Certification in Deep Neural Networks

Rerun of:

Verification of Deep Neural Networks

Guy Katz

The Hebrew University of Jerusalem

ForMaL Spring School June 5, 2019

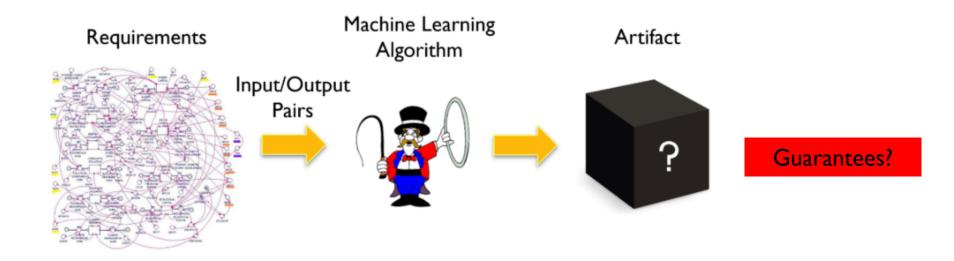
RELUPLEX

Safe and Robust Deep Learning

Gagandeep Singh PhD Student Department of Computer Science

Al²: Abstract Interpretation for Al

See slides and more talks at: https://formal-paris-saclay.fr/

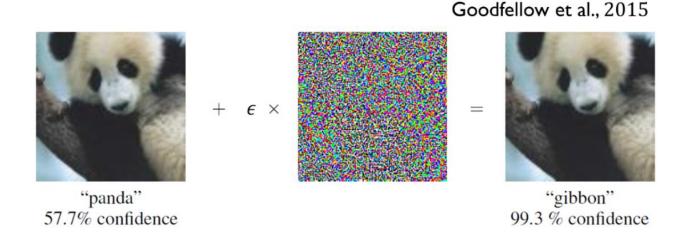


Supervised learning Needs a lot of annotated data

Verification of ML

Adversarial Inputs

• In 2014, an intriguing property was observed:



- Small perturbations of inputs lead to misclassification
- Can usually find such inputs *very* easily

Attacks on Deep Learning

The self-driving car incorrectly decides to turn right on Input 2 and crashes into the guardrail

(a) Input 1

(b) Input 2 (darker version of 1)

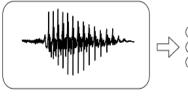
DeepXplore:Automated Whitebox Testing of Deep Learning Systems, SOSP'17 The Ensemble model is fooled by the addition of an adversarial distracting sentence in blue.

Article: Super Bowl 50

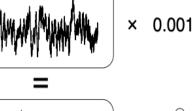
Paragraph: "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

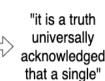
Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" Original Prediction: John Elway Prediction under adversary: Jeff Dean

Adversarial Examples for Evaluating Reading Comprehension Systems, EMNLP'17 Adding small noise to the input audio makes the network transcribe any arbitrary phrase



"it was the best of times, it was the worst of times"



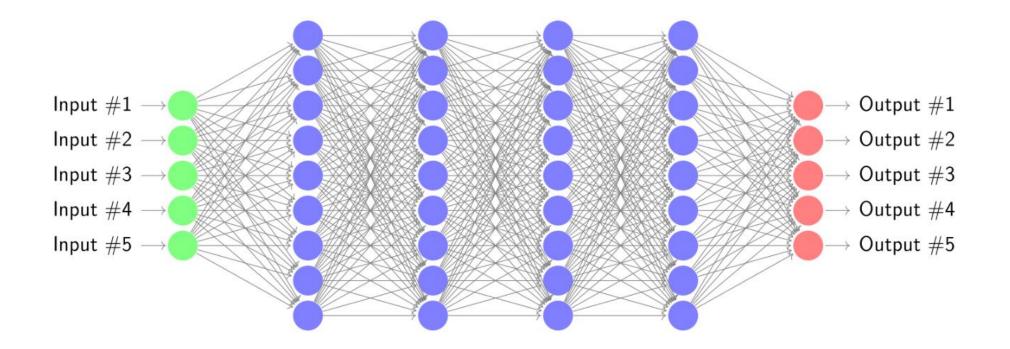


Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, ICML 2018 ⁴

Adversarial Robustness

- A network's resilience to adversarial attacks is called *adversarial* robustness
- There exist hardening techniques for increasing robustness
- But...
 - These usually defend against *existing* attacks
 - And then a *new* attack breaks them
- Verification can be used to establish robustness *guarantees*

Neural Networks

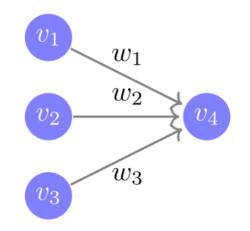


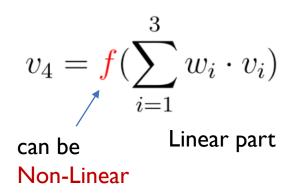
 Typical sizes (number of neurons): between few hundreds and millions

Evaluating Neural Networks

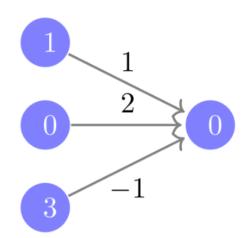
• Nodes evaluated layer by layer:

- Input layer is given
- Every layer computed from its predecessor, according to weights and activation functions





Activation Functions



$$1 \cdot 1 + 0 \cdot 2 + 3 \cdot (-1) = -2$$

• Rectified Linear Unit (ReLU): $f(x) = \max(x, 0)$

- Active phase: $x \ge 0$, output is x
- Inactive phase: x < 0, output is 0.

Mostly Non-Linear functions

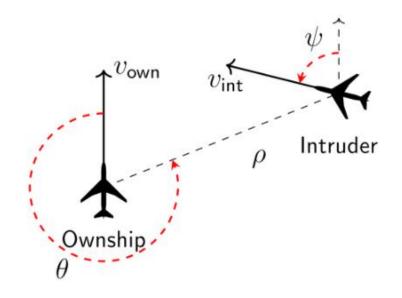
•
$$\operatorname{ReLU}(x) = \max(x, 0)$$

• $\max(x, y) = \operatorname{ReLU}(x - y) + y$

- Pooling layers:
 - Max pooling: $f(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$
 - Average pooling: $f(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$ Linear
- Sigmoid function: $f(x) = \frac{1}{1+e^{-x}}$
- Hyperbolic tangent function: f(x) = tanh(x)

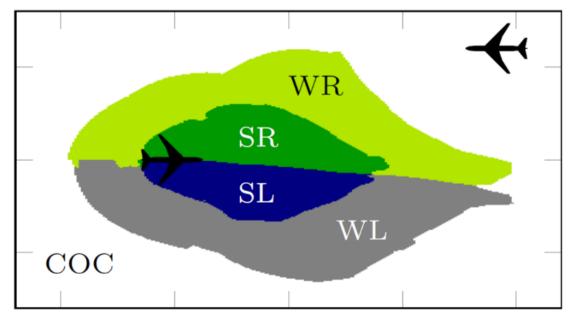
The ACAS Xu System

- An Airborne Collision-Avoidance System, for drones
- Being developed by the US Federal Aviation Administration (FAA)
- Produce an advisory:
 - Clear-of-conflict (COC)
 - Strong left
 - Weak left
 - Strong right
 - Weak right



The ACAS Xu System (cnt'd)

- Certification via testing and simulation
- Encounter plots



- But these only cover a finite set of inputs
 - Verification can help

The ACAS Xu System (cnt'd)

- ACAS Xu logic *too complex* for manual implementation
- Previous approach: large lookup table (size: 2GB)
 Interpolate if needed
- Switched to neural networks for *compression* (size: 3MB)
 - Also smoother than interpolation
- But this requires a new *certification* procedure
 - Especially because this is a new approach

Definition (The Neural Network Verification Problem)

For a neural network $N: \bar{x} \to \bar{y}$, an input property $P(\bar{x})$ and an output property $Q(\bar{y})$, does there exist an input \bar{x}_0 with output $\bar{y}_0 = N(\bar{x}_0)$, such that \bar{x}_0 satisfies P and \bar{y}_0 satisfies Q?

