MULTI-AGENT LEARNING From theory to practice

Ann Nowé Al Lab <u>ai.vub.ac.be</u>

REINFORCEMENT LEARNING

- Origin in psychology
- Learning from interaction
- Learning about, from, and while interacting with
- Learning what to do how to map situations to actions - so as to maximise a numerical

KEY FEATURES OF RL

- Learner is **not** told which action to take
- Trial-and-error approach
- Possibility of delayed reward
 - Sacrifice short term gains for greater long-term gains
- Need to balance exploration and exploitation
- Considers the whole problem of a goal-oriented agent interacting with an uncertain environment

POLE BALANCING DEMO

SUPERVISED VS UNSUPERVISED

Supervised learning

Training info = desired (target) outputs

Unsupervised learning

Training info = evaluations

Inputs Supervised learning system

Error = (target output - actual output)

Objective: get as much reward as possible

Reinforcement

learning system

Output ''actions

Input ''states

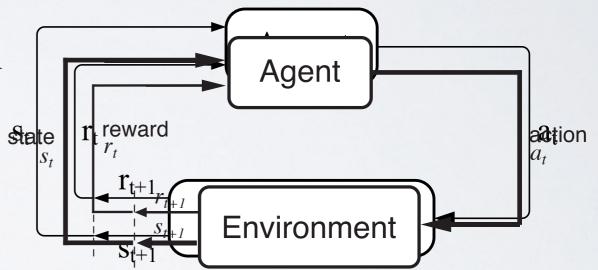
THE AGENT-ENVIRONMENT INTERFACE

Agent interacts at discrete time steps t = 0, 1, 2, ...

• Observes state $s_t \in S$

Agent and environment interact at discrete time steps : t = 0,1,2,K

- A sent deserves state at step $t: a_t \in \mathcal{A}(s_t)$ produces action at step $t: a_t \in \mathcal{A}(s_t)$
- gets estimates ward: m_{+} estiate reward and resulting next state: s_{t+1}



• Observes resulting state s_{t+1}

$$\underbrace{\begin{array}{c} & r_{t+1} \\ s_t \\ a_t \\ \end{array}}^{r_{t+1}} \underbrace{\begin{array}{c} s_{t+2} \\ s_{t+2} \\ s_{t+2} \\ \end{array}}^{r_{t+3}} \underbrace{\begin{array}{c} s_{t+3} \\ s_{t+3} \\ s_{t+3} \\ a_{t+3} \\ \end{array}}^{r_{t+3}} a_{t+3} \\ \underbrace{\begin{array}{c} s_{t+3} \\ s_$$

LEARNING HOW TO BEHAVE

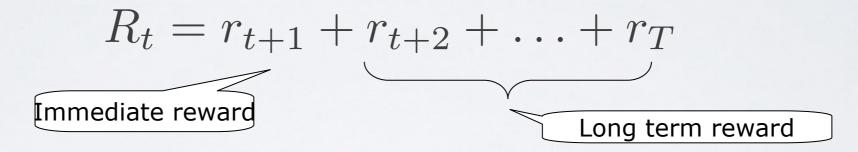
- The agent's **policy** π at time t is
 - a mapping from states to action probabilities

-
$$\pi_t(s, a) = P(a_t = a | s_t = s)$$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience
- Roughly, the agent's goal is to get as much reward as it can over the long run

THE OBJECTIVE

 Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game



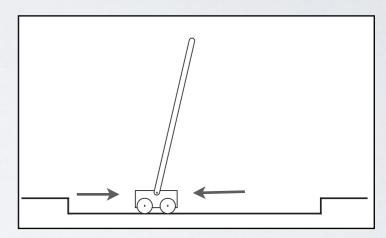
Continuing tasks: interaction does to have natural episodes

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

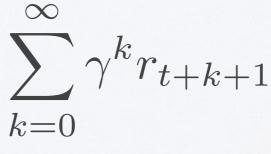
• where $\gamma \in [0,1]$ is the **discount factor**

EXAMPLE: POLE BALANCING

- An episodic task where episode ends upon failure:
 - reward = +1 for each step
 - return = # steps before failure



- A continuing task with discounted return:
 - reward = -1 upon failure
 - return $= -\gamma^k$, for k step before failure
- Return is maximized by avoiding failure as long as possible



THE OBJECTIVE

- Goal: learn $\pi: S \to A$ (could be stochastic)
- That maximises:

