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A disclaimer - recent & not so recent work...
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Recent & ongoing ML successes

Q) DeepMind ‘
Gt AlphaGo

L
~ rd

AlphaGo Zero & Alpha Zero é‘\
hitpsa/ien. wikipedia.org/wiki/Wayms

@
Image & Speech Recognition . .
ILSVRC top-5 Error on ImageNet
s AlexNet ) 9 5 ;
I I O / .
Human 2015 2016 017

hitps:/irwikiped kiPey bot
2010 2011 2012 2013 2014 & wwikipedia.org/wil pper_(robot)

http:/igradientscience.org/intro_adversarial/
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But ML models are brittle — adversarial examples

+.007 x

Goodfellow et al., ICLR'15
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But ML models are brittle — adversarial examples

Eykholt et al’18 Aung et al’17
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Adversarial examples can be very problematic

Original image Adversarial noise Adversarial example

Dermatoscopic image of a benign Perturbation computed Combined image of nevus and
melanocytic nevus, along with the by a common adversarial attack perturbation and the
diagnostic probability computed attack technique. diagnostic probabilities from

by a deep neural network. the same deep neural network.

[ | Benign | Benign
| Malignant I | Malignant

Model confidence

Model confidence
Finlayson et al, Nature 2019
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Also, some ML models are interpretable
decision|rule lists|sets
decision trees; ...

‘ EX. ‘ Vacation (V) ‘ Concert (C) ‘ Meeting (M) ‘ Expo (E) H Hike (H)
e 0 0 1 0 0
es 1 0 0 0 1
es3 0 0 1 1 0
ey 1 0 0 1 1
es 0 1 1 0 0
€6 0 1 1 1 0
er 1 1 0 1 1

6/58



Also, some ML models are interpretable

decision|rule lists|sets if =Meeting then Hike
decision trees; ... if =Vacation then —Hike
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But other ML models are not (interpretable)...
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But other ML models are (MEEE )

Why does the NN predict a cat?

Which features matter? Are there general explanations??
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ML meets AR
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ML meets AR

“Combining machine learning with
: o - logic is the challenge of the day”
.' v oy oy
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ML meets AR - a challenge for the next decade?

“Combining machine learning with
: o - logic is the challenge of the day”
.' v oy oy

L\ . 1 . Y *—p
1 s t & [ .. . Vat &
f . Py ® P
X e y : S A o . &
... ¥ 8o VAVES & LX o.
* «
o] % .. O I's A »
¢ o/ o\ x ¥ '.. ¥
<3 peIAra AT S ta heuristics; portfolios;
L Exploft ML abstractions; tactics; ... - Improve AR

(Efficiency)
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v 3V ATy Ay
E . AP | o _q . . .
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logic is the challenge of the day”

|4
o.:‘ ...-".. ? S ..:-...'... :.
& . . » * | ¥
‘.’ '..-.o ... : % ~.. :..‘ XN
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ML meets AR - a challenge for the next decade?

v 3V ATy Ay
E . AP | o _q . . .
V'V ac LT SASINS T = “Combining machine learning with
J o, D .. e SV »V

logic is the challenge of the day”

=
i . | X * ]
.:‘-.".. . ....... ..
& . . » * *
@ - e ® L 3 = OA > 3 X
..o.... .o'.........
. ..' .. ,..-. '.", heuristics; portfolios;
¢ e v abstractions; tactics; ... Im
. _ prove AR
Exploit ML P . (Efficiency)
simplify system design
verification; synthesis;
explanations; ...
Exploit AR Improve ML

build trust; debug; (Robustness)
aid decision making
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What is eXplainable Al (XAI)?

Machine Learning System

9 @ »Cat
ﬂ\\ : Q /: Q D>
na SN i P g
il o 2 o : o e
13
9 @ I
This is a cat:

¢ It has fur, whiskers, and claws.
¢ It has this feature:

This is a cat.
Rl

Current Explanation XAl Explanation
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Why XAI?

REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46[EC (General Data Protection Regulation)

(Text with EEA relevance)
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that the European Union’s new General
Data Protection Regulation will have on
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across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,
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cantly affect” users. When put into
practice, the law may also effectively cre-
ate a right to explanation, whereby a
user can ask for an explanation of an
Ig ic decision that if
affects them. We argue that while this
law may pose large challenges for indus-
try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.
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of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46[EC (General Data Protection Regulation)

(Text with EEA relevance)

European Union regulations on algorithmic decision-making e . Treteraecon
and a “right to explanation” A new bill would force companies to check their

algorlthms for blas

ial Intelligence (XAI)

Bryce Goodman,'* Seth Flaxman,” Algorithmic Accountability Act

W We summarize the potential impact| Explainable Arti

that the European Union’s new General
Data Protection Regulation will have on
the routine use of machine-learning|

algorithms. Slated to take effect as law
across the European Union in 2018, it
will place restrictions on automated
individual decision making (that is,

algorithms that m_ake decisions 'ba.s:ed EXPU«lN/\HlE ARTIFICIAL |NTEH|E[NEE

on user-level predictors) that “signifi-
cantly affect” users. When put into . T T T
practice, the law may also effectively cre- Fyiz  Fyis  Fylo  Fy20  Fy2i

ate a right to explanation, whereby a

user can ask for an explanation of an

ic decision that signif
aﬂ"ects them. We argue that while this
law may pose large challenges for indus-
try, it highlights opportunities for com-
puter scientists to take the lead in
designing algorithms and evaluation
frameworks that avoid discrimination
and enable explanation.

David Gunning
DARPA/I20
Program Update November 2017
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Why XAI?

W We summarize the potential imy §
that the European Union’s new Gene
Data Protection Regulation will have

inc

puter scientists to take the lead in
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XAl & EU guidelines

m Search

European Commission > Strategy > Digital Single Market > Reports and studies >

Digital Single Market

REPORT / STUDY | 8 April 2019

Ethics guidelines for trustworthy Al

About Artificial
Following the publication of the draft ethics guidelines in intelligence
December 2018 to which more than 500 comments were
received, the independent expert group presents today their | Blog posts

ethics guidelines for trustworthy artificial intelligence. |
News
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XAl & the principle of explicability

European Commission > Strategy > Digital Single Market > Reports 204

Digital Single Market
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XAl & the principle of explicability

European Commission > Strategy > Digital Single Market > Reports 204

Digital Single Market

av el

\e
on‘es‘ cO! W urat
<1 A pie

. ca oW
ire s ) ee ¥ 0!
reaV! 1 O™ e el i et ents were

14\
.. group presents today their

Sfthe con® ¢ trustworthy artificial intelligence.

& tens of recent papers!

About Artificial
intelligence

| Blog posts

| News
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Today'’s talk

Goals: Overview our work at intersection of AR & ML

- Part #1: Learning interpretable models (brief) [IPNM18, NIPM18

- Additional detail in our IJCAI"8 & IJCAR18 papers

- Part #2: Rigorous explanations for black-box models [INM192

- Additional detail in our AAAI'19 paper

- Part #3: Assessing heuristic explanations (brief) [NsMF19, INM19b

- Additional detail in our SAT'19 & CoRR19 papers

- Part #4: Relating explanations with adversarial examples (brief) (INMST

- Additional detail in our NIPS"19 paper
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Part 1

Learning Interpretable ML Models



Background
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Classification problems |

‘ Ex. ‘ Vacation (V) ‘ Concert (C) Meeting (M) Expo (E) H Hike (H)
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
es 0 1 1 0 0
65} 0 1 1 1 0
er 1 1 0 1 1

- Training data (or examples/instances): £ = {ej,...,eu}
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ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
€5 0 1 1 0 0
65} 0 1 1 1 0
er 1 1 0 1 1
- Training data (or examples/instances): £ = {ej,...,eu}

- Binary features: 7 = {f1,...,fx}
- Literals: f; and —f;

- Feature space: U 2 [['_, {f;, ~f}

- Binary classification: C = {¢cy =0,¢; = 1}
- & partitioned into £~ and £
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Classification problems I

‘ Ex. ‘ Vacation (V) ‘ Concert (C) Meeting (M) Expo (E) H Hike (H)
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
es 0 1 1 0 0
65} 0 1 1 1 0
er 1 1 0 1 1

- eq € & represented as a 2-tuple (7q, <q)
- mq € U: literals associated with the example
- ¢ € {0,1} is the class of example
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Classification problems I