- $P(\bar{x})$ characterizes the inputs we are checking
- $Q(\bar{y})$ characterizes *undesired* behavior for those inputs
- Negative answer (UNSAT) means property *holds*
- Positive answer (SAT) includes a *counterexample*

Example: ACAS Xu

- Want to ensure: whenever intruder is distant, network always answers *clear-of-conflict*
- $P(\bar{x})$:
 - $\bar{x}[0] \ge 40000$
- $Q(\bar{y})$:
 - $(\bar{y}[0] \le \bar{y}[1]) \lor (\bar{y}[0] \le \bar{y}[2]) \lor (\bar{y}[0] \le \bar{y}[3]) \lor (\bar{y}[0] \le \bar{y}[4])$
- UNSAT means the system behaves as expected

Theorem (Neural Network Verification Complexity)

For a neural network with ReLU activation functions, and for properties P() and Q() that are conjunctions of linear constraints, the verification problem is NP-complete in the number of ReLU nodes

- Membership in NP: can check in polynomial time that a given xsatisfies P(x) and Q(N(x)) Continuous variables => use LP after guessing phases (de/activatation) of ReLU
- NP-Hardness: by reduction from 3-SAT

Techniques and Challenges

- Main challenge is *scalability*
 - Usually the case in verification
- Two kinds of techniques:
 - Sound and complete:
 - limited scalability
 - always succeed
 - Sound and incomplete:
 - better scalability
 - can return "don't know"

Provide exact bounds.

Ex: RELUPLEX

 $Ex: Al^2$, next part

Provide certified upper/lower bound. No refinement if not enough

- Orthogonal: *abstraction* techniques
- Related: testing techniques (e.g., coverage criteria, concolic testing). Not covered here

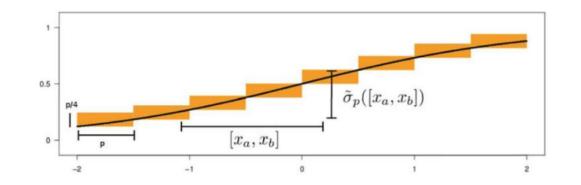
So, How Big a Network can you Verify?

- Very difficult to compare!
 - Different *properties* make a huge difference
 - Compare *complete* and *incomplete* techniques
 - Different underlying *engines*
 - Different *benchmarks*
 - Comparative study: Bunel et al, 2017 [BTT+17]
- Still, as a rule of thumb...
 - Complete techniques: hundreds to thousands
 - Incomplete techniques: thousands to tens of thousands

Incomplete techniques (abstractions...):

First: NEVER (Pulina et al. 2010).

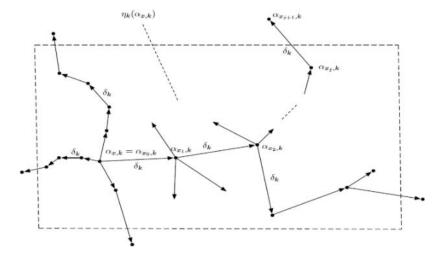
- Among first attempts to verify neural networks
- Focused on networks with Sigmoid activation functions
- Main idea: over-approximate Sigmoids using interval arithmetic
- ... and then apply the interval arithmetic solver HySAT



Abstraction used (piecewise constant) Can tackle only ~10 neurons Later: Al²

DLV (Huang et al, 2017) [HKWW17]

- Apply a *discretization* of the input space
 - Discretization via *manipulations*
 - These can represent camera scratches, rotations, etc
 - Sound but incomplete



- Then do an *exhaustive* search, layer-by-layer
- Tool: the *DLV* solver, evaluated on image recognition networks

Complete techniques:

First: Bastani et al. 2016.

Use LP solvers (linear programming, PTIME).

Problem: ReLU is not linear => it is a OR of 2 linear function.

Heuristic to fix the phase of each ReLU.

 \Rightarrow Sound but incomplete techniques.

To make it complete:

Search exhaustively every possible choice for RELU. Set a choice. Backtrack if no counterexample found.

Heuristic to search in a good direction, like SAT solvers. Many varations in 2017: Planet Solver (Elhers), Tjeng and Tedrake, Katz et al, BAB Solver (BTT), Lomuscio and Magnenti.... Sherlock Solver (Dutta et al. 2018).

Or use quadratic Solvers Cheng et al. 2017.

Later: **RELUPLEX**

Additional Techniques at a Glance

- Networks as continuous functions, *Lipschitz continuity*
 - Ruan et al [RHK18], Hull et al [HWZ02], Hein and Andriushchenko [HA17], Weng at al [WZC⁺18]
- Verification of *Binarized* Neural Networks
 - Cheng et al [CNR17b], Narodytska et al [NKR⁺18]

Reluplex

 Joint work with Clark Barrett, David Dill, Kyle Julian and Mykel Kochenderfer (CAV 2017 [KBD⁺17a]), supported by the FAA and Intel

- A *sound* and *complete* verification procedure
- Applied to the ACAS Xu case study
 - Networks an order of magnitude larger than previously possible
- Project still ongoing (*Marabou* [KHI⁺19])

Reluplex (cnt'd)

- SMT-solver for quantifier-free linear real arithmetic + ReLUs
- Based on the *Simplex* method for linear programming
 - Simplex + ReLUs = Reluplex
 - Applicable to other piece-wise linear functions
- Key SMT idea: handle ReLUs *lazily*
 - As opposed to eager case splitting
 - *Defer* splitting for as long as possible
 - May not have to split at all!
- But first, an introduction to Simplex

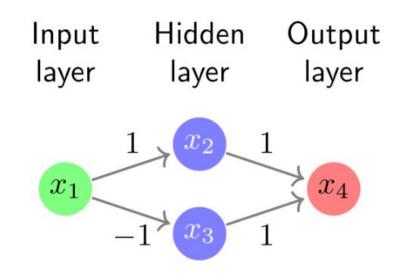
Aim: find optimal solution satisfying some constraints. First phase: Find Feasible solution

- Iterative algorithm
- Always maintain a *variable assignment*
- Assignment always *satisfies equations*
 - But may *violate bounds*
- In every iteration, attempt to reduce the overall *infeasibility*

Secund phase: Optimize

Simplex: Basics and Non-Basics

- Variables partitioned into *basic* and *non-basic* variables
 - Non-basics are "free"
 - Basics are "bounded"
- Non-basic assignment dictates basic assignment
 - This is how the equations are maintained
- In every iteration, we can perform
 - an update: change the assignment of a non-basic variable
 - and any affected basics
 - a pivot: switch a basic and a non-basic variable

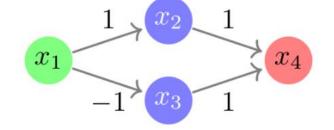


- No activation functions
- Property being checked: for $x_1 \in [0,1]$, always $x_4 \notin [0.5,1]$ True False
 - Negated output property: $x_1 \in [0,1]$ and $x_4 \in [0.5,1]$

• Equations for weighted sums:

$$x_2 - x_1 = x_5$$

 $x_3 + x_1 = x_6$
 $x_4 - x_3 - x_2 = x_7$



Bounds:

$$x_1 \in [0,1]$$

 $x_4 \in [0.5,1]$
 x_2, x_3 unbounded
 $x_5, x_6, x_7 \in [0,0]$

• Technicality: replace constants by *auxiliary* variables

$$x_{5} = x_{2} - x_{1}$$
$$x_{6} = x_{3} + x_{1}$$
$$x_{7} = x_{4} - x_{3} - x_{2}$$

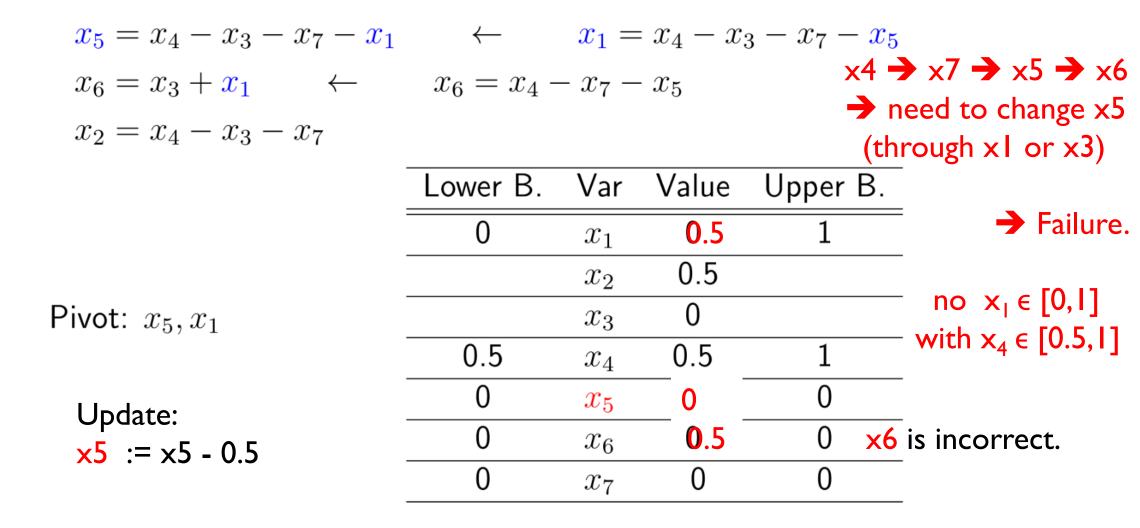
Update:								
x4	:= x4	+	0.5					

Now, need to change $\times 7$. But $\times 7$ on the left (Var. are either right or left)