 $V^{\pi}(s) = E\{r_{r+1} + \gamma \cdot r_{t+2} + \gamma^2 \cdot r_{t+3} + \dots | s_t = s, \pi\}$ $= E\{r_{t+1}\} + \gamma \cdot E\{r_{t+2} + \gamma \cdot r_{t+3} + \dots | s_{t+1} = s, \pi\}$ rewards

$$V^*(s) = \max_{\pi} V^{\pi}(s) \forall s$$

INTUITIVELY

 $V^{\pi}(s)$ values express how good a state is given a policy π

 $\hat{Q(s,a)}$ express how good it is to apply action a in state s, and from the next state on apply π

INTUITIVELY

 $V^{\pi}(s)$ values express how good a state is given the optimal policy π^{*}

 $\overset{\pi^*}{Q(s,a)}$ express how good it is to apply action a in state s, and from the next state on apply π^*

$$V^*(s) = \max_a Q^*(s, a)$$

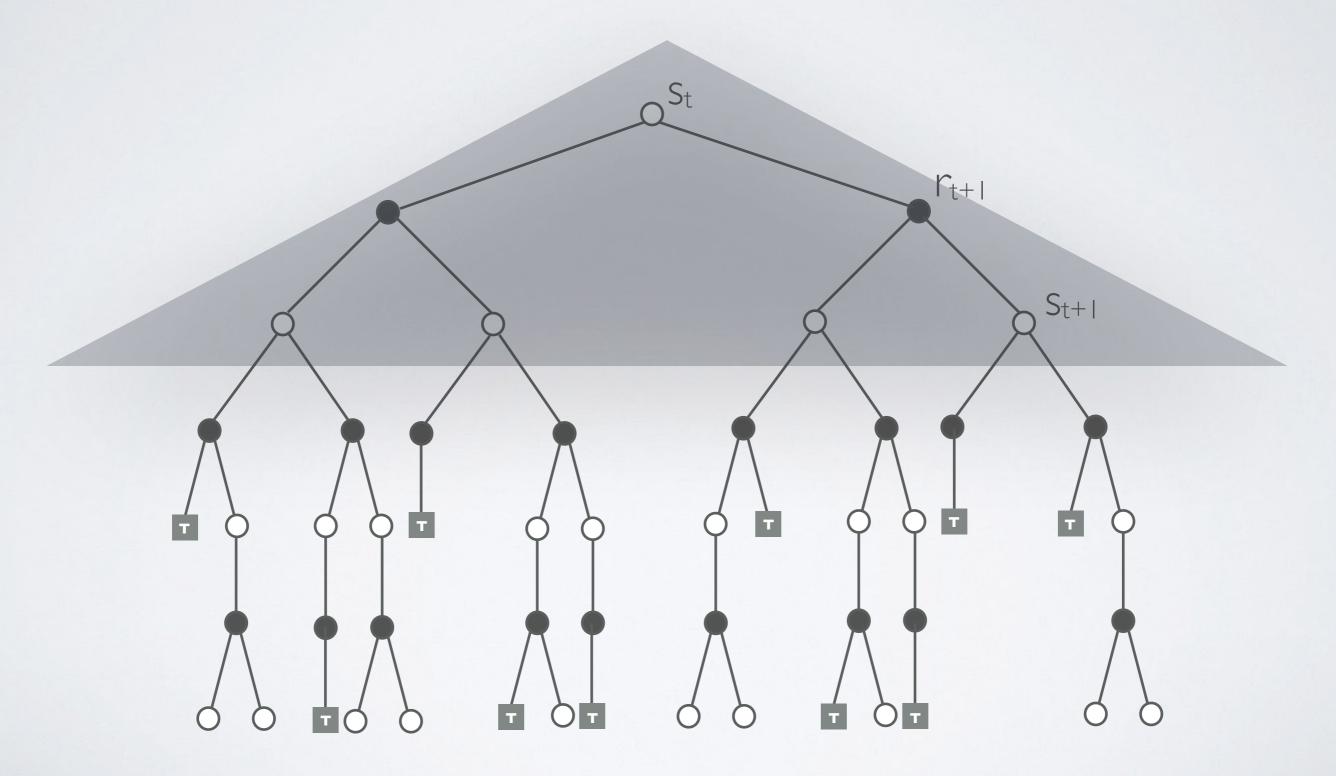
Q-LEARNING

One-step Q-learning:

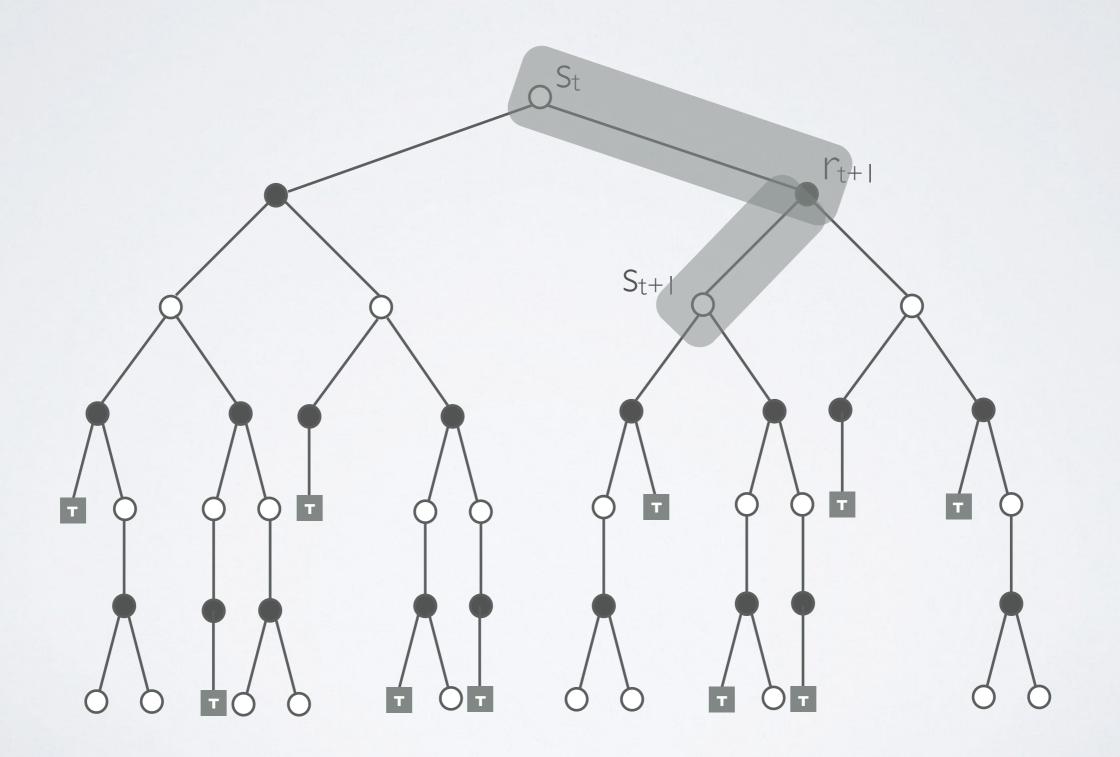
 $Q(s,a) \leftarrow Q(s,a) + \alpha [r_{t+1} + \gamma \max_{a'} Q(s_{t+1},a') - Q(s,a)]$

Initialize Q(s, a) arbitrarily Repeat (for each episode): Initialize sRepeat (for each step of episode): Choose a from s using policy derived from Q (e.g., ε -greedy) Take action a, observe r, s' $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$ $s \leftarrow s';$ until s is terminal

DYNAMIC PROGRAMMING : MODEL BASED



REINFORCEMENT LEARNING : MODEL FREE



EXPLORATION - EXPLOITATION

- Random action selection
- Greedy action selection $a_t = a_t^* = \underset{a}{\operatorname{argmax}} Q_t(a)$
- ϵ -Greedy action selection

$$a_t = \begin{cases} a_t^* \\ \text{random action} \end{cases}$$

with probability 1 - ϵ with probability ϵ

Softmax action selection

$$\frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^n e^{Q_t(b)/\tau}}$$

- Exploration bomus (curiosity driven)
- Regret minimisation

EXTENSIONS FOR PRACTICAL APPLICATIONS

Continuous states and actions

• Deep NN, Kernels, Tile coding, fuzzy, etc.