‘ Ex. ‘ Vacation (V) ‘ Concert (C) Meeting (M) Expo (E) H Hike (H)
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
es 0 1 1 0 0
65} 0 1 1 1 0
er 1 1 0 1 1

- eq € & represented as a 2-tuple (7q, <q)

- mq € U: literals associated with the example
- ¢ € {0,1} is the class of example

- Aliteral [, on a feature f, [, € {f;, =/}, discriminates an example eq if mq[r] = I,
- le. feature r takes the value opposite to the value in the tuple of literals of the example
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‘ Ex. ‘ Vacation (V) ‘ Concert (C) ‘ Meeting (M) ‘ Expo (E) H Hike (H) ‘
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
es 0 1 1 0 0
65} 0 1 1 1 0
er 1 1 0 1 1

- Binary features: F = {fi1,f2,fs,f1}
AV HRACHAMandfi 2 E

- e Is represented by the 2-tuple (m1,¢1),
* T = (“V7 —|C, M7 —|E)
61 =0

- Literals V, C, =M and E discriminate e;

U = {V,~V} x {C,=C} x {M, =M} x {E,~E}
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Goal of explainable classification - our take

Given training data, learn set of DNFs that correctly classify that data, perform
suitably well on unseen data, and offer human-understandable explanations for
the predictions made
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Decision Sets
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I[temsets & decision sets

. . , %
- Given F, an itemset = is an element of Z = [],_, {fr, —fr, u}
- urepresents a value
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I[temsets & decision sets

. . , %
- Given F, an itemset = is an element of Z = [],_, {fr, —fr, u}
- urepresents a value

- Aruleis a 2-tuple (m,¢), with itemset = € Z, and class ¢ € C
Rule (m,<) interpreted as:

IF all specified literals in 7 are true, THEN pick class ¢

- A decision set $ is a finite set of rules — unordered

- Arule of the form © £ (), <) denotes the default rule of a decision set $

- Default rule is optional and used only when other rules do not apply on some feature space
point

20/58



Example

‘ Ex. ‘ Vacation (V) Concert (C) Meeting (M) Expo (E) H Hike (H)
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
€5 0 1 1 0 0
es 0 1 1 1 0
er 1 1 0 1 1

Rule 1: ((u,u, =M, u), cq)
- Meaning: if =Meeting then Hike

Rule 2: ((=V,u,u,u), o)
- Meaning: if =Vacation then —Hike
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Example

‘ Ex. ‘ Vacation (V) Concert (C) Meeting (M) Expo (E) H Hike (H)

el

es

€3

€4

€6

rlo|lo|r|o|r|o

r|lr|r|lo|lo|lo|o

o|lr|r|lo|lr|o|r

Rrlr|o|r|r|o|o
mplo|lo|r|o|r|o

- Rule 1: ((u,u, =M, u), cq)
- Meaning: if =Meeting then Hike

- Rule 2: ((=V,u,u,u), Co)
- Meaning: if =Vacation then —Hike

- Default rule: (0, co)
- Meaning: if all other rules do not apply, then pick —Hike

21/58



Issue with unordered rules

- Itemsets w1, m € Z clash, 7y Ny = (), if for some coordinate r:
- m[r] = fr and w2[r] = —f;, or m1[r] = —~f; and m2[r] = f;
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Issue with unordered rules - overlap

- Itemsets w1, m € Z clash, 7y Ny = (), if for some coordinate r:
- m[r] = fr and w2[r] = —f;, or m1[r] = —~f; and m2[r] = f;

- Two rules r; = (m1,¢1) and ro = (e, 2) overlap if m; and m do not clash, i.e.

mﬁm#(ﬁ

- Can be restricted to some set, eg. &
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1 N o 7& @
- Can be restricted to some set, eg. &
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Issue with unordered rules - overlap

- Itemsets w1, m € Z clash, 7y Ny = (), if for some coordinate r:
- m[r] = fr and w2[r] = —f;, or m1[r] = —~f; and m2[r] = f;

- Two rules r; = (m1,¢1) and ro = (e, 2) overlap if m; and m do not clash, i.e.
1 N o 7& @
- Can be restricted to some set, eg. &

- Forms of overlap:

@: overall where rules agree in prediction
- ©&: overlap where rules disagree in prediction

fany

- Our goal:

Minimize number of rules in decision set, and provide guarantees in terms of
overlap, namely &-overlap
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Example

- Decision set:

Ex. ‘ Vacation (V) Concert (C) Meeting (M) Expo (E) H Hike (H)
ey 0 0 1 0 0
ey 1 0 0 0 1
es 0 0 1 1 0
ey4 1 0 0 1 1
€5 0 1 1 0 0
es 0 1 1 1 0
er 1 1 0 1 1

{((=V,u,u,u), Co), ((u,u, =M, u),c1)}

- No £%-overlap
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Example

‘ Ex. ‘ Vacation (V) Concert (C) Meeting (M) Expo (E) H Hike (H)

el

es

€3

€4

€6

rlo|lo|r|o|r|o

r|lr|r|lo|lo|lo|o

olr|r|o|r|o|r
Rrlr|o|r|r|o|o
mplo|lo|r|o|r|o

- Decision set:
{((=V,u,u,u), o), ((u,u, =M, u), 1)}
- No £%-overlap
- But, there exists overlap in feature space
- ©-overlap for (=V,=C,=M,=E) e U\ €
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Example

‘ Ex. ‘ Vacation (V) Concert (C) Meeting (M) Expo (E) H Hike (H)

el

es

€3

€4

€6

rlo|lo|r|o|r|o

r|lr|r|lo|lo|lo|o

olr|r|o|r|o|r
Rrlr|o|r|r|o|o
mplo|lo|r|o|r|o

- Decision set:
{((=V,u,u,u), Co), ((u,u, =M, u),c1)}
- No £%-overlap
- But, there exists overlap in feature space
- ©-overlap for (=V,=C,=M,=E) e U\ €
- However, there exists no ¢/“-overlap for decision set:
{((V,u,u,u),c1), ((0V,u,u,u),Co)}
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Succinct explanations

- If a rule fires, the set of literals represents the explanation for the predicted class
- Explanation is succinct : only the literals in the rule used; independent of example

- For the default class, must pick one falsified literal in every rule that predicts a different
class
- Explanation is not succinct : explanation depends on each example

- Obs: Uninteresting to predict ¢; as negation of ¢, (and vice-versa)
- Explanations also not succinct

2458



Stating our goals

- Assumptions:
- Represent £~ with Boolean function E°
- True for each example £~
- Represent &7 with Boolean function E*
- True for each example £+

- Also, let E° AE E L
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Stating our goals

- Assumptions:
- Represent £~ with Boolean function E°
- True for each example £~
- Represent &7 with Boolean function E*
- True for each example £+

- Also, let E° AE E L

- DNF functions to compute:
- F° for predicting co, while ensuring E° = F°
- F! for predicting c¢;, while ensuring £' = F*

|/11‘/12‘ “““““““““““ ‘/ﬂ(l
|’21 "22‘ “““““““““““ ‘/2;(‘
R I
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An ideal model - MinDS,

. MmDSoZ
Find the smallest DNF representations of Boolean functions F and F', measured in the
number of terms, such that:

1. B0k FO
2. ELEF!
3F e PEL

- No U“-overlap
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An ideal model - MinDS,

. MmDSoZ
Find the smallest DNF representations of Boolean functions F and F', measured in the
number of terms, such that:

1. B0k FO
2. ELEF!
3F e PEL

- No U“-overlap

- Obs: MinDS, ensures succinct explanations
- Computes F° and F* (i.e. no negation) and no default rule

- Complexity-wise:
- MinDSy € 3
- A conjecture: MinDSy hard for 5 (from late 2017)
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Curbing our expectations |

- MinDS,: Minimize FY, given F' = E' constant, and such that
1. E°=F°
2. PAEYE L
- No ©-overlap;
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- MinDS,: Minimize FY, given F' = E' constant, and such that
1. E°=F°
2. PAEYE L
- No ©-overlap;
- No succinct explanations for F!