Can change only variable on right, so need to: pivot x7,x2

	Lower B.	Var	Value	Upper B.	
-	0	x_1	0	1	Hypothesis to check
-		x_2	0		_
-		x_3	0		_
-	0.5	x_4	0.5	1	Hypothesis to check
.)	0	x_5	0	0	_
	0	x_6	0	0	_
•	0	x_7	0.5	0	_
-					

$x_5 = x_2 - x_1 \leftrightarrow $	$- x_5 =$	= x ₄ -	$-x_3 - x_7$	$_{7} - x_{1}$	
$x_6 = x_3 + x_1$					
$x_7 = x_4 - x_3 - x_2$	$\leftarrow x_2 = x_4 - x_3 - x_7$				
	Lower B.	Var	Value	Upper	Β.
-	0	x_1	0	1	
-		x_2	0.5		
Pivot: x_7, x_2		x_3	0		
-	0.5	x_4	0.5	1	
Update:	0	x_5	0.5	0	×5 is incorrect.
x7 := x7 - 0.5	0	x_6	0	0	
	0	x_7	0	0	



Properties of Simplex

Theorem (Soundness and Completeness of Simplex)

The simplex algorithm is sound and complete*

- Soundness:
 - SAT \Rightarrow assignment is correct
 - ${\scriptstyle \bullet} {\rm ~UNSAT} \Rightarrow {\rm no} {\rm~assignment} {\rm~exists}$
- Completeness: depends on variable selection strategy
- *Bland's rule*: guarantees termination
 - Always pick variables with smallest index
 - Prevents cycling
 - But unfortunately quite slow
- Better selection strategies exist (e.g., *steepest edge*)
- ${\ensuremath{\bullet}}$ Problem is in ${\ensuremath{\mathbf{P}}},$ unknown whether simplex is in ${\ensuremath{\mathbf{P}}}$

Fix every ReLU activation phase first: activated (input >0) or deactivated (input <0).

We have linear constraints!

We can use Simplex to solve it

If couterexample found => return SAT

Else: fix another activation of ReLU and loop till all activation have been tested.

Return UNSAT

Properties of Reluplex

Theorem (Soundness and Completeness of Reluplex)

The Reluplex algorithm is sound and complete*

- Soundness:
 - SAT \Rightarrow assignment is correct
 - UNSAT \Rightarrow no assignment exists
- Completeness: depends on variable selection strategy and splitting strategy
- Naive approach: split on all variables immediately, apply Bland's rule
 - This is the case-splitting approach from before
 - Ensures termination

More Efficient Reluplex (Lazy)

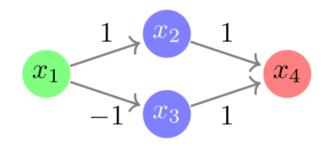
- Better approach: *lazy splitting*
 - Start fixing bound violations
 - Once all variables within bounds, address broken ReLUs
 - If a ReLU is repeatedly broken, split on it
 - Otherwise, fix it without splitting
 - And repeat as needed
- Usually end up splitting on a fraction of the ReLUs (20%)
- Can reduce splitting further with some additional work

From Simplex to Reluplex (Lazy)

- Each ReLU node x represented as two variables:
 - x^w to represent the (input) weighted sum
 - x^a to represent the (output) *activation result*

Decoupled variables x^w and x^a have no relation at first => Only linear op. Can run simplex

Reluplex: Example



ReLŲ

ReLU

 x_1

 x_2^a

 $\neq x_4$

1

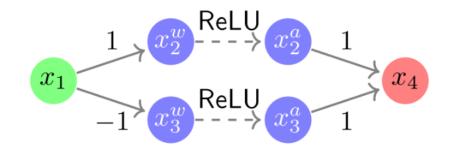
Can I find $x_1 \in [0, 1]$ with $x_4 \in [0.5, 1]$?

Yes. $x_1 = 0.5 = x_4 = 0.5$

Reluplex: Example (cnt'd)

• Equations for weighted sums:

$$x_{5} = x_{2}^{w} - x_{1}$$
$$x_{6} = x_{3}^{w} + x_{1}$$
$$x_{7} = x_{4} - x_{3}^{a} - x_{2}^{a}$$



plus the ReLU properties: $x_i^a = x_i^w$ if $x_i^w \ge 0$ and $x_i^a = 0$ otherwise to solve after the rest is solved (lazy) Bounds:

Linear Constraints => usual Simplex algorithm

 $x_1 \in [0, 1]$ $x_4 \in [0.5, 1]$ x_2^w, x_3^w unbounded $x_2^a, x_3^a \in [0, \infty)$ $x_5, x_6, x_7 \in [0, 0]$

Reluplex: Example (cnt'd)

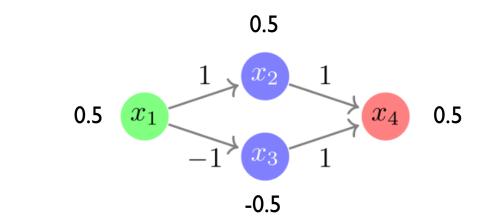
$$x_{5} = x_{2}^{w} - x_{1}$$
$$x_{6} = x_{3}^{w} + x_{1}$$
$$x_{2}^{a} = x_{4} - x_{3}^{a} - x_{7}$$

	Lower B.	Var	Value	Upper B.
-	0	x_1	0.5	1
		x_2^w	0.5	
	0	x_2^a	0.5	
		x_3^w	-0 .5	
	0	x_3^a	0	
	0.5	x_4	0.5	1
	0	x_5	0	0
-	0	x_6	0 .5	0
	0	x_7	0	0

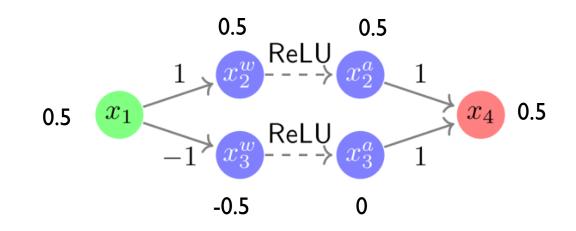
Normal simplex algorithm finds a solution But not true with additional $x_2^a = x_2^w$ if $x_2^w \ge 0$

SOLUTION found: $x_1 = 0.5 = x_4 = 0.5$

Reluplex: Example



SOLUTION found $x_1=0.5 \Rightarrow x_4=0.5$



More Efficient Reluplex: Bound Tightening

- During execution we encounter many equations
- Can use them for *bound tightening*
- Example:

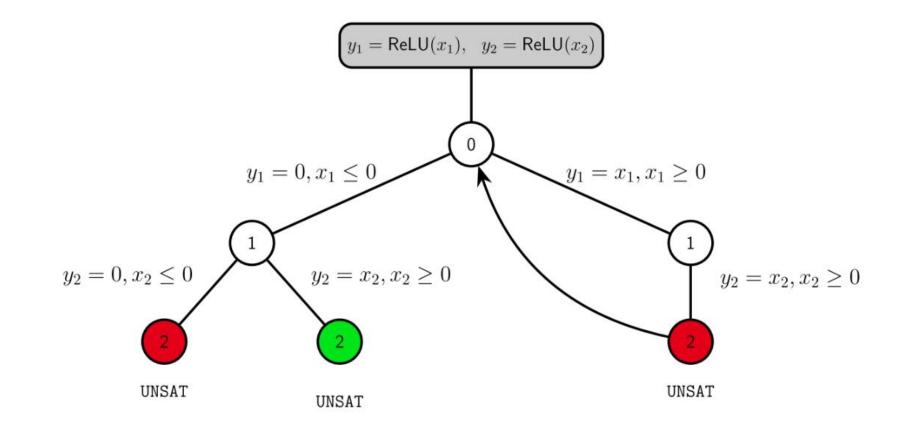
$$x = y + z \qquad \qquad x \ge -2, \quad y \ge 1, \quad z \ge 1$$

