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Adversarial Inputs

@ In 2014, an intriguing property was observed:
Goodfellow et al., 2015

“panda” “gibbon™
57.7% confidence 99.3 % confidence

@ Small perturbations of inputs lead to misclassification

@ Can usually find such inputs very easily




Attacks on Deep Learning

The self-driving car incorrectly

The Ensemble model is fooled by
the addition of an adversarial
distracting sentence in blue.

Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super
Bowls. He is also the oldest quarterback ever to play
in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

decides to turn right on Input 2
and crashes into the guardrail

(a) Input 1

(b) Input 2 (darker version of 1)

DeepXplore: Automated Whitebox

Testing of Deep Learning Systems,
SOSP’17

Adversarial Examples for Evaluating

Reading Comprehension System:s,
EMNLP’17

Adding small noise to the input

audio makes the network
transcribe any arbitrary phrase

"it was the
best of times,
it was the
worst of times"

"itis a truth
universally
acknowledged
that a single"

Audio Adversarial Examples:

Targeted Attacks on Speech-to-Text,
ICML 2018 !



Adversarial Robustness

@ A network's resilience to adversarial attacks is called adversarial
robustness

@ There exist hardening techniques for increasing robustness

e But...

e These usually defend against existing attacks
e And then a new attack breaks them

@ Verification can be used to establish robustness guarantees



Neural Networks

Input #1 — ’ - Qutput #1
Input #2 — : - Output #?2
Input #3
Input #4 —
Input #5 —

e Typical sizes (number of neurons): between few hundreds and
millions



Evaluating Neural Networks

@ Nodes evaluated layer by layer:

e Input layer is given
e Every layer computed from its predecessor, according to weights
and activation functions

w9 3
@/@ v = [ w;-v)
W3 /=l
@ can be Linear part

Non-Linear



Activation Functions

0.,
o\xa 1-14+0-2+3-(—1)=-2
~1

o

@ Rectified Linear Unit (ReLU): f(x) = max(x,0)
e Active phase: x > 0, output is « o Pooling layers:
e I[nactive phase: x < 0, output is 0. o Max pooling: f(21,...,on) = max(z1, ..., on)
1

o Average pooling: f(x1,..., Tp) = > i1 Linear

Mostly Non-Linear functions
1

Q RELU(:L‘) — max(x, 0) o Sigmoid function: f(x) = ==
® max(:r, y) — RELU(&? o y) + Y @ Hyperbolic tangent function: f(x) = tanh(z)




he ACAS Xu System

@ An Airborne Collision-Avoidance System, for drones

@ Being developed by the US Federal Aviation Administration

(FAA)
@ Produce an advisory: Y
AU ” i
e Clear-of-conflict (COC) o “'gt\%’
e Strong left > el Intruder
! e P
o Weak left '\ é ;
e Strong right \\Q\Q/HSth"

PREEE
o Weak right



The ACAS Xu System (cnt'd)

@ Certification via testing and simulation

@ Encounter plots

WR

COC

@ But these only cover a finite set of inputs
e Verification can help



The ACAS Xu System (cnt'd)

@ ACAS Xu logic too complex for manual implementation

@ Previous approach: large lookup table (size: 2GB)
e Interpolate if needed

@ Switched to neural networks for compression (size: 3MB)
e Also smoother than interpolation

@ But this requires a new certification procedure
e Especially because this i1s a new approach



Neural Network Verification

Definition (The Neural Network Verification Problem)

For a neural network N : & — g, an input property P(Z) and an
output property (%), does there exist an input Zo with output
o = N(Zp), such that z, satisfies P and ), satisfies ()7

@ P(Z) characterizes the inputs we are checking
@ ()(y) characterizes undesired behavior for those inputs
@ Negative answer (UNSAT) means property holds

@ Positive answer (SAT) includes a counterexample



Example: ACAS Xu

@ Want to ensure: whenever intruder is distant, network always
answers clear-of-conflict

o P(z):
o Z[0] > 40000

° Q(y):
o (y[0] <g[1]) v ([0] < g[2]) v (y[0] < yl3]) v (9[0] < y[4])