- MinDSs: Same as MinDS,, but target F! given F? = E° constant

- Also, no &-overlap;
- No succinct explanations for F°

- MinDSsy: Minimize both FO and F', such that
1. E°E P
2. E'EF
3. PAEE L
4 FFAEE L
- Also, no £%-overlap; but (U \ £)®-overlap may exist
- All explanations succinct
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Curbing our expectations Il

- MinDS;y: Minimize both F® and F!, such that
1. E°EF°
2. E'EF
3. FAAFPE L
- No U4®-overlap
- Default rule may be required for points in i \ €
- And, default rule explanations not succinct
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Curbing our expectations Il

- MinDS;y: Minimize both F® and F!, such that
1. E°=F°
2. E'EF!
3. FEAFE L
- No U4®-overlap
- Default rule may be required for points in i \ €
- And, default rule explanations not succinct

- Complexity-wise:
- Decision formulations of MinDSy, MinDSs, MinDS3, MinDS4 are complete for NP

- In principle, could be solved with MaxSAT
- But no closed MaxSAT models for now
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Experimental setup & initial results

- 49 datasets from the PMLB repository
- Assessment of MinDS;, MinDS, and MP92, w/ and w/o SBPs

- A basic model MP92 developed in the 90s (KKRR92]
- We devised SBPs for the MinDS and the MP92 models

- Comparison with (state of the art) IDS (Leis

- Heuristic approach, using smooth local search
- Default settings & additional settings

- All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

- Timeout of 600s and memout of 10GB
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Experimental setup & initial results

- 49 datasets from the PMLB repository

- Assessment of MinDS;, MinDS, and MP92, w/ and w/o SBPs
- A basic model MP92 developed in the 90s [KKRR92]
- We devised SBPs for the MinDS and the MP92 models

- Comparison with (state of the art) IDS (Leis

- Heuristic approach, using smooth local search
- Default settings & additional settings

- All experiments on an Intel Xeon E5-2630 2.60GHz processor with 64GB of memory,
running Ubuntu Linux

- Timeout of 600s and memout of 10GB

MP92 MP92+SBP MinDS; MinDS2+SBP MinDS; MinDSy+SBP IDS-supp0.2 1DS-supp0.5

42 45 42 45 6 6 0 2
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A Word on Decision Trees
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Propositional encodings for DTs

- Proposed tight encoding for computing smallest decision tree NIPMIS
- Encoding also serves to pick the structure of the binary tree

- Encoding much tighter (and more general) than earlier work (5H005]
’ SAT ‘ Weather ‘ Mouse ‘ Cancer ‘ Car ‘ Income
DT2* 27K 3.5M 92G 842M 354G

DT1 190K 1.2M 5.2M 4.1M 1.2G

- Several recent alternative proposals [vZ19, HRS19, VNP1
- At least one outperforms our approach (vnpt19]
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Part 2

Computing Rigorous Explanations



Our approach AAAI'19

‘ Component ‘ Representation ‘ Notes

Conjunction of literals, i.e.
cube

Model encoding, e.g.
SAT/SMT/CP/ILP/FOL

£ Predicted class, i.e. literal
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Relating with abduction

What we know CANFEE
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Relating with abduction

What we know CANFEE

For any instance consis-
Propositional tent with Cn, and given the
Abduction Theory model F, the prediction is & !
Manifestation

Hypotheses

Goal Find Cn CC, st CaoNFE NCnANFEE
But, Cm AN F¥ L is tautology

And, Con NFEEITCnE F=E

Thus, Cm is prime implicant of 7 — &

We can compute subset-/cardinality-minimal (prime) implicants - i.e. explanations!
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Computing one subset-minimal explanation

Input: , input cube C, prediction &
Output: Subset-minimal explanation Cp,, C C
begin

for e (C :

if Entails(C\ {l}, F = &) :
C+Cc\{l}

return C

end
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Computing one subset-minimal explanation

Input: , input cube C, prediction &
Output: Subset-minimal explanation Cp,, C C

begin
forleC :
if Entails(C\ {l}, F = &) :
C+C\{l}
return C

end

Computes
some prime
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Computing one cardinality-minimal explanation

Input: , input cube C, prediction &
Output: Cardinality-minimal explanation Cp,, C C
L+ 0
while true do
Cm < MinimumHS(T") /] Implicit hitting set dualization
if Entails(Cp, F — &) =
return Cp,
else:

u < GetAssignment()
Cr + PickFalselLits(C \ Cm, 1)
I'«TUCr

end
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Computing one cardinality-minimal explanation