- Can derive a *tighter* bound: $x \ge 2$
- If x is part of a ReLU pair, we say that ReLU's phase is *fixed*
 - And we replace it by a linear equation
 - Same as in case splitting, only no back-tracking required

Non-Chronological Backtracking (Backjumping)

- A useful technique in SAT and SMT solving
- Backtracking: change *last* guess
- Backjumping: change an *earlier* guess
- Need to keep track of the discovery of new bounds

Non-Chronological Backtracking (Backjumping) (cnt'd)



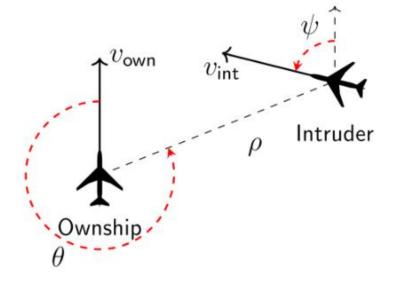
Enhancements (Marabou [KHI+19])

- Engineering improvements: multiple input formats
 E.g., TensorFlow
- Parallelism: divide and conquer
- Network level reasoning
- New simplex solver

RELUPLEX for:

The ACAS Xu System

- An Airborne Collision-Avoidance System, for drones
- Being developed by the US Federal Aviation Administration (FAA)
- Produce an advisory:
 - Clear-of-conflict (COC)
 - Strong left
 - Weak left
 - Strong right
 - Weak right



RELUPLEX for

Certifying ACAS Xu (cnt'd)

- We worked on a list of 10 properties
- Example 1:
 - If the intruder is near and approaching from the left, the network advises strong right
 - Distance: $12000 \le \rho \le 62000$
 - \bullet Angle to intruder: $0.2 \leq \theta \leq 0.4$
 - Etc.
 - Proved in under 1.5 hours

RELUPLEX for

Certifying ACAS Xu (cnt'd)

• Example 2:

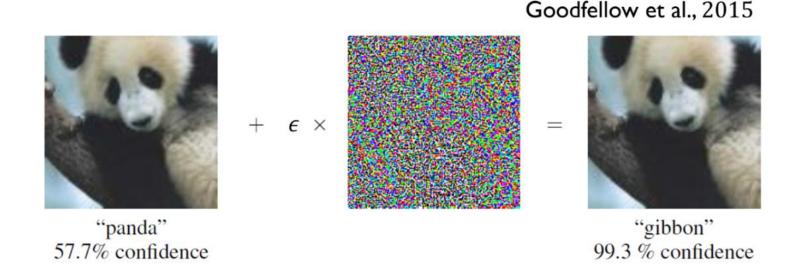
- If vertical separation is large and the previous advisory is weak left, the network advises clear-of-conflict or weak left
 - Distance: $0 \le \rho \le 60760$
 - Time to loss of vertical separation: $\tau=100$
 - Etc.
- Found a counter-example in 11 hours

RELUPLEX for

Certifying ACAS Xu (cnt'd)

	Networks	Result	Time	Stack	Splits
ϕ_1	41	UNSAT	394517	47	1522384
	4	TIMEOUT			
ϕ_2	1	UNSAT	463	55	88388
	35	SAT	82419	44	284515
ϕ_3	42	UNSAT	28156	22	52080
ϕ_4	42	UNSAT	12475	21	23940
ϕ_5	1	UNSAT	19355	46	58914
ϕ_6	1	UNSAT	180288	50	548496
ϕ_7	1	TIMEOUT			
ϕ_8	1	SAT	40102	69	116697
ϕ_9	1	UNSAT	99634	48	227002
ϕ_{10}	1	UNSAT	19944	49	88520

Adversarial Robustness



- Slight perturbations of inputs lead to misclassification
- Verification can prove that this cannot occur
- Allows us to assess attacks and defenses

- Verification query: for a given panda \bar{x}_0 and a given amount of noise δ , does classification remain the same?
 - If $\|\bar{x} \bar{x}_0\|_L \le \delta$ then $\bigwedge_i (\bar{y}[i_0] \ge \bar{y}[i])$, where $\bar{y}[i_0]$ is the desired label
- Easiest norm to handle: L_{∞} , the infinity norm

•
$$\|\bar{x} - \bar{x}_0\|_{L_{\infty}} \le \delta \quad \Leftrightarrow \quad \forall i. -\delta \le \bar{x}[i] - \bar{x}_0[i] \le \delta$$

• Can also handle L_1

Local Adversarial Robustness (cnt'd)

- $\bullet\,$ Can find the optimal $\delta\,$ for which robustness holds
 - Using binary search
- Example: an ACAS Xu network

	$\delta =$	0.1	$\delta = 0$.075	$\delta = 0$).05	$\delta = 0$.025	$\delta = 0$	0.01
	Result	Time	Result	Time	Result	Time	Result	Time	Result	Time
Point 1	SAT	135	SAT	239	SAT	24	UNSAT	609	UNSAT	57
Point 2	UNSAT	5880	UNSAT	1167	UNSAT	285	UNSAT	57	UNSAT	5
Point 3	UNSAT	863	UNSAT	436	UNSAT	99	UNSAT	53	UNSAT	1
Point 4	SAT	2	SAT	977	SAT	1168	UNSAT	656	UNSAT	7
Point 5	UNSAT	14560	UNSAT	4344	UNSAT	1331	UNSAT	221	UNSAT	6

Assessing Attacks and Defenses [CKBD18]

• Assessing attacks:

- \bullet Pick point \bar{x}
- \bullet Use verification to find optimal δ
- Use *attack* to find δ'
- See how close δ' is to δ
- Example: Carlini-Wagner attack [CW17] on a small MNIST network
- $\bullet\,$ On average, $\delta\,$ about $6\%\,$ smaller than $\delta'\,$

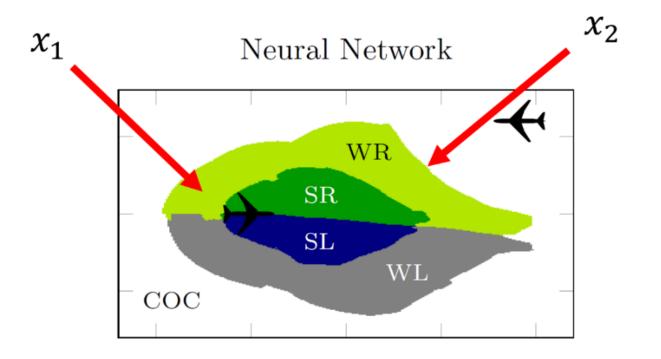
Assessing Attacks and Defenses [CKBD18] (cnt'd)

- Assessing defenses:
 - Start with network ${\cal N}$
 - Train *hardened* network \bar{N}
 - Pick point \bar{x}
 - Compare optimal δ before and after hardening
- Example: Madry defense [MMS⁺18] on a small MNIST network
- $\bullet\,$ On average, hardened $\delta\,$ about $423\%\,$ larger
- However, smaller in some cases

Global Robustness?

• Previous definition: for a particular input \bar{x}_0

- What's an acceptable δ ?
- How do you pick \bar{x}_0 ?