@ UNSAT means the system behaves as expected



Verification Complexity

Theorem (Neural Network Verification Complexity)

For a neural network with RelL U activation functions, and for

properties P() and ()() that are conjunctions of linear constraints,
the verification problem is NP-complete in the number of ReLU nodesj‘

@ Membership in NP: can check in polynomial time that a given x

satisfies P(;,c) and Q(N(x)) Continuous variables => use LP after
guessing phases (de/activatation) of ReLU

e NP-Hardness: by reduction from 3-SAT



Techniques and Challenges

@ Main challenge is scalability
e Usually the case in verification

@ Two kinds of techniques:
e Sound and complete:

e limited scalability Ex: RELUPLEX

e always succeed
e Sound and incomplete:

Provide exact bounds.

e better scalability Provide certified upper/lower bound.
@ can return “don’'t know” No refinement if not enough
@ Orthogonal: abstraction techniques Ex: Al%, next part

o Related: testing techniques (e.g., coverage criteria, concolic
testing). Not covered here



So, How Big a Network can you Verify?

@ Very difficult to compare!

e Different properties make a huge difference
e Compare complete and incomplete techniques

e Different underlying engines

o Different benchmarks
e Comparative study: Bunel et al, 2017 [BTT"17]

@ Still, as a rule of thumb...

e Complete techniques: hundreds to thousands
e Incomplete techniques: thousands to tens of thousands



Incomplete techniques (abstractions...):

First: NEVER (Pulina et al. 2010).

@ Among first attempts to verify neural networks
@ Focused on networks with Sigmoid activation functions
e Main idea: over-approximate Sigmoids using interval arithmetic

@ ... and then apply the interval arithmetic solver HySAT

Abstraction used
(piecewise constant)

Can tackle only ~10 neurons
[wa ] | Later: Al?




DLV (Huang et al, 2017) [HKWW17]

@ Apply a discretization of the input space

e Discretization via manipulations
e These can represent camera scratches, rotations, etc
e Sound but incomplete

@ Then do an exhaustive search, layer-by-layer

@ Tool: the DLV solver, evaluated on image recognition networks



Complete techniques:

First: Bastani et al. 201 6.

Use LP solvers (linear programming, PTIME).

Problem: ReLU is not linear => it is a OR of 2 linear function.
Heuristic to fix the phase of each RelLU.

—> Sound but incomplete techniques.

To make it complete:

Search exhaustively every possible choice for RELU.
Set a choice. Backtrack if no counterexample found.

Heuristic to search in a good direction, like SAT solvers.

Many varations in 2017:

Planet Solver (Elhers), Tjeng and Tedrake, Katz et al, BAB Solver (BTT), Lomuscio and Magnenti....
Sherlock Solver (Dutta et al. 2018).

Or use quadratic Solvers Cheng et al. 2017. Later: RELUPLEX



Additional Techniques at a Glance

@ Networks as continuous functions, Lipschitz continuity

o Ruan et al [RHK18], Hull et al [HWZ02], Hein and
Andriushchenko [HA17], Weng at al [WZC"18]

@ Verification of Binarized Neural Networks
o Cheng et al [CNR17b], Narodytska et al [NKRT18]



Reluplex

@ Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel

Kochenderfer (CAV 2017 [KBD*17al), supported by the FAA
and Intel

'\

@ A sound and complete verification procedure

@ Applied to the ACAS Xu case study
e Networks an order of magnitude larger than previously possible

@ Project still ongoing (Marabou [KHIT19])



Reluplex (cnt'd)

@ SMT-solver for quantifier-free linear real arithmetic + RelUs

@ Based on the Simplex method for linear programming

o Simplex + ReLUs = Reluplex
e Applicable to other piece-wise linear functions

@ Key SMT idea: handle RelLUs /azily

e As opposed to eager case splitting
o Defer splitting for as long as possible
e May not have to split at all!