Input: , input cube C, prediction &
Output: Cardinality-minimal explanation Cp,, C C
L+ 0
while true do
Cm < MinimumHS(T") /] Implicit hitting set dualization
if Entails(Cp, F — &) =
return Cp,
else:

u < GetAssignment()
Cr + PickFalselLits(C \ Cm, 1)
I'«TUCr

end Computes

smallest

prime
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Encodings NNs

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —
INnput #3 —

Input #4 —

- Each layer (except first) viewed as a block

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x’ and activation function
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Encodings NNs

Input Hidden Output
layer layer layer

Input #1 —
Input #2 —

INnput #3 —

eeeeeeee

Input #4 —

- Each layer (except first) viewed as a block

- Compute x’ given input x, weights matrix A, and bias vector b
- Compute output y given x’ and activation function

- Each unit uses a Rel.U activation function INH10]
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Encoding NNs using MILP

Computation for a NN RelLU block:

xX'=A-x+b

y = max(x’,0)
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Encoding NNs using MILP

Computation for a NN RelLU block:

xX'=A-x+b

y = max(x’,0)

Encoding each block:

n
ZG/,/Xﬂr bi=yi—s;
j=1

zi=1—-y;<0
Zi=0—5<0

yi > 0,5, >0,z € {0,1}

Simpler encodings exist, but not as effective
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Sample of experimental results

Minimal explanation Minimum explanation
Dataset
size SMT(s) MILP(s) size SMT(s) MILP(s)
m 1 0.03 0.05 —
australian (14) a 8.79 1.38 0.33 -
M 14 7.00 1.43 -
m 13 0.13 0.14 =
backache (32) a 19.28 5.08 0.85 — —
M 26 22.21 2.75 = =
m S 0.02 0.04 S 0.02 0.03
breast-cancer (9) a  5.15 0.65 0.20 4.86 2.18 0.41
M 9 6.11 0.41 9 24.80 1.81
m 4 0.05 0.07 4 0.07
cleve (13) a 8.62 3832 0.32 7.89 5.14
M 13 60.74 0.60 13 39.06
m 6 0.02 0.04 4 0.01 0.04
hepatitis (19) a 11.42 0.07 0.06 9.39 1.07 2.89
M 19 0.26 0.20 19 27.05 22203
m 3 0.01 0.02 3 0.01 0.02
voting (16) a 4.56 0.04 0.13 3.46 0.3 0.25
M 11 0.10 0.37 11 1.25 1.77
m 3 0.02 0.02 3 0.02 0.04
spect (22) a 7.31 0.13 0.07 6.44 1.61 0.67
M 20 0.88 0.29 20 8.97 10.73

39/58



Part 3

Assessing Heuristic Explanations



Computing heuristic explanations

- Many (highly visible) heuristic explanation approaches:
- LIME RSG16]
- SHAP (L)
- Anchor [RSG18]
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Computing heuristic explanations

- Many (highly visible) heuristic explanation approaches:
- LIME RSG16]
- SHAP (L)
- Anchor [RSG18]

- Q: How to assess the quality of heuristic explanations? [NsM-+19, INM19b]
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A first experiment CoRR'19

What is the global quality of heuristic explana-
tions in light of computed local explanations?
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- Learn ML model
- Focused on boosted trees obtained with XGBoost
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- Learn ML model
- Focused on boosted trees obtained with XGBoost

- Compute local explanation for some instance

- Use our abduction-based approach to assess whether local explanation holds globally,
and
1. If it does not (i.e. it's optimistic), then fix it
2. Itit holds but has redundant literals (i.e. it's pessimistic), then refine it
3. Otherwise, report the local explanation as a global explanation

43/58



An example - zoo dataset

mammal reptile

yes

-0.0550289042 0.311460674

venomous?

0.108808279 -0.0536704734 -0.0444687866

44 [ 58



An example - zoo dataset

0.19463414

-0.0549824126

[reptitel
reptile

0.028965516
-0.0444687866

yes

venomous?

yes

0.311460674
-0.0536704734

-0.0550289042
0.108808279

Example instance:

IF (animal_name = pitviper) A —hair A —feathers A eggs A =milk A
—airborne A —aquatic A predator A —toothed A backbone A breathes A
venomous A —=fins A (legs = 0) A tail A ~domestic A —catsize

THEN (class = reptile)
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An example - zoo dataset

0.19463414

0.007924526

~|invertebrate L mammal o g reptile
es P : es
; : ’

-0.0549824126

venomous?