Global Robustness Queries

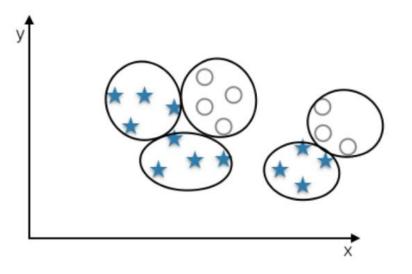
- Region boundaries: look at *confidence* instead of label
- Let p_1, p_2 be confidence levels for certain label:

$$\forall \bar{x}_1, \bar{x}_2. \quad \|\bar{x}_1 - \bar{x}_2\| \le \delta \Rightarrow |p_1 - p_2| \le \epsilon$$

- Small changes to input do not change output by much
- *Significantly* slower to compute
 - Double the network size
 - Large input regions
- And also still need to choose δ,ϵ
- A compromise: a *clustering* based approach

DeepSafe: A Clustering-Based Approach [GKPB18]

- Use *clustering* to identify regions on which the network should be consistent
 - Clustering applied to known points (e.g., training set)
 - $\bullet\,$ Identify centroid \bar{x}_0 and radius δ for each cluster



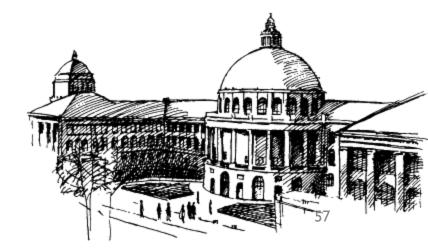
- Higher degree of automation
- Discovered an adversarial example in ACAS Xu

Safe and Robust Deep Learning: Using Abstraction (Al² to ERAN)

Gagandeep Singh

PhD Student

Department of Computer Science



SafeAI @ ETH Zurich

Joint work with

Publications:

[1] Al2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, S&P'18
[2] Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML'18
[3] Fast and Effective Robustness Certification, NeurIPS'19
[4] An Abstract Domain for Certifying Neural Networks, POPL'19
[5] Boosting Robustness Certification of Neural Networks, ICLR'19

safeai.ethz.ch

Abstrations for Adversarial Robustness

- Exact solvers often do not scale to large networks => Use abstraction.
- Not always complete, but can prove both SAT (problem) and UNSAT (safe)

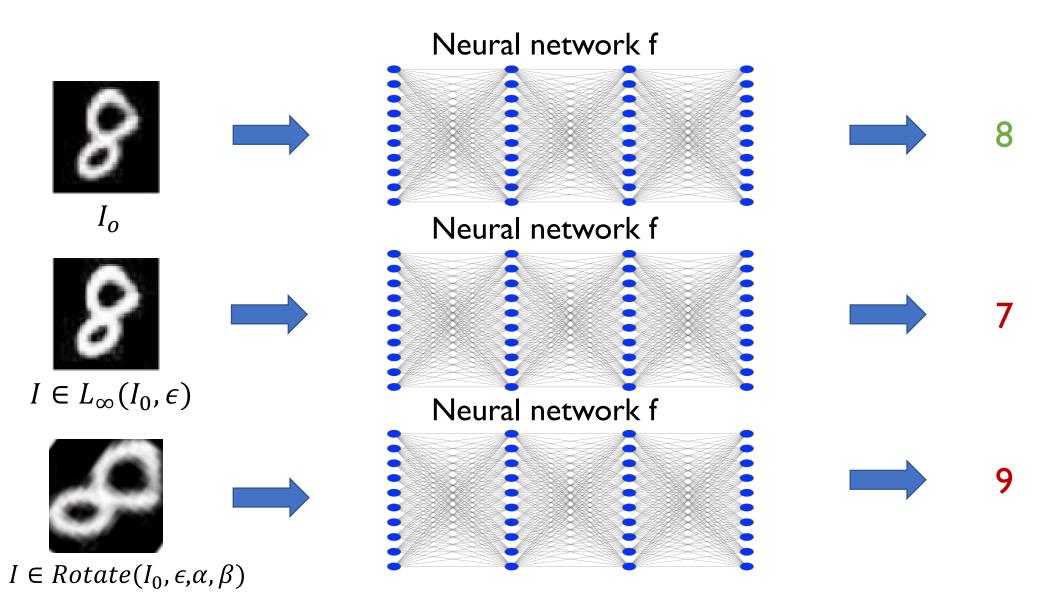
Experimental robustness

- generate adversarial examples
- **under**-approximation of network behavior in the adversarial region
- Madry et al. 2017

Certified robustness

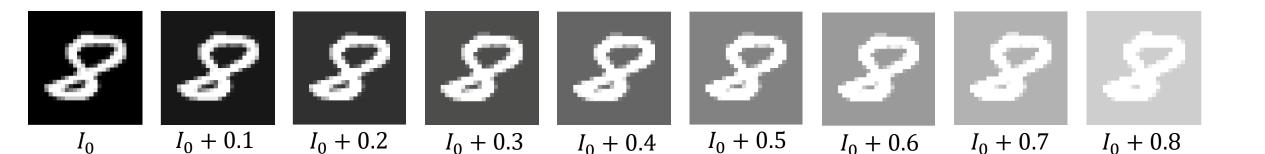
- prove absence of adversarial examples
- **over-**approximation of network behavior in the adversarial region
- Gehr et al. 2018

Adversarial regions



Adversarial region $L_{\infty}(I_0, \epsilon)$

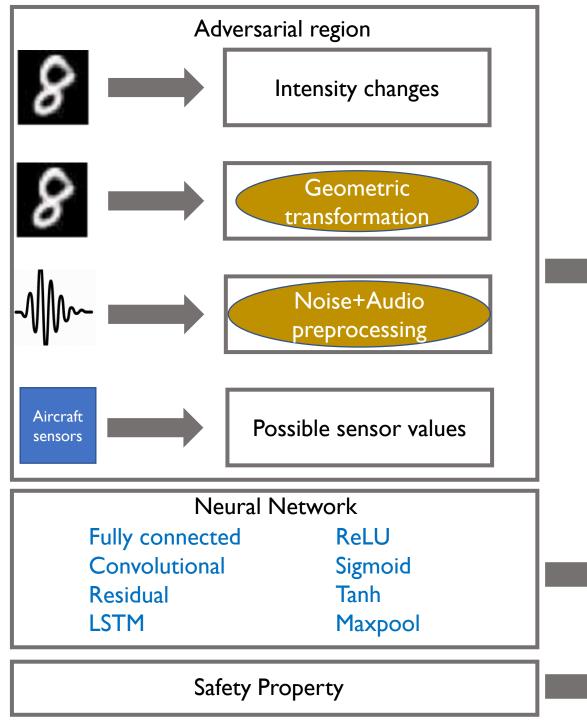
All images I where the intensity at each pixel differs from the intensity at the corresponding pixel in I_0 by $\leq \epsilon$

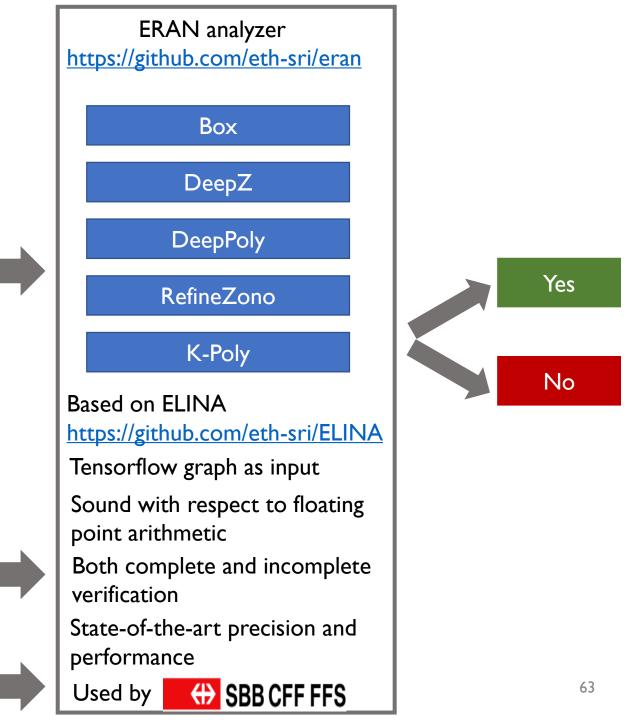


Adversarial region $Rotate(I_0, \epsilon, \alpha, \beta)$

All images I which are obtained by rotation each image in $L_{\infty}(I_0, \epsilon)$ by an angle between α and β using bilinear interpolation