@ But first, an introduction to Simplex



Aim: find optimal solution satisfying some constraints.
First phase: Find Feasible solution

@ lterative algorithm
@ Always maintain a variable assignment

@ Assignment always satisfies equations
e But may violate bounds

@ In every iteration, attempt to reduce the overall infeasibility

Secund phase: Optimize



Simplex: Basics and Non-Basics

@ Variables partitioned into basic and non-basic variables

e Non-basics are “free”
e Basics are “bounded”

@ Non-basic assignment dictates basic assignment

e This is how the equations are maintained

@ In every iteration, we can perform
@ an update: change the assignment of a non-basic variable
e and any affected basics

@ a pivot: switch a basic and a non-basic variable



Simplex: Example

Input  Hidden  Output
layer layer layer

@ No activation functions

@ Property being checked: for zy € [0, 1], always x4 € [0.5,1] True
o Negated output property: x1 € [0,1] and 24 € [0.5, 1] False



Simplex: Example (cnt'd)

@ Equations for weighted sums:

L9 — X1 — T
T3+ i — &g

Ly — g — L9 — X%

@ Bounds:

z1 € |0, 1]

x4 € 0.5, 1]
X9, r3 unbounded
Ts, Tg, 7 € [0, 0]

Hypothesis to check

@ Technicality: replace constants by auxiliary variables



Simplex: Example (cnt'd)

Iy = X9 — I
Tg = T3+ I

X7 — Xy — T3 — T9

Lower B. Var Value Upper B.

0 1 0 1 Hypothesis to check
Update: L2 0
x4 =x4+ 0.5 T3 0
Now, need to change x7 0.5 4 0.5 ! Hypothesis to check
But x7 on the left (Var. are either right or left) 0 L5 0 0
0 T 0 0
Can change only variable on right, so need to: 0 T 0.5 0

pivot x7,x2




Simplex: Example (cnt'd)

rs — To — I1 — s =Ty — T3 — T7— X
Tg = T3 + I

r7 = T4 — T3 — T9 < To = Ty — T3 — XT7

Lower B. Var Value Upper B.

0 L1 0 1
T2 0.5
Pivot: z7, x9 T3 0
Update: 0 Ts 0.5 0 x5 is incorrect.
x7 =x7-0.5 0 Tg 0 0
0 L7 0 0




Simplex: Example (cnt'd)

Ty =Ty — T3 —T7 — I — X1 =T4 — T3 — X7 — Ts
Te = Tg 4 T “ Te = T4 — T — T x4 =» x7 =» x5 = x6
=>» need to change x5
(through x| or x3)
Lower B. Var Value Upper B.

Xy = Xy — T3 — X7

0 1 0.5 1 =>» Failure.
i) 05
Pivot: x5, 14 T3 0 '?0 X, € [0,1]
05 T 05 1 with x, € [0.5,1]
Update: 0 L5 0 0 .
%5 =x5-05 0 T 0.5 0 x6 is incorrect.
0 T 0 0




Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

@ Soundness:

e SAT = assignment is correct
e UNSAT = no assignment exists

@ Completeness: depends on variable selection strategy

@ Bland’s rule: guarantees termination

e Always pick variables with smallest index
e Prevents cycling
e But unfortunately quite slow

@ Better selection strategies exist (e.g., steepest edge)

@ Problem is in P, unknown whether simplex is in P



Simplex to simple RELUPLEX

Fix every ReLU activation phase first: activated (input >0) or deactivated (input <0).
We have linear constraints!

We can use Simplex to solve it

If couterexample found => return SAT

Else: fix another activation of ReLU and loop till all activation have been tested.

Return UNSAT



Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

@ Soundness:

e SAT = assignment is correct
I e UNSAT = no assignment exists

@ Completeness: depends on variable selection strategy and
splitting strategy

@ Naive approach: split on all variables immediately, apply Bland's
rule

e This is the case-splitting approach from before
e Ensures termination



More Efficient Reluplex (Lazy)

@ Better approach: lazy splitting

e Start fixing bound violations
@ Once all variables within bounds, address broken RelLUs

e If a RelLU is repeatedly broken, split on it
o Otherwise, fix it without splitting

e And repeat as needed
@ Usually end up splitting on a fraction of the ReLUs (20%)

@ Can reduce splitting further with some additional work



From Simplex to Reluplex (Lazy)

@ Each RelLU node x represented as two variables:

Decoupled variables
o " to represent the (input) weighted sum " and %@ have no

o =% to represent the (output) activation result relation at first
=> Only linear op.
Can run simplex



Reluplex: Example

1
. Can | find
}@_RFEB@/J x, € [0,1] with x, € [0.5,1] ?

