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Supervised learning

Needs a lot of annotated data

Guarantees?





Attacks on Deep Learning

Adding small noise to the input 

audio makes the network 

transcribe any arbitrary phrase 

Audio Adversarial Examples: 

Targeted Attacks on Speech-to-Text, 

ICML 2018

The self-driving car incorrectly 

decides to turn right on Input 2 

and crashes into the guardrail

DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, 

SOSP’17

Adversarial Examples for Evaluating 

Reading Comprehension Systems, 

EMNLP’17 

The Ensemble model is fooled by 

the addition of an adversarial 

distracting sentence in blue. 
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Linear partcan be

Non-Linear



LinearMostly Non-Linear functions













Continuous variables => use LP after

guessing phases (de/activatation) of ReLU



Ex: AI2, next part

Ex: RELUPLEX

Provide certified upper/lower bound.

No refinement if not enough

Provide exact bounds.





Abstraction used

(piecewise constant)

Can tackle only ~10 neurons

Later: AI²

Incomplete techniques (abstractions…): 

First: NEVER (Pulina et al. 2010).





First: Bastani et al. 2016.

Use LP solvers (linear programming, PTIME).

Problem: ReLU is not linear => it is a OR of 2 linear function.

Heuristic to fix the phase of each ReLU.

 Sound but incomplete techniques.

To make it complete:

Search exhaustively every possible choice for RELU.

Set a choice. Backtrack if no counterexample found.

Heuristic to search in a good direction, like SAT solvers.

Many varations in 2017: 

Planet Solver (Elhers),  Tjeng and Tedrake, Katz et al, BAB Solver (BTT), Lomuscio and Magnenti….

Sherlock Solver (Dutta et al. 2018).

Or use quadratic Solvers Cheng et al. 2017. Later: RELUPLEX

Complete techniques:









Simplex

Aim: find optimal solution satisfying some constraints.

First phase: Find Feasible solution

Secund phase: Optimize





True

False



Hypothesis to check



Update:

x4 := x4 + 0.5
0.5

0.5

Now, need to change x7. 

But x7 on the left (Var. are either right or left)

Can change only variable on right, so need to:

pivot x7,x2

Hypothesis to check

Hypothesis to check



Update:

x7 := x7 - 0.5
0    

0.5

0.5

x5 is incorrect. 



Update:

x5 := x5 - 0.5

0    

0.5

0.5

x6 is incorrect. 

x4  x7  x5  x6 

 need to change x5

(through x1 or x3)

 Failure.

no  x1 ϵ [0,1]

with x4 ϵ [0.5,1]





Fix every ReLU activation phase first: activated (input >0) or deactivated (input <0).

We have linear constraints!

We can use Simplex to solve it

If couterexample found => return SAT

Else: fix another activation of ReLU and loop till all activation have been tested.

Return UNSAT

Simplex to simple RELUPLEX





(Lazy)



after simplex gives a result for linear operators

Decoupled variables 

xw and xa have no 

relation at first

=> Only linear op.

Can run simplex

(Lazy)



Can I find

x1 ϵ [0,1] with x4 ϵ [0.5,1] ?

Yes. x1=0.5 => x4=0.5



plus the ReLU properties:

xi
a=xi

w if xi
w ≥ 0 and xi

a = 0 otherwise

to solve after the rest is solved (lazy)

Linear Constraints

=>  usual

Simplex algorithm



Normal simplex 

algorithm

finds a solution

But not true with additional

x2
a=x2

w if x2
w ≥ 0 

0.5

0.5

0.5

-0.5

SOLUTION found: x1=0.5 => x4=0.5



0.5

0.5

-0.5

0.5

0.5

0.5

-0.5 0

0.5

0.5

SOLUTION found

x1=0.5 => x4=0.5











RELUPLEX for:



RELUPLEX for



RELUPLEX for



RELUPLEX for



















Safe and Robust Deep Learning: 
Using Abstraction (AI² to ERAN)

Gagandeep Singh

PhD Student

Department of Computer Science
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z

SafeAI @ ETH Zurich

58

Joint work with

Publications:

[1] AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation, S&P’18

[2] Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML’18

[3] Fast and Effective Robustness Certification, NeurIPS’19

[4] An Abstract Domain for Certifying Neural Networks, POPL’19

[5] Boosting Robustness Certification of Neural Networks, ICLR’19

safeai.ethz.ch

Martin

Vechev

Markus

Püschel

Timon

Gehr

Matthew

Mirman

Mislav

Balunovic

Maximilian

Baader

Petar

Tsankov

Dana

Drachsler

safeai.ethz.ch


Abstrations for Adversarial Robustness

• generate adversarial examples

• under-approximation of network 

behavior in the adversarial region

• Madry et al. 2017

• prove absence of adversarial 

examples 

• over-approximation of network 

behavior in the adversarial region

• Gehr et al. 2018

Experimental robustness Certified robustness

• Exact solvers often do not scale to large networks => Use abstraction.

• Not always complete, but can prove both SAT (problem) and UNSAT (safe)
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Adversarial regions

8

7

𝐼𝑜

𝐼 ∈ 𝐿∞(𝐼0, 𝜖)

9

𝐼 ∈ 𝑅𝑜𝑡𝑎𝑡𝑒(𝐼0, 𝜖,𝛼, 𝛽)
60

Neural network f

Neural network f

Neural network f



Adversarial region 𝐿∞(𝐼0, 𝜖)
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All images 𝐼 where the intensity at each pixel differs from the intensity at the 

corresponding pixel in 𝐼0 by ≤ 𝜖

𝐼0 𝐼0 + 0.1 𝐼0 + 0.2 𝐼0 + 0.3 𝐼0 + 0.4 𝐼0 + 0.5 𝐼0 + 0.6 𝐼0 + 0.8𝐼0 + 0.7



Adversarial region 𝑅𝑜𝑡𝑎𝑡𝑒(𝐼0, 𝜖,𝛼, 𝛽)
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All images 𝐼 which are obtained by rotation each image in 𝐿∞ 𝐼0, 𝜖 by an angle 

between 𝛼 and 𝛽 using bilinear interpolation
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Adversarial region

Intensity changes

Geometric 

transformation

s

Noise+Audio

preprocessing

Box

DeepZ

DeepPoly

RefineZono

ERAN analyzer 

https://github.com/eth-sri/eran

K-Poly

Yes

No

Fully connected

Convolutional

Residual

LSTM

ReLU

Sigmoid

Tanh

Maxpool

Neural Network

Based on ELINA

https://github.com/eth-sri/ELINA

Sound with respect to floating

point arithmetic

State-of-the-art precision and 

performance

Possible sensor values
Aircraft

sensors

Safety Property Used by 

Tensorflow graph as input

Both complete and incomplete 

verification

https://github.com/eth-sri/eran
https://github.com/eth-sri/ELINA


Results with ERAN

Reluplex Neurify ERAN

> 32 hours 921 sec 227 sec

Aircraft collision avoidance system

𝝐 %verified Time (s)

0.1 97% 133 sec

MNIST CNN with > 88K neurons
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𝝐 %verified Time(s)

0.001 86 10 sec

Rotation between -30° and 30° on MNIST 

CNN with 4,804 neurons

𝝐 %verified Time (s)

-110 dB 90% 9 sec

LSTM with 64 hidden neurons



Example:  Analysis of a Toy Neural Network
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𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

We want to prove that 𝑥11 > 𝑥12 for all values of 𝑥1, 𝑥2 in the input set



66Complete verification with solvers often does not scale

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

Each 𝑥𝑗 = 𝐦𝐚𝐱(0, 𝑥𝑖) corresponds to

(𝑥𝑖 ≤ 0 and 𝑥𝑗 = 0) or

(𝑥𝑖 > 0 and 𝑥𝑗 = 𝑥𝑖)

Solver has to explore two paths per ReLU

resulting in exponential number of paths 



Analysis Trade-offs: Precision vs. Scalability

More scalable

Less precise

More precise

Less scalable

Publication Description

AI2: Safety and Robustness Certification of Neural Networks 

with Abstract Interpretation,

Security & Privacy, 2018

(Gehr, Mirman, Drachsler-Cohen, Tsankov, Chaudhuri, Vechev)

AI2: Generic conceptual framework for 

analyzing neural networks with AI.

