm{Yes}) \\
\text { IF } & \text { TH } \wedge \neg(\mathrm{Pa}=\text { Some }) & \text { THEN } \tag{R5}\\
\text { IF } & (\mathrm{E}=>60) & \text { THEN } \\
\text { (Wait }=\mathrm{No}) \\
\text { IF } & \neg(\mathrm{Pa}=\text { Some }) \wedge(\operatorname{Pr}=\$ \$ \$) & \text { THEN } \\
(\text { Wait }=\mathrm{No})
\end{array}
\]

\section*{Counterexamples \& breaks}

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]
- Due to (R5), a counterexample is:
\[
\neg(\mathrm{Pa}=\text { Some }) \wedge(\mathrm{Pr}=\$ \$ \$)
\]

\section*{Counterexamples \& breaks}
- Counterexamples:

A subset-minimal set \(\mathcal{C}\) of literals is a counterexample (CEx) to a prediction \(\pi\), if \(\mathcal{C} \vDash(\mathcal{M} \rightarrow \rho)\), with \(\rho \in \mathbb{K} \wedge \rho \neq \pi\)
- Breaks:

A literal \(\tau_{i}\) breaks a set of literals \(\mathcal{S}\) (each denoting a different feature) if \(\mathcal{S}\) contains a literal inconsistent with \(\tau_{i}\)
- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:
\[
(\mathrm{Pa}=\text { Some }) \wedge \neg(\mathrm{E}=>60)
\]
- Due to (R5), a counterexample is:
\[
\neg(\mathrm{Pa}=\text { Some }) \wedge(\mathrm{Pr}=\$ \$ \$)
\]
- XP \(\mathcal{S}_{1}=\{(\mathrm{Pa}=\) Some \(), \neg(\mathrm{E}=>60)\}\) breaks CEx \(\mathcal{S}_{2}=\{\neg(\mathrm{Pa}=\) Some \(),(\operatorname{Pr}=\$ \$ \$)\}\) and vice-versa

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP
\(\therefore\) XPS can be computed from all CEx's (by HSD) and vice-versa

\section*{Some preliminary results}
1. Relationship between XPs with CEx's:
- Each XP breaks every CEx
- Each CEx breaks every XP
\(\therefore\) XPS can be computed from all CEx's (by HSD) and vice-versa
2. Given instance \(\mathcal{I}\), an AE can be computed from closest CEX

\section*{Revisiting the example}
- Restaurant dataset
- ML model is decision set (shown earlier)
- Prediction is (Wait \(=\) Yes)
- Global explanations:
1. \((\mathrm{Pa}=\) Some \() \wedge \neg(\mathrm{E}=>60)\)
2. \(W \wedge \neg(\operatorname{Pr}=\$ \$ \$) \wedge \neg(E=>60)\)
- Counterexamples:
1. \(\neg \mathrm{W} \wedge \neg(\mathrm{Pa}=\) Some \()\)
2. \((E=>60)\)
3. \(\neg(\mathrm{Pa}=\) Some \() \wedge(\mathrm{Pr}=\$ \$ \$)\)
- The XP's break the CEx's and vice-versa

\section*{Conclusions \& roadmap}
- Glimpse of work on learning interpretable ML models (using SAT)
- Smallest decision trees \& decision sets
- New approach for finding explanations of black-box models by computing prime implicants (using ILP\&SMT)
- Results for NNs and for BTs
- Hitting set duality between explanations and counterexamples
- Can compute CEx's from XP's and AEs from CEx's

\section*{Conclusions \& roadmap}
- Glimpse of work on learning interpretable ML models (using SAT)
- Smallest decision trees \& decision sets
- New approach for finding explanations of black-box models by computing prime implicants (using ILP\&SMT)
- Results for NNs and for BTs
- Hitting set duality between explanations and counterexamples
- Can compute CEx's from XP's and AEs from CEx's
- Our remit @ ANITI:

To explain, to verify \& to learn ML models
with guarantees of rigor, by using AR tools \& techniques

Questions?

\section*{References i}
[BHO09] Christian Bessiere, Emmanuel Hebrard, and Barry O'Sullivan.
Minimising decision tree size as combinatorial optimisation.
In CP, pages 173-187, 2009.
[FJ18] Matteo Fischetti and Jason Jo.
Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296-309, 2018.
[HRS19] Xiyang Hu, Cynthia Rudin, and Margo I. Seltzer.
Optimal sparse decision trees.
CoRR, abs/1904.12847, 2019.
[INM19a] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
Abduction-based explanations for machine learning models.
In AAAI, pages 1511-1519, 2019.
[INM19b] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva.
On validating, repairing and refining heuristic ML explanations.
CoRR, abs/1907.02509, 2019.
[INMS19] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.
On relating explanations and adversarial examples.
In NeuIPS, 2019.

\section*{References ii}
[IPNM18] Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva.
A SAT-based approach to learn explainable decision sets.
In IJCAR, pages 627-645, 2018.
[KBD \({ }^{+}\)17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
In CAV, pages 97-117, 2017.
[KKRR92] Anil P. Kamath, Narendra Karmarkar, K. G. Ramakrishnan, and Mauricio G. C. Resende. A continuous approach to inductive inference.
Math. Program., 57:215-238, 1992.
[LBL16] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec.
Interpretable decision sets: A joint framework for description and prediction.
In KDD, pages 1675-1684, 2016.
[LL17] Scott M. Lundberg and Su-In Lee.
A unified approach to interpreting model predictions.
In NIPS, pages 4765-4774, 2017.
[NH10] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann machines.
In ICML, pages 807-814, 2010.

\section*{References iii}
[NIPM18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva.
Learning optimal decision trees with SAT.
In IJCAI, pages 1362-1368, 2018.
[NSM+19] Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and Joao Marques-Silva.
Assessing heuristic machine learning explanations with model counting.
In SAT, pages 267-278, 2019.
[Rei87] Raymond Reiter.
A theory of diagnosis from first principles.
Artif. Intell., 32(1):57-95, 1987.
[RN10] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach.
Pearson Education, 2010.
[RSG16] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should I trust you?": Explaining the predictions of any classifier.
In KDD, pages 1135-1144, 2016.
[RSG18] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations.
In AAAI, pages 1527-1535. AAAI Press, 2018.

\section*{References iv}
[VNP+19] Helene Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre Schaus. Learning optimal decision trees using constraint programming. In CP, 2019.
[VZ19] Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear program formulation. In AAAI, pages 1625-1632, 2019.```