Original





Results with ERAN

Aircraft	collision	avoidance	system
----------	-----------	-----------	--------

Reluplex	Neurify	ERAN
> 32 hours	921 sec	227 sec

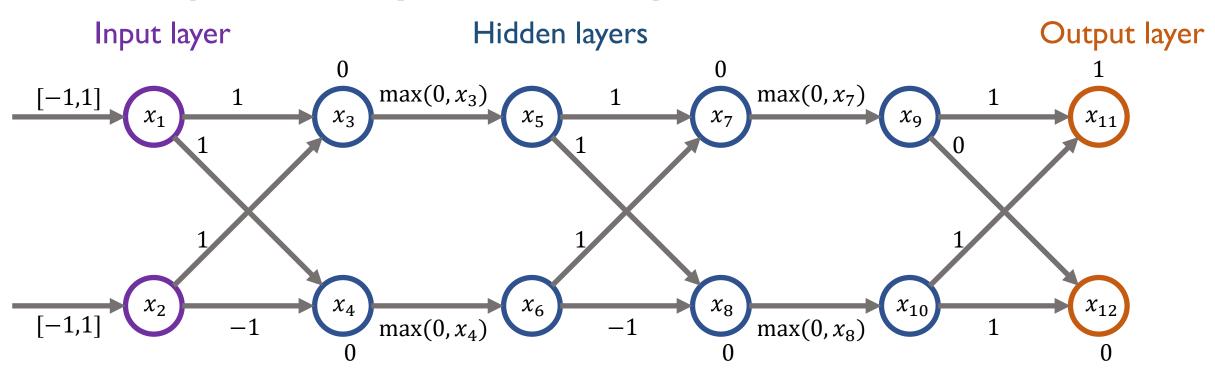
MNIST CNN with > 88K neurons

ϵ	%verified	Time (s)
0.1	97%	133 sec

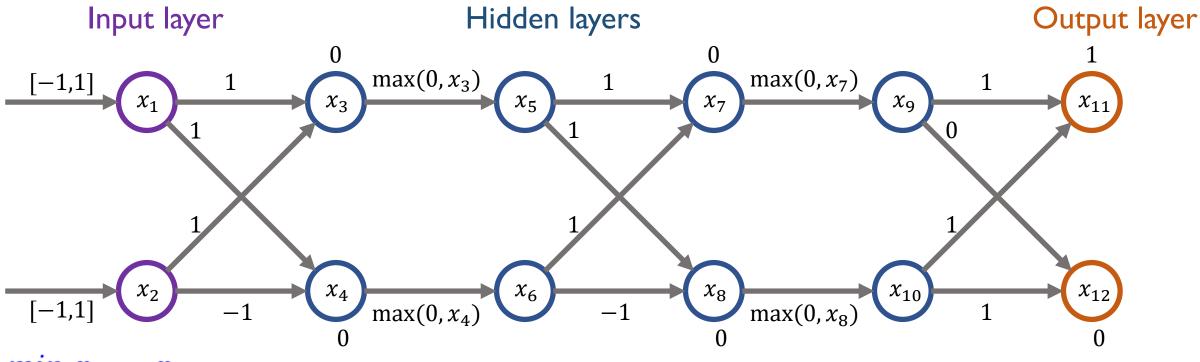
Rotation between -30° and 30° on MNIST CNN with 4,804 neurons					
ε	%verified	Time(s)			
0.001	86	10 sec			

LSTM with 64 hidden neurons						
ε	%verified	Time (s)				
-110 dB	90%	9 sec				

Example: Analysis of a Toy Neural Network



We want to prove that $x_{11} > x_{12}$ for all values of x_1, x_2 in the input set



 $min \ x_{11} - x_{12}$

 $s.t.: x_{11} = x_9 + x_{10} + 1, x_{12} = x_{10},$ $x_9 = \max(0, x_7), x_{10} = \max(0, x_8),$ $x_7 = x_5 + x_6, x_8 = x_5 - x_6,$ $x_5 = \max(0, x_3), x_6 = \max(0, x_4),$ $x_3 = x_1 + x_2, x_4 = x_1 - x_2,$ $-1 \le x_1 \le 1, -1 \le x_2 \le 1.$

Each $x_j = \max(0, x_i)$ corresponds to $(x_i \le 0 \text{ and } x_j = 0) \text{ or}$ $(x_i > 0 \text{ and } x_j = x_i)$

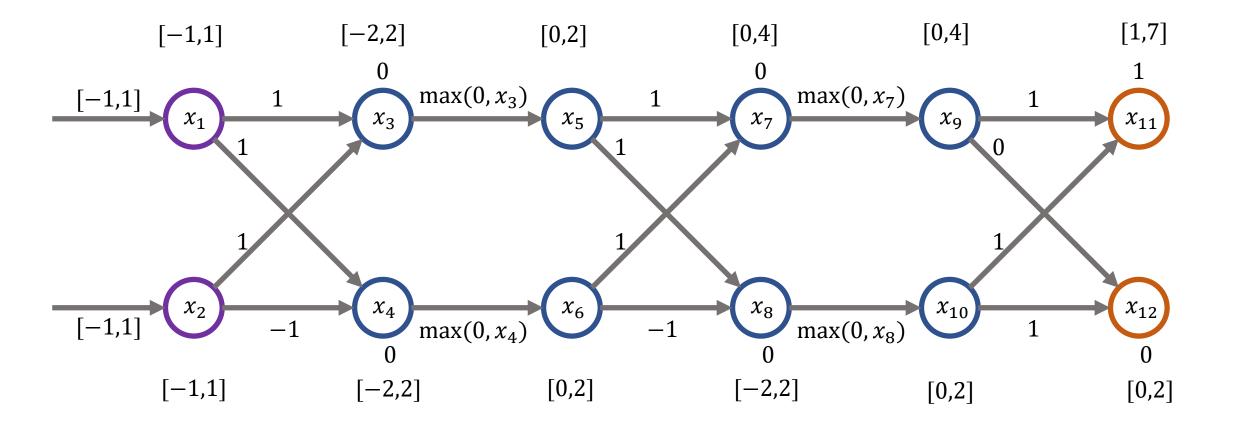
Solver has to explore two paths per ReLU resulting in exponential number of paths

Complete verification with solvers often does not scale

Analysis Trade-offs: Precision vs. Scalability

Publication	Description	
Al ² : Safety and Robustness Certification of Neural Networks with Abstract Interpretation, Security & Privacy, 2018 (Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, Vechev)	Al2: Generic conceptual framework for analyzing neural networks with Al.	
Fast and Effective Robustness Certification NeurIPS 2018 (with Gehr, Mirman, Vechev, Püschel)	DeepZ: Zonotope domain with new custom abstract transformers tailored to neural networks	More scalable Less precise
An Abstract Domain for Certifying Neural Networks POPL 2019 (with Gehr, Vechev, Püschel)	DeepPoly: New, restricted polyhedra domain with abstract transformers specifically tailored to neural networks	More scalable Less precise
Boosting Robustness Certification of Neural Networks ICLR 2019 (with Gehr, Vechev, Püschel)	RefineZono: Best of both: AI + solvers. More scalable than pure MILP solutions and more precise than pure AI (but less scalable)	More precise Less scalable

Box Abstract Domain



Verification with the Box domain fails as it cannot capture relational information

DeepPoly Abstract Domain [POPL'19]

Shape: associate a lower polyhedral a_i^{\leq} and an upper polyhedral a_i^{\geq} constraint with each x_i

$$a_i^{\leq}, a_i^{\geq} \in \{x \mapsto v + \sum_{j \in [i-1]} w_j \cdot x_j \mid v \in \mathbb{R} \cup \{-\infty, +\infty\}, w \in \mathbb{R}^{i-1}\} \text{ for } i \in [n]$$

Concretization of abstract element *a*: $\gamma_n(a) = \{x \in \mathbb{R}^n \mid \forall i \in [n]. a_i^{\leq}(x) \leq x_i \land a_i^{\geq}(x) \geq x_i\}$