Yes. x,=0.5 => x,=0.5



Reluplex: Example (cnt'd)

@ Equations for weighted sums:

T5 = Ty — 1
Te = Ty + X1
T7 = Xy — Tg — Tg

Linear Constraints
@ Bounds: => usual

Simplex algorithm

T € [0, 1]
Ty € [05, ].]
plus the ReLU properties: Ty, 23 unbounded
x2=x¥ if x¥ 2 0 and x? = 0 otherwise ry, x5 € [0, 00)

to solve after the rest is solved (lazy) 5, x6, 7 € [0, 0]



Reluplex: Example (cnt'd)

Lower B. Var Value Upper B.

T5 = Ty — T 0 T 0.5 1
Te = Ty + X1 ry 05
Ty =Ty — T3 — T7 0 T4 0.5
s 0.5
0 x5 0
Normal simplex 0 x5 0 0
algorithm 0 T 0.5 0
finds a solution 0 7 0 0

But not true with additional
X2, if X, 2 0 SOLUTION found: x,=0.5 => x,=0.5



Reluplex: Example

0.5
1 1
/{
—1 1
-0.5
SOLUTION found
x,=0.5 => x,=0.5 l




More Efficient Reluplex: Bound Tightening

During execution we encounter many equations
Can use them for bound tightening
Example:
r=1yY-+z r>-=2, y=>1, z2>1
Can derive a tighter bound: x > 2

If x is part of a ReLU pair, we say that ReLU’s phase is fixed

e And we replace it by a linear equation
e Same as in case splitting, only no back-tracking required



Non-Chronological Backtracking (Backjumping)

@ A useful technique in SAT and SMT solving

@ Backtracking: change /ast guess

@ Backjumping: change an earlier guess

@ Need to keep track of the discovery of new bounds



Non-Chronological Backtracking (Backjumping)

(cnt'd)

(yl = ReLU(zy), 3o = RELU(.’EQ)J

UNSAT UNSAT UNSAT



Enhancements (Marabou [KHIT19])

@ Engineering improvements: multiple input formats
o E.g., TensorFlow

@ Parallelism: divide and conquer
@ Network level reasoning

@ New simplex solver



RELUPLEX for:

he ACAS Xu System

@ An Airborne Collision-Avoidance System, for drones

@ Being developed by the US Federal Aviation Administration

(FAA)
@ Produce an advisory: Y
AU S
e Clear-of-conflict (COC) - ”‘gt\%
e Strong left ,’/ //’/’ Intruder
I’ /”E p
o Weak left \ 4 !
e Strong right \vaer_hje"

0
o Weak right



RELUPLEX for

Certifying ACAS Xu (cnt'd)

@ We worked on a list of 10 properties

@ Example 1:
e If the intruder is near and approaching from the left, the
network advises strong right

@ Distance: 12000 < p < 62000
@ Angle to intruder: 0.2 <60 <04
e Etc.

e Proved in under 1.5 hours



RELUPLEX for

Certifying ACAS Xu (cnt'd)

@ Example 2:

o If vertical separation is large and the previous advisory is weak
left, the network advises clear-of-conflict or weak left

@ Distance: 0 < p < 60760
@ Time to loss of vertical separation: 7 = 100
e Etc.

e Found a counter-example in 11 hours



RELUPLEX for

Certifying ACAS Xu (cnt'd)

Networks Result Time Stack Splits

01 41 UNSAT 394517 47 1522384
4 TIMEOUT

0o 1 UNSAT 463 55 88388

35 SAT 82419 44 284515

O3 42 UNSAT 28156 22 52080

o 42 UNSAT 12475 21 23940

o5 1 UNSAT 19355 46 58914

e 1 UNSAT 180288 50 548496
O7 1 TIMEQOUT

0s 1 SAT 40102 69 116697

o 1 UNSAT 99634 48 227002

P10 1 UNSAT 19944 49 88520



Adversarial Robustness

“panda” “gibbon™
57.7% confidence 99.3 9% confidence

@ Slight perturbations of inputs lead to misclassification
@ Verification can prove that this cannot occur