Take advantage of **asynchronous** updates

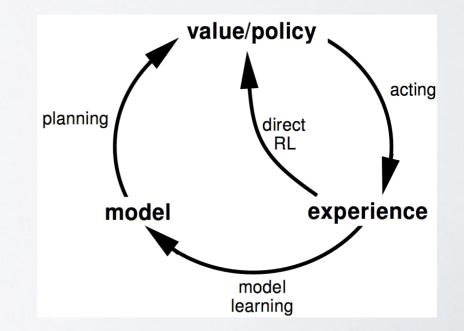
- Propagate interesting information more quickly
- Prioritized sweeping, eligibility traces

Incorporate domain knowledge

- Initialise policy
- Steer exploration
- Combine with model information (planning)

Continuous **time** extensions

Multi-criteria



CONVERGENCE OF Q-LEARNING

Q-learning is guaranteed to converge in an MDP setting

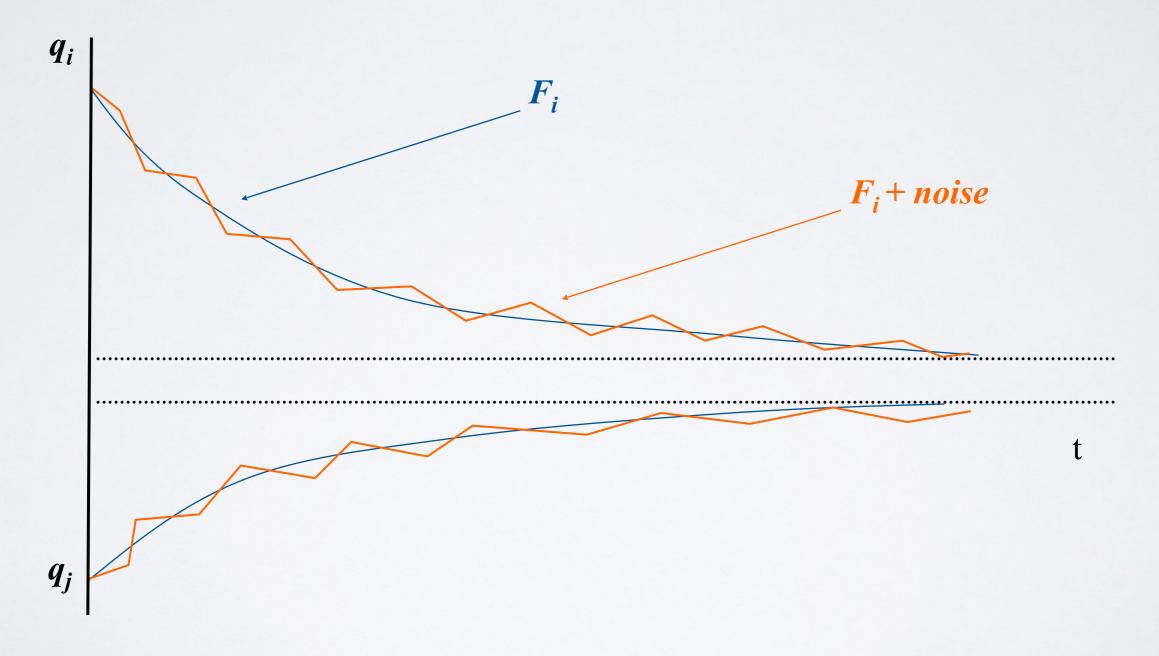
$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(t) \left(\left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) \right] - Q(s_t, a_t) \right]$$

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \alpha(t) \left(E \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) \right] - Q(s_{t}, a_{t}) \right] + \left((r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a)) - E \left[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) \right] \right)$$

Tsitsiklis, J.N. Asynchronous Stochastic Approximation and Q-learning. Machine Learning, Vol 16:pp185-202, 1994.

PROOF BY TSITSIKLIS, CONT.

Stochastic approximation

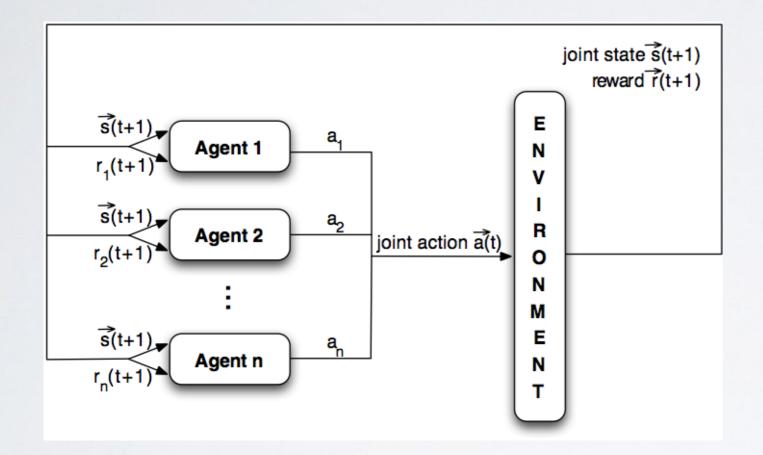


PROOF BY TSITSIKLIS, CONT.