Fast and Effective Robustness Certification

NeurIPS 2018

(with Gehr, Mirman, Vechev, Püschel)

DeepZ: Zonotope domain with new 

custom abstract transformers tailored to 

neural networks

An Abstract Domain for Certifying Neural Networks

POPL 2019

(with Gehr, Vechev, Püschel)

DeepPoly: New, restricted polyhedra

domain with abstract transformers 

specifically tailored to neural networks

Boosting Robustness Certification of Neural Networks

ICLR 2019

(with Gehr, Vechev, Püschel)

RefineZono: Best of both: AI +  solvers. 

More scalable than pure MILP solutions and 

more precise than pure AI (but less 

scalable)

More scalable

Less precise



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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Box Abstract Domain

[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[0,4]

[−2,2]

[0,4]

[0,2]

[1,7]

[0,2]

Verification with the Box domain fails as it cannot capture relational information



DeepPoly Abstract Domain [POPL’19]

Shape:  associate a lower polyhedral 𝑎𝑖
≤ and an upper polyhedral 𝑎𝑖

≥ constraint with each 𝑥𝑖

• less precise than Polyhedra, restriction 

needed to ensure scalability

• captures affine transformation precisely 

unlike Octagon, TVPI

• custom transformers for ReLU, sigmoid, 

tanh, and maxpool activations 

Concretization of abstract element 𝑎:

Domain invariant:  store auxiliary concrete lower and upper bounds 𝑙𝑖 , 𝑢𝑖 for each 𝑥𝑖
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Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚2) Ο(𝑤𝑚𝑎𝑥
2 𝐿)

ReLU Ο(exp(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints

𝑤𝑚𝑎𝑥: max #neurons in a layer, 𝐿: # layers



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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ReLU activation

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

Pointwise transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖
𝑖𝑓 𝑢𝑖 ≤ 0, 𝑎𝑗

≤ = 𝑎𝑗
≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0,

𝑖𝑓 𝑙𝑖 ≥ 0, 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖 , 𝑙𝑗 = 𝑙𝑖 , 𝑢𝑗 = 𝑢𝑖 ,

𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

choose (b) or (c) depending on the area. Here use (b)

Constant runtime 72



Affine transformation after ReLU

𝑥5

𝑥7

𝑥6

0

1

1

Imprecise upper bound 𝑢7 by substituting 𝑢5, 𝑢6 for 𝑥5 and 𝑥6 in 𝑎7
≥
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Backsubstitution

𝑥5

𝑥7

𝑥6

0

1

1
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Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤𝑚𝑎𝑥
2 𝐿

𝑥5

𝑥7

𝑥6

0

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1
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𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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Checking for robustness

Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for 𝑥11 − 𝑥12, proving robustness 77



Benchmarks
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Dataset Model Type #Neurons #Layers Defense

MNIST 6 × 100 feedforward 610 6 None

6 × 200 feedforward 1,210 6 None

9 × 200 feedforward 1,810 9 None

ConvSmall convolutional 3,604 3 DiffAI

ConvBig convolutional 34,688 6 DiffAI

ConvSuper convolutional 88,500 6 DiffAI

CIFAR10 ConvSmall convolutional 4,852 3 DiffAI

DiffAI: trained to be more robust



Robusteness around input

79

Dataset Model 𝝐 DeepZono DeepPoly RefineZono

% ✅ time(s) %✅ time(s) %✅ time(s)

MNIST 6 × 100 0.02 31 0.6 47 0.2 67 194

6 × 200 0.015 13 1.8 32 0.5 39 567

9 × 200 0.015 12 3.7 30 0.9 38 826

ConvSmall 0.12 7 1.4 13 6.0 21 748

ConvBig 0.2 79 7 78 61 80 193

ConvSuper 0.1 97 133 97 400 97 665

CIFAR10 ConvSmall 0.03 17 5.8 21 20 21 550

% => % of input images such that

robustness around them can be certified



Partitioning the space with Batches is importants.
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Test Robustness for:

Rotation of -45,+65°

Intensity of each pixel +/- 1%

=>

220 batches for different rotation (65°,64.5°)…

300 regions encoding different intensity for pixels



Conclusion
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Reluplex Neurify ERAN

> 32 hours 921 sec 227 sec

Aircraft collision avoidance system