@ Allows us to assess attacks and defenses



L ocal Adversarial Robustness

@ Verification query: for a given panda Zy and a given amount of
noise 0, does classification remain the same?

o If ||z — Zo||r <O then A, (y[io] > y[i]), where glig] is the
desired label

@ Easiest norm to handle: L., the infinity norm
o |Z—Zo|lz., <6 & Vi.—46<zZ[i]—xgli] <6

@ Can also handle L,



Local Adversarial Robustness (cnt'd)

@ Can find the optimal o for which robustness holds

e Using binary search

@ Example: an ACAS Xu network

0=20.1 o = 0.075 o = 0.05 0 = 0.025 o =0.01
Result Time Result Time Result Time Result Time Result Time
Point 1 SAT 135 SAT 239 SAT 24 UNSAT 609 UNSAT 57
Point 2 UNSAT 5880 UNSAT 1167 UNSAT 285 UNSAT 57 UNSAT 5
Point 3 UNSAT 863 UNSAT 436 UNSAT 99 UNSAT 53 UNSAT 1
Point 4 SAT 2 SAT 077 SAT 1168 UNSAT 656 UNSAT 7
Point 5 UNSAT 14560 UNSAT 4344 UNSAT 1331 UNSAT 221 UNSAT 6




Assessing Attacks and Defenses [CKBD18]

@ Assessing attacks:

e Pick point T

o Use verification to find optimal 9
o Use attack to find &’

o See how close § is to ¢

e Example: Carlini-Wagner attack [CW17] on a small MNIST
network

@ On average, § about 6% smaller than ¢’



Assessing Attacks and Defenses [CKBD18| (cnt'd)

@ Assessing defenses:

Start with network N

Train hardened network N

Pick point &

Compare optimal 0 before and after hardening

o Example: Madry defense [MMS™18] on a small MNIST network
@ On average, hardened ¢ about 423% larger

@ However, smaller in some cases



Global Robustness?

@ Previous definition: for a particular input

e What's an acceptable 97
e How do you pick zy?

X1 Neural Network

.(4




Global Robustness Queries

@ Region boundaries: look at confidence instead of label

@ Let py, po be confidence levels for certain label:

VT, T2 ||T1—Zof| <0 = |p1—p2f <

e Small changes to input do not change output by much

@ Significantly slower to compute

e Double the network size
e Large input regions

@ And also still need to choose 9, ¢

@ A compromise: a clustering based approach



DeepSafe: A Clustering-Based Approach [GKPB18]

@ Use clustering to identify regions on which the network should
be consistent

o Clustering applied to known points (e.g., training set)
e ldentify centroid Zy and radius ¢ for each cluster

E&

@ Higher degree of automation

'y
.

@ Discovered an adversarial example in ACAS Xu



Safe and Robust Deep Learning:
Using Abstraction (Al* to ERAN)

Gagandeep Singh
PhD Student

Department of Computer Science

ETH i




SafeAl @ ETH Zurich

Joint work with

2 =
: el & . 7
Martin Markus Timon Matthew MINEWY Maximilian Petar Dana
Vechev Puschel Gehr Mirman Balunovic Baader Tsankov Drachsler

Publications:

1] Al2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, S&P’ 18
Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML |8

Fast and Effective Robustness Certification, NeurlPS’ 19

An Abstract Domain for Certifying Neural Networks, POPL |9

Boosting Robustness Certification of Neural Networks, ICLR’19

e

safeai.ethz.ch


safeai.ethz.ch

Abstrations for Adversarial Robustness

* Exact solvers often do not scale to large networks => Use abstraction.
* Not always complete, but can prove both SAT (problem) and UNSAT (safe)