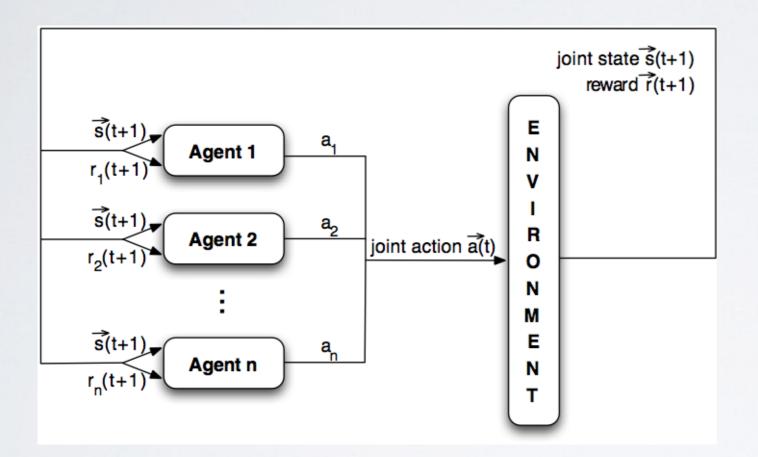
Stochastic approximation



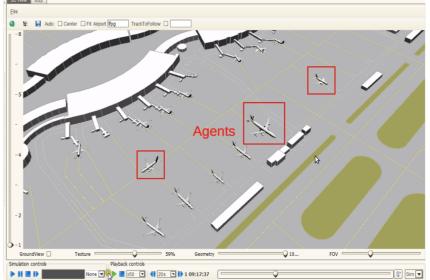
MULTI-AGENT RL



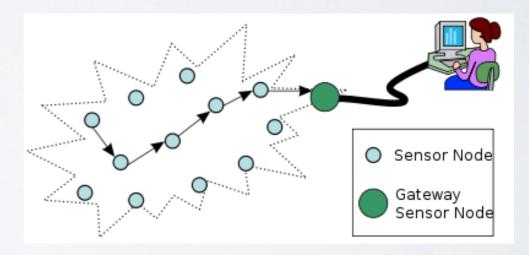
MULTI-AGENT RL



Paris Charles de Gaulle Airport (CDG)



AirTOpsoft



LEARNING AUTOMATA

Players in an n-person non-zero sum game who use independently a rewardinaction update scheme with an arbitrarily small step size will always converge to a pure equilibrium point. (Narendra and Wheeler, 1989)

If the game has a pure NE, the equilibrium point will be one of the pure NE.

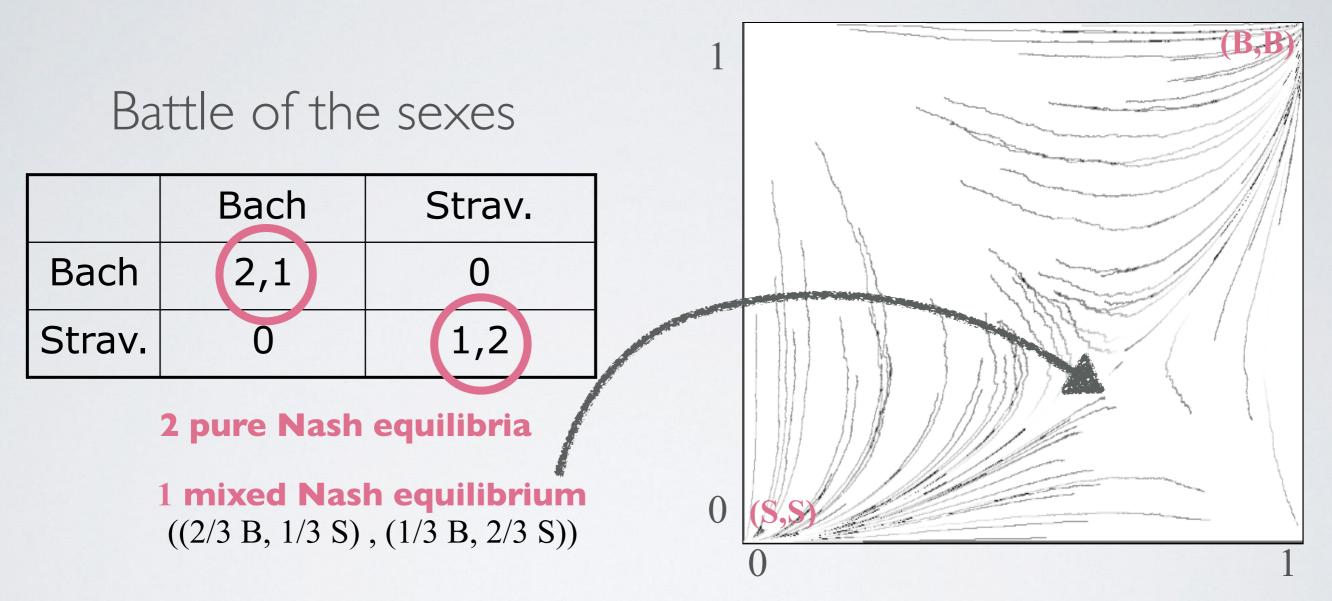
Interesting building block to design MARL algorithms.