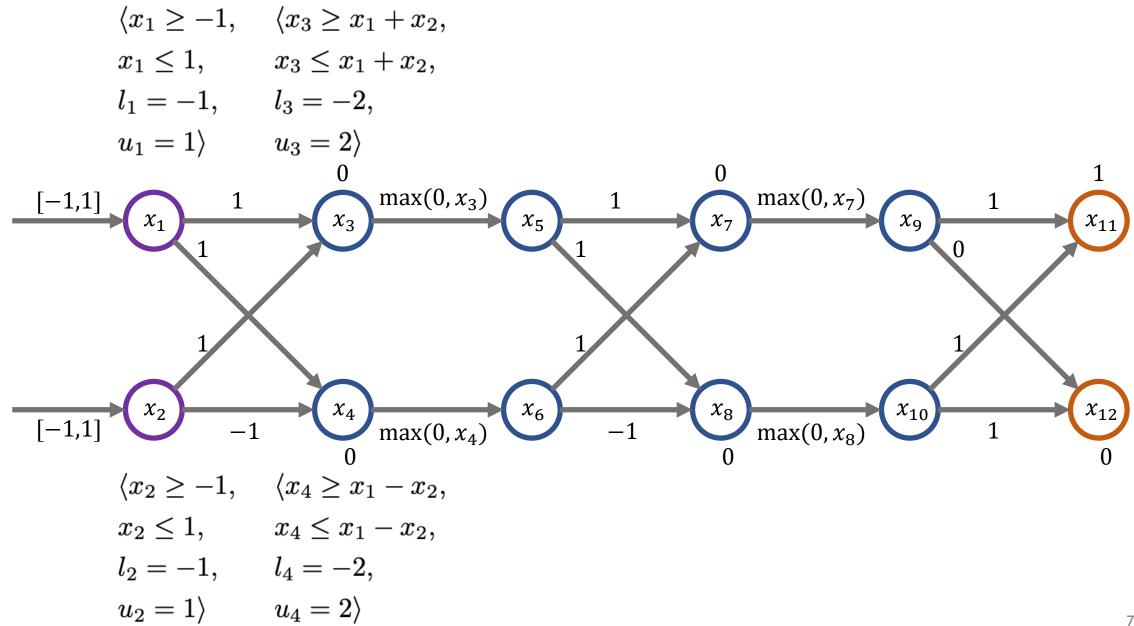
Domain invariant: store auxiliary concrete lower and upper bounds l_i , u_i for each x_i $\gamma_n(a) \subseteq \times_{i \in [n]} [l_i, u_i]$

- less precise than Polyhedra, restriction needed to ensure scalability
- captures affine transformation precisely unlike Octagon, TVPI
- custom transformers for ReLU, sigmoid, tanh, and maxpool activations

n: #neurons, *m*: #constraints

 w_{max} : max #neurons in a layer, L:# layers

Transformer	Polyhedra	Our domain
Affine	$0(nm^2)$	$O(w_{max}^2L)$
ReLU	$O(\exp(n,m))$	0(1)

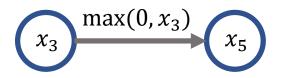


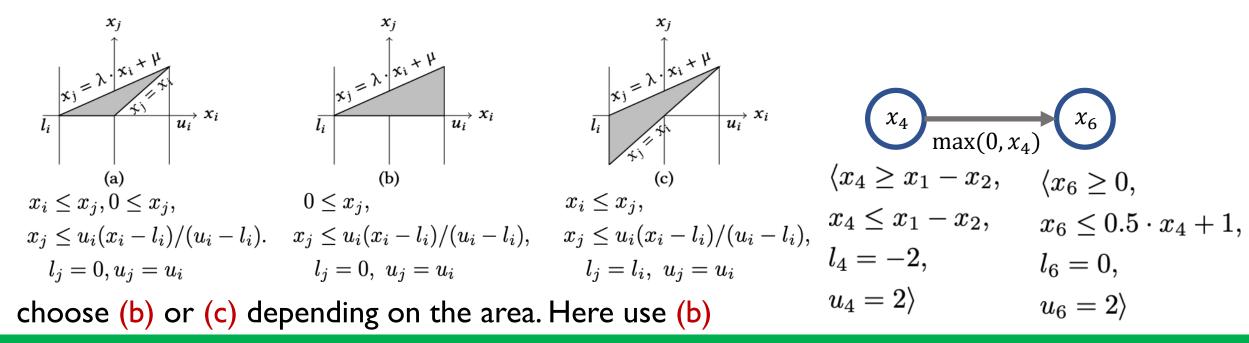
ReLU activation

Pointwise transformer for $x_i \coloneqq max(0, x_i)$ that uses l_i, u_i

$$if \ u_i \le 0, a_j^{\le} = a_j^{\ge} = 0, l_j = u_j = 0, \\ if \ l_i \ge 0, a_j^{\le} = a_j^{\ge} = x_i, l_j = l_i, u_j = u_i, \\ if \ l_i < 0 \ and \ u_i > 0$$

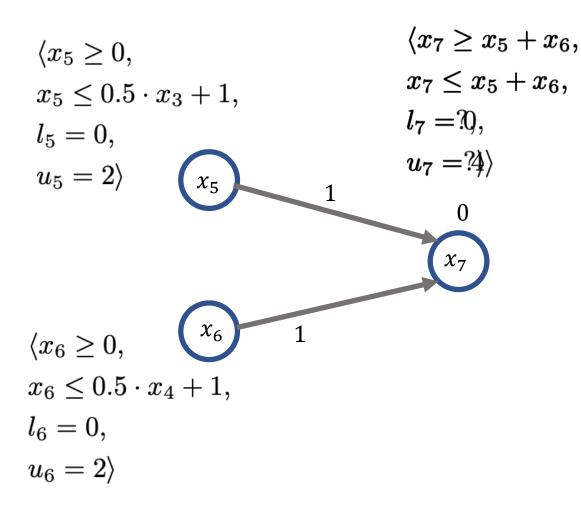
$$egin{aligned} &\langle x_3 \geq x_1 + x_2, & \langle x_5 \geq 0, \ &x_3 \leq x_1 + x_2, & x_5 \leq 0.5 \cdot x_3 + 1, \ &l_3 = -2, & l_5 = 0, \ &u_3 = 2
angle & u_5 = 2
angle \end{aligned}$$