Experimental robustness

. [ ) .
* generate adversarial examples prove absence of adversarial

 under-approximation of network examples o
behavior in the adversarial region = ©@Ver-approximation of n.etwork
»  Madry et al.2017 behavior in the adversarial region

e Gehretal.2018

59



Adversarial regions

Neural network f

I € Lyy(Iy, €)

S

I € Rotate(ly, €,a,B)

Neural network f

60



Adversarial region L., (I, €)

All images I where the intensity at each pixel differs from the intensity at the

corresponding pixel in Iy by < €

Iy+01  I,+02  [,+03 [,+04 I,+05 [,+06 I,+07 I,+08

61



Adversarial region Rotate(l,, €,a, )

All images I which are obtained by rotation each image in L., (I, €) by an angle

between a and [ using bilinear interpolation

Original

Right Rotate
by +25°

Left Rotate
by -35°

2

62



Adversarial region ERAN analyzer

https://github.com/eth-sri/eran
9 ‘ Intensity changes
oX
‘ Noise+Audio RefineZono
preprocessing

K-Poly

Based on ELINA
Aircraf .
sensor: ‘ Possible sensor values https://github.com/eth-sri/ELINA

Tensorflow graph as input

Geometric DeepZ
transformation

DeepPoly

Neural Network Sound with respect to floating
Fully connected ReLU point arithmetic
Convolutional Sigmoid ‘ Both complete and incomplete
Residual Tanh verification
LSTM Maxpool

State-of-the-art precision and

performance
Safety Property “ Used by SBB CFF FFS 63



https://github.com/eth-sri/eran
https://github.com/eth-sri/ELINA

Results with ERAN

%verified

Reluplex

> 32 hours 921 sec 227 sec 0.1 97% |33 sec

%verified Time(s) %verified

0.001 86 |0 sec -110 dB 90% 9 sec

64



Example: Analysis of a Toy Neural Network
Input layer Hidden layers Output layer

max(O x3) max(O x7)

[—1,1] maX(O x4) maX(O xs)

We want to prove that x;; > x4, for all values of x{, x, in the input set

65



Input layer Hidden layers Output layer

max(O x3) max(O x7)

main 11 — 192

st.: x11 =T9 + 10+ 1, T12 = Z10,
Each x; = max(0, x;) corresponds to

(x; <0and x; = 0) or
(.X'i > (0 and Xj — .X'i)
Solver has to explore two paths per RelLU

T3 = T1 1 T2, T4 = T1 — Ta, resulting in exponential number of paths
—1<z:<1 -1<z <1

Complete verification with solvers often does not scale

g = max(O,:cT), 10 — max(O,a:g),
T7 = T + Te, T = Ts — T6,

Iy — max(O,a':g), Tg — max(0,$4),



Analysis Trade-offs: Precision vs. Scalability

Al Safety and Robustness Certification of Neural Networks  Al2: Generic conceptual framework for
with Abstract Interpretation, analyzing neural networks with Al.
Security & Privacy,2018

(Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri,Vechev)

Fast and Effective Robustness Certification DeepZ: Zonotope domain with new " b
NeurlPS 2018 custom abstract transformers tailored to Leosrse ;feac?see
(with Gehr, Mirman,Vechey, Puschel) neural networks
An Abstract Domain for Certifying Neural Networks DeepPoly: New, restricted polyhedra
POPL 2019 domain with abstract transformers E/leosrse srceacl.iasbele
(with Gehr,Vechey, Puschel) specifically tailored to neural networks g
Boosting Robustness Certification of Neural Networks RefineZono: Best of both: Al + solvers. " _

, ore precise
ICLR 2019 ) More scalable than pure MILP solutionsand | "~~~
(with Gehr,Vechey, Puschel) more precise than pure Al (but less

scalable)



Box Abstract Domain

Verification with the Box domain fails as it cannot capture relational information



DeepPoly Abstract Domain [POPL | 9]

Shape: associate a lower polyhedral a7 and an upper polyhedral a; constraint with each x;

0,07 € {z — v+ D icri—1 Wi Tj | v € RU{~o0,+00}, w € R} for i € [n]

Concretization of abstract element a: < S
Yo(a) ={z € R" | Vi € [n].a;(z) < z; Aai(z) > x;}

Domain invariant: store auxiliary concrete lower and upper bounds [;, u; for each x;

Tn (a) C Xic [n] [li: ’”h:.]