0.108808279 -0.0536704734 -0.0444687866

Explanation obtained with Anchor [Rsc]

IF —hair A =milk A =toothed A —fins
THEN (class = reptile)
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An example - zoo dataset

0.19463414

-0.0549824126
[reptitel
reptile

yes

yes

venomous?

-0.0550289042 0.311460674 0.028965516

0.108808279 -0.0536704734 -0.0444687866

- But, explanation incorrectly holds on another instance (from training data)

IF (animal_name = toad) A —hair A —feathers A eggs A -milk A
—airborne A —maquatic A —predator A ~toothed A backbone A breathes A
—venomous A —=fins A (legs = 4) A —tail A =domestic A —catsize

THEN (class = amphibian)

44 [ 58



Explanations

Dataset  (# unique) optimistic realistic
LIME Anchor LIME Anchor LIME Anchor
adult (5579) 61.3% 80.5% 79%  16% 308% 179%

lending (4414) 24.0% 30% 04% 00% 756% 97.0%
recidivism (3696) 94.1% 99.4% 46% 04% 13% 02%
compas (778) 719% 84.4% 206% 17% 75% 139%
german (1000) 853% 99.7% 146% 02% 01% 01%
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Explanations

Dataset  (# unique) optimistic realistic
LIME Anchor LIME Anchor LIME Anchor
adult (5579) 61.3% 80.5% 79%  16% 308% 179%

lending (4414) 24.0% 30% 04% 00% 756% 97.0%
recidivism (3696) 94.1% 99.4% 46% 04% 13% 02%
compas (778) 719% 84.4% 206% 17% 75% 139%
german (1000) 853% 99.7% 146% 02% 01% 01%

& Google XAl service
most likely similar...
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A second experiment

How often are local explanations
consistent with prediction?

46 /58



- Exploit ML model with SAT-based encoding
- In our case: used binarized neural networks (BNNs)

- Compute local explanations with Anchor (similar results with LIME or SHAP)

- Use (approximate) model counter to assess how often explanation is consistent with
prediction
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Preliminary results

1.0 4
= P ppp—
-~
g et ot
© 0.8 . .- - .t
7 i e
& 0.6 . .
g .',r = Anchor (adult)
‘941 ? ApproxMC3(adult)
8 = Anchor (lending)
o!: 02 —_— ApproxMCB(.\etn.dlng)
= Anchor (recidivism)
= ApproxMC3(recidivism)
0.0 T T T T T T T
0 50 100 150 200 250 300
#anchors

- Anchor often claims &~ 99% precision
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Preliminary results

1.0 4 T
— P p————
-~
© e et
= 0.8 - . .
© e Learee
E T eemart .
= , TS
$ 0.6 st
g -'.r = Anchor (adult)
5 04 ? ApproxMC3(adult)
8 = Anchor (lending)
o!: 02 —_— ApproxMCB(.\etn.dlng)
= Anchor (recidivism)
= ApproxMC3(recidivism)
0.0 T T T T T T T
0 50 100 150 200 250 300
#anchors

- Anchor often claims & 99% precision; out results demonstrate otherwise
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Part 4

Explanations vs. Adversarial Examples



Overview NIPS’19
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Overview NIPS’19

- Vast body of work on computing explanations (XPs)
-+ Mostly heuristic approaches, with recent rigorous solutions

- Vast body of work on coping with adversarial examples (AEs)
- Both heuristic and rigorous approaches

- Can XPs and AEs be somehow related?
- Recent work observed that some connection existed, but formal connection has been elusive

- We recently proposed a (first) link between XPs and AEs TSE
- The work exploits hitting set duality, first studied in model-based diagnosis [Reis7]
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A well-known example

RN10]