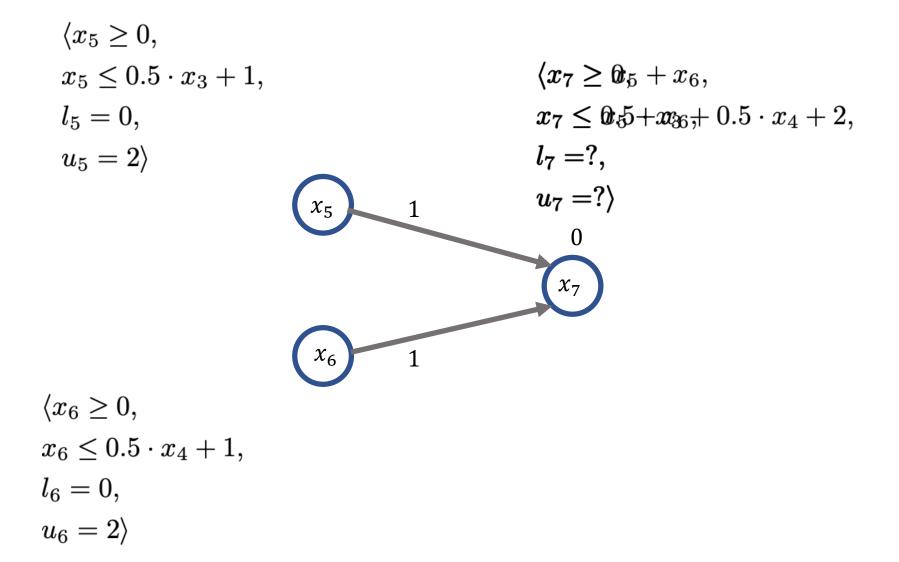
Constant runtime

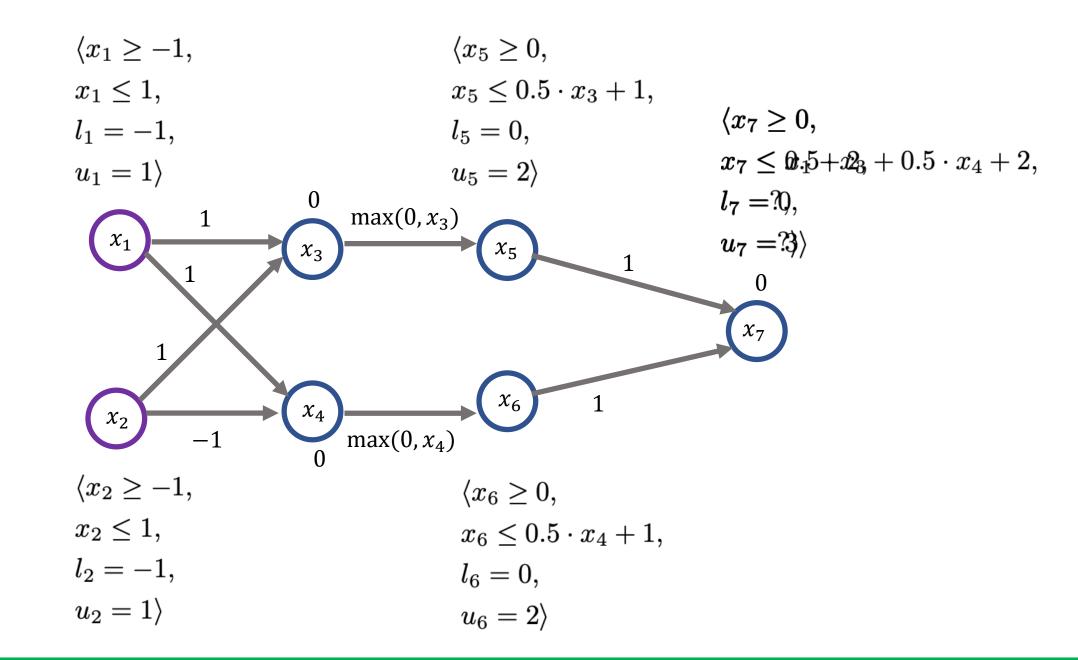
Affine transformation after ReLU



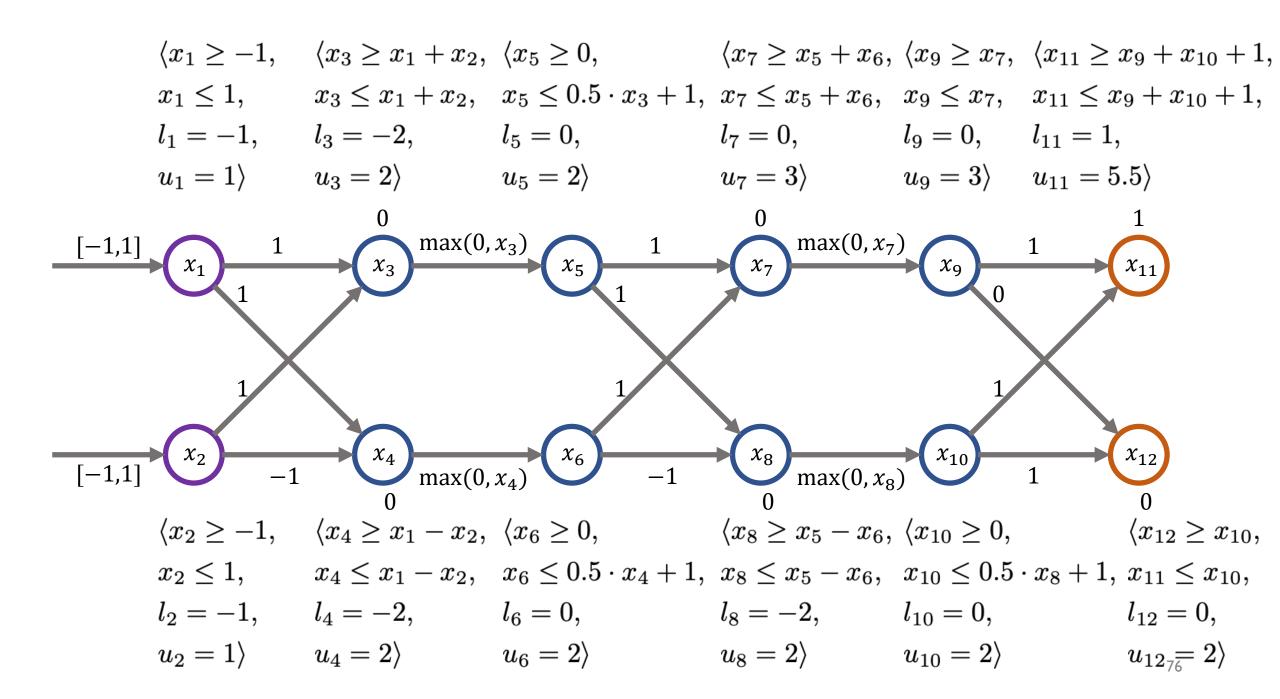
Imprecise upper bound u_7 by substituting u_5 , u_6 for x_5 and x_6 in a_7^2 73

Backsubstitution





Affine transformation with backsubstitution is pointwise, complexity: $O(w_{max}^2 L)^{75}$



Checking for robustness

Prove $x_{11} - x_{12} > 0$ for all inputs in $[-1,1] \times [-1,1]$

$\langle x_{11} \ge x_9 + x_{10} + 1,$	$\langle x_{12} \ge x_{10},$
$x_{11} \le x_9 + x_{10} + 1,$	$x_{11} \le x_{10},$
$l_{11} = 1,$	$l_{12} = 0,$
$u_{11}=5.5 angle$	$u_{12}=2 angle$

Computing lower bound for $x_{11} - x_{12}$ using l_{11} , u_{12} gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for $x_{11} - x_{12}$, proving robustness

Benchmarks

Dataset	Model	Туре	#Neurons	#Layers	Defense
MNIST	6 × 100	feedforward	610	6	None
	6 × 200	feedforward	1,210	6	None
	9 × 200	feedforward	1,810	9	None
	ConvSmall	convolutional	3,604	3	DiffAl
	ConvBig	convolutional	34,688	6	DiffAl
	ConvSuper	convolutional	88,500	6	DiffAl
CIFAR I 0	ConvSmall	convolutional	4,852	3	DiffAl

DiffAl: trained to be more robust

Robusteness around input

% => % of input images such that robustness around them can be certified

Dataset	Model	E	Deer	pZono	Dee	e pPoly	Refin	eZono
			% 🔗	time(s)	%√∕	time(s)	%√	time(s)
MNIST	6×100	0.02	31	0.6	47	0.2	67	194
	6 × 200	0.015	13	1.8	32	0.5	39	567
	9 × 200	0.015	12	3.7	30	0.9	38	826
	ConvSmall	0.12	7	I.4	13	6.0	21	748
	ConvBig	0.2	79	7	78	61	80	193
	ConvSuper	0.1	97	133	97	400	97	665
CIFAR I 0	ConvSmall	0.03	17	5.8	21	20	21	550

Partitioning the space with Batches is importants.

#Batches

1

1

220

220

Test Robustness for:

Rotation of -45,+65° Intensity of each pixel +/- 1%

=>

220 batches for different rotation (65°,64.5°)...300 regions encoding different intensity for pixels

Batch Size	Region(s) $(l, \frac{1}{2}(l + u), u)$	Analysis time	Verified?
1	-	0.5s + 1.9s	No
10000	- 6	22.2s + 1.8s	No
1	ය හ හ හ හ හ හ හ	1.2s + 5m51s	No
els 300	ය ග හ හ හ හ හ හ	2m29s + 5m30s	Yes

Conclusion

Attacks on Deep Learning

The self-driving car incorrectly decides to turn right on Input 2 and crashes into the guardrail



(a) Input 1

DeepXplore: Automated Whitebox Testing of Deep Learning Systems, SOSP'17

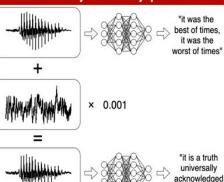
The Ensemble model is fooled by the addition of an adversarial distracting sentence in blue.

Article: Super Bowl 50 Paragraph: "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

Question: "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" **Original Prediction:** John Elway Prediction under adversary: Jeff Dean

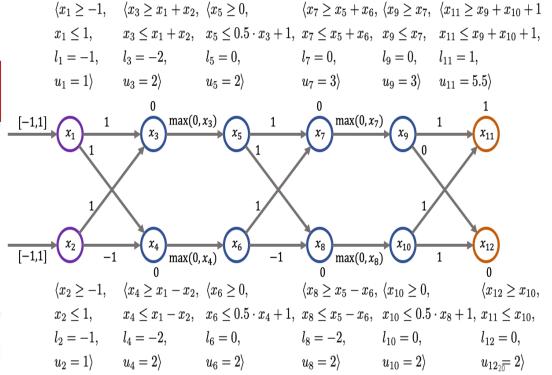
Adversarial Examples for Evaluating Reading Comprehension Systems, EMNLP'17

Adding small noise to the input audio makes the network transcribe any arbitrary phrase



Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, **ICML 2018**

that a single"



Our analyzer ERAN is publicly available at <u>https://github.com/eth-sri/eran</u>

Feedforward (FNN), convolutional (CNN), and residual networks ReLU, sigmoid, and tanh activations Sound with respect to floating point arithmetic State-of-the-art precision and performance

Aircraft collision avoidance system

Reluplex	Neurify	ERAN
> 32 hours	921 sec	227 sec