* less precise than Polyhedra, restriction n: #neurons, m: #constraints
needed to ensure scalability Wmax: Max #neurons in a layer, L: # layers
* captures affine transformation precisely Polyhedra
unlike Octagon, TVPI | | Affina o(nm?) Ow2,.. L)
* custom transformers for ReLU, sigmoid,
RelLU O(exp(n, m)) 0(1)

tanh, and maxpool activations






RelLU activation vy < @1t a 3e < 0.5 wa L
l3 T _2? l5 — U,
uz = 2) us = 2)

Pointwise transformer for x; := max (0, x;) that uses [;, u;

. < _ = _ . —
Jui =007 =a7=01L=u=0, .max(o,xg) .
lf li 2 O, aj— — aj— — xil l] = li'u’j = ul', @ G

if ; <0andu; >0

Xj Xj Xj
W XV x ¥
‘é.j\.'ﬁ‘- 71 ‘4-}&.y ‘4.]\.'11&
= e Xi = Xi —V P X
li Ui li Uj I!- @\ Uu;
< max (0, x,)
(@) (b) © (B 2 21 — 22, (26 >0,
T; < 5,0 < xj, 0 <z, T; < Tj, ga < 21— <05 ]
4 > L] — L2 R I
r; <wui(x; —U)/(ui — ). zj <wi(z; =)/ (ui —U), x5 Sui(zi— L)/ (u — 1), ’ L6 = Tq+ 1,
lj=0,uj=ui leO,’iLjI’UJT; lj—l“ Uj = Uj 4__2’ l6: ’
Uygq = 2) Ug = >

choose (b) or (c) depending on the area. Here use (b)

Constant runtime



Affine transformation after ReLU

<$7 2 T5 + L6,

<$5 2 0:
z5 <0.5-23+1, 7 < @5+ Ze,
l5 :O:| l7 =?O:

us = 2) ur =%)

Imprecise upper bound u-, by substituting us, u for xc and x, in a3



Backsubstitution

(z5 >0,
x5 <0.0-z3+ 1,
Is =0,
us = 2)

<.’E7 > 5 + xg,
z7 < BDtagst 0.9 - x4 + 2,

74



(x5 > 0,

r5 <0.5-x3+ 1,

l5 — U, <$7 2 07

us = 2) 7 < BH+25 + 0.5 14 + 2,
max (0, x3) lz =1,
—_— @ ur =%)

0

Affine transformation with backsubstitution is pointwise, complexity: O(w;2,,,.L)



(1 > -1, (z3>x1+ 22, (T5 >0, (x7 > x5 + T, (X9 > x7, (T11 = T9 + 10 + 1,

r1 <1, 3 <T1+T2, 5<05-x3+1, 7 <x5+x6, T9 < T7, T11 < T9+ T10+1,
= -1, ly=-2 Is =0, — lg=0, Iy =1,
up = 1) uz = 2) us = 2) uy = 3) ug =3) uy; = 95.5)

0 0 1

max(0, x3) max (0, x;)

max(0, x4) max(0, xg)
0 0 0
(xo > =1, (x4 >x1 — 2, {Te >0, (xg > x5 — xg, (T10 > 0, (x12 > T10,
ro <1, Ta <21 —2T2, Te<090-24+1, 28 <x5—76, 210 < 0.0-28+ 1, 11 < Z10,
l2 — _1: l4 — _2: lﬁ — 07 lS — _2: llO — 0: l12 — 0:

Ug = 1) Uyg = 2) Ug = 2) Ug = 2) U1 = 2) ’U1276: 2)



Checking for robustness

(11 > 79 + 710 + 1, (12 > 10,
11 < T9 + x10 + 1, z11 < T10,
li1 =1, l12 =0,
u11 = 5.5) Up = 2)

Computing lower bound for x;; — X1, using 111, U1, gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for x;; — X1, proving robustness