Input Attributes Goal

Example - - - . .
Alt [ Bar | Fri [ Hun ] Pat [ Price | Rain [ Res | Type Est Willwait
X1 Yes | No | No | Yes | Some | $SS$ No | Yes | French | 0-10 y1 = Yes
Xo Yes | No | No | Yes Full S No No Thai 30-60 y2 = No
X3 No | Yes | No No | Some S No No | Burger | 0-10 ys = Yes
Xq Yes | No | Yes | Yes Full S Yes No Thai 10-30 Vs = Yes
X5 Yes | No | Yes | No Full $SS No | Yes | French >60 ys = No
X6 No | Yes | No | Yes | Some ) Yes | Yes | Italian | 0-10 Ve = Yes
X7 No | Yes | No | No | None S Yes | No | Burger | 0-10 y7 = No
Xs No | No | No | Yes | Some ) Yes | Yes Thai 0-10 ys = Yes
Xo No | Yes | Yes | No Full S Yes No | Burger >60 Yo = NoO
X10 Yes | Yes | Yes | Yes Full $SS No | Yes | Italian | 10-30 || yi0o = No
X11 No No No No None S No No Thai 0-10 y11 = No
X12 Yes | Yes | Yes | Yes Full $ No No | Burger | 30-60 || yi2 = Yes
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A well-known example (Cont.)

- 10 features:

{A(lternate), B(ar), W(eekend), H(ungry), Pa(trons), Pr(ice), Ra(in), Re(serv.), T(ype), E(stim.) }

- Example instance (x;, with outcome y; = Yes):

{A,—B, =W, H, (Pa = Some), (Pr = $$$), —Ra, Re, (T = French), (E = 0-10)}

- A possible decision set (obtained with some off-the-shelf tool, & function”):

IF (Pa=Some) A —(E = >60) THEN (Wait = Yes) (R1)
IF WA =(Pr=35%5) A—=(E=>60) THEN (Wait = Yes) (R2)
IF =W A —(Pa = Some) THEN (Wait = No) (R3)
IF (E=>60) THEN (Wait = No) (R&)
IF —(Pa =Some) A (Pr = 55%) THEN (Wait = No) (R5)
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Counterexamples & breaks
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Counterexamples & breaks

- Counterexamples:

A subset-minimal set C of literals is a counterexample (CEx) to a prediction =, if C= (M — p),
withp e KAp#m

- Breaks:

A literal 7; breaks a set of literals S (each denoting a different feature) if S contains a literal
inconsistent with 7;

- Back to the example, consider prediction (Wait = Yes):
- Using (R1) (and assuming a consistent instance), an explanation is:

(Pa = Some) A =(E = >60)
- Due to (R5), a counterexample is:
—(Pa = Some) A (Pr = $595)
+ XP 81 = {(Pa = Some), ~(E = >60)} breaks CEx S = {—(Pa = Some), (Pr = $$3)} and

vice-versa
53/58



Some preliminary results

1. Relationship between XPs with CEX's:
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Some preliminary results

1. Relationship between XPs with CEX's:
- Each XP breaks every CEx

-+ Each CEx breaks every XP

. XPs can be computed from all CEx's (by HSD) and vice-versa

2. Given instance Z, an AE can be computed from closest CEx
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Revisiting the example

- Restaurant dataset
- ML model is decision set (shown earlier)
- Prediction is (Wait = Yes)

- Global explanations:
1. (Pa = Some) A —(E = >60)
2. WA —(Pr=353) A =(E = >60)

- Counterexamples:
1. =W A —=(Pa = Some)
2. (E=>60)
3. =(Pa = Some) A (Pr = $%9)

- The XP’s break the CEx’s and vice-versa
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Conclusions & roadmap

- Glimpse of work on learning interpretable ML models (using SAT)
- Smallest decision trees & decision sets

- New approach for finding explanations of black-box models by computing prime
implicants (using ILP&SMT)
- Results for NNs and for BTs

- Hitting set duality between explanations and counterexamples
- Can compute CEx’'s from XP’'s and AEs from CEx's
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Conclusions & roadmap

- Glimpse of work on learning interpretable ML models (using SAT)
- Smallest decision trees & decision sets

- New approach for finding explanations of black-box models by computing prime
implicants (using ILP&SMT)
- Results for NNs and for BTs

- Hitting set duality between explanations and counterexamples

- Can compute CEx’'s from XP’'s and AEs from CEx's

- Our remit @ ANITI:
To explain, to verify & to learn ML models

with guarantees of rigor, by using AR tools & techniques
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Questions?
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BLACK BOX MODELS

™My ML MODEL..

15 LIKE A
(BLACK) BOX OF
CHOCOLATES.

I NEVER KNOW WHAT

™M GONNR GET.

BUT WHY?

01.01686 & hitp #/emx. iovedit/
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