Benchmarks

Dataset

Type

#Neurons #Layers

Defense

MNIST

CIFARIO

6 X 100
6 x 200
9 x 200
ConvSmall

ConvBig

ConvSuper

ConvSmall

feedforward

feedforward

feedforward

convo

convo

convo

convo

utiona

utiona

utiona

utiona

610
1,210
1,810
3,604

34,688
88,500
4,852

w o O W VW O O

None
None

None
DiffAl

DiffAl
DiffAl

DiffAl

: trained to be more robust
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% => % of input images such that

RObUSteneSS around inPUt robustness around them can be certified

Dataset Model € DeepZono RefineZono
7 %Y time(s) &
MNIST 6Xx 100 0.02 3l 0.6 47 0.2 67 194
6 x200 O0.0I5 I3 1.8 32 0.5 39 567

9x200 0.0I5 12 3.7 30 0.9 38 826

ConvSmall 0.12 7 | .4 13 6.0 21 748
ConvBig 0.2 79 7/ /8 61 80 193
ConvSuper 0.1 97 133 97 400 97 665

CIFARI0 ConvSmall  0.03 17 5.8 21 20 21 550
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Partitioning the space with Batches is importants.

#Batches Batch Size Region(s) (1, %(l +u), u) Analysis time  Verified?

1 1

0.5s + 1.9s No

Test Robustness for:

1 10000

Rotation of -45,+65°
Intensity of each pixel +/- 1%

220 1 1.2s + 5m51s No

=>

220 batches for different rotation (65°,64.5°)...
300 regions encoding different intensity for pixels

220 300 2m29s + 5m30s Yes




Conclusion

Attacks on Deep Learning

The self-driving car incorrectly

decides to turn right on Input 2
and crashes into the guardrail

(a) Input 1 (b) Input 2 (darker version of 1)

DeepXplore: Automated Whitebox
Testing of Deep Learning Systems,
SOSP’17

The Ensemble model is fooled by
the addition of an adversarial
distracting sentence in blue.
Article: Super Bowl 50

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super

Bowls. He is also the oldest quarterback ever to play

in a Super Bowl at age 39. The past record was held
by John Elway, who led the Broncos to victory in Super
Bowl XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV."

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Adversarial Examples for Evaluating

Reading Comprehension Systems,
EMNLP 17

Adding small noise to the input
audio makes the network

transcribe any arbitrary phrase

"it was the
7 best of times,
< 'y
% ;J> it was the
worst of times"
Wm X 0.001
S = Y
e B
% "it is a truth
S ¥ D universally
ﬁ>, 5 '%‘ < acknowledged
N that a single"
——

Audio Adversarial Examples:
Targeted Attacks on Speech-to-Text,
ICML 2018 .

https://github.com/eth-sri/eran

Feedforward (FNN), convolutional (CNN), and residual networks
RelLU, sigmoid, and tanh activations

Sound with respect to floating point arithmetic
State-of-the-art precision and performance

{r1> -1, (z3> 2141, (2520,
I S 1:

l]_ = —1, l3 = —27 ]:5
ﬂ1—1> ”3=2) “5=)

(z7 > @5 + 26, (19 > 27, (211> 29+ 210 +1

T3<zi+22, 5<05 23+1, 27 <z5+T6, Tg<Zy, T1<Tgt+zTip+l,

l7=D,
u7=3)

1920,
Ug=3)

zll = 11
U = 55)

0 0
max(0, x max(0,
:fx'g\ X( 3):6;\ 1 :fx) ( x7)_fxg\ 1

L

P X2 P Xy M X P Xg P X10
11\ -1 \Umax(0x) o -1 N\ max(0x) S 1
0 0

(zg> -1, (24> 21 -2 (260,
I9 S 1,

lh=-1 I =-2

uy = 1) Uy =2)

‘lfi:Oa
u6=2)

0
(19 > 210,

T4 <21 -1y, Tg<05 2441, 23 <5—T6, 710 <05 2841, 211 <y,

(13 > 5 — 26, (10 >0,

ly=-2,
Ug = 2)

llU = 07
Ujp = 2)

ll? = 0:

12,7 2)

Reluplex

> 32 hours

Neurify ERAN
921 sec 227 sec