Dynamics can be studied through evolutionary game theory Daan Bloembergen, <u>Karl Tuyls</u>, <u>Daniel Hennes</u>, <u>Michael Kaisers</u>: Evolutionary Dynamics of Multi-Agent Learning: A Survey. J. Artif. Intell. Res. 53</u>: 659-697 (2015)

Has also been used to understand convergence of ACO

Verbeeck K., Nowé A. Colonies of Learning Automata, IEEE Transactions on Systems, Man and Cybernetics 2002.

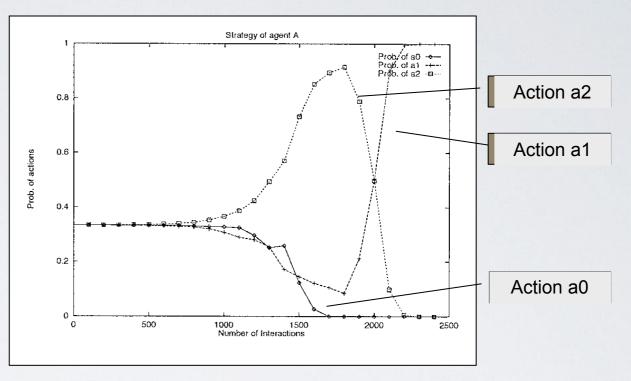
LA IN STRATEGIC GAMES



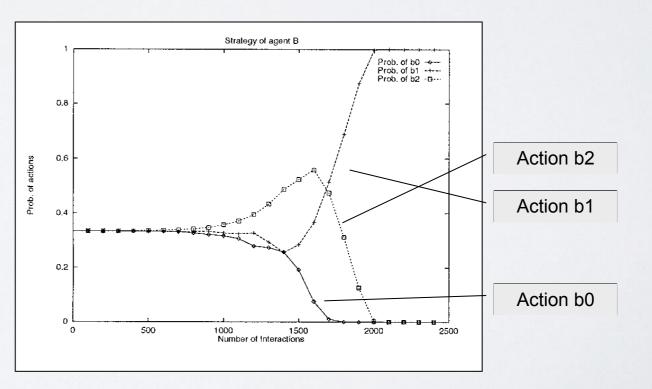
Paths induced by a linear reward-inaction LA. Starting points are chosen randomly x-axis = prob. of the first player to play Bach y-axis = prob. of the second player to play Bach

CLIMBING GAME

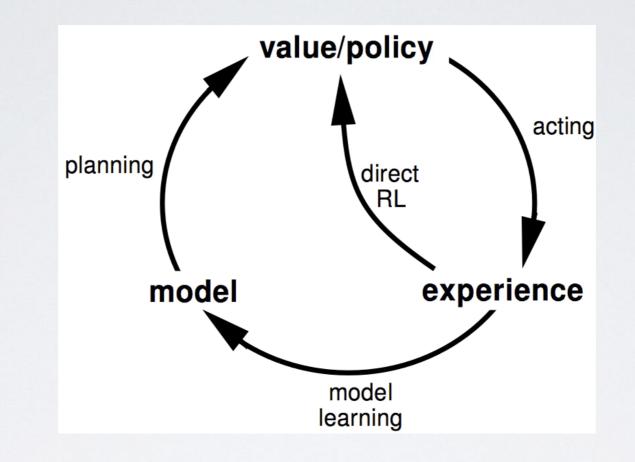
	a_0	<i>a</i> ₁	<i>a</i> ₂
b_0	11	-30	0
b_I	-30	7	6
<i>b</i> ₂	0	0	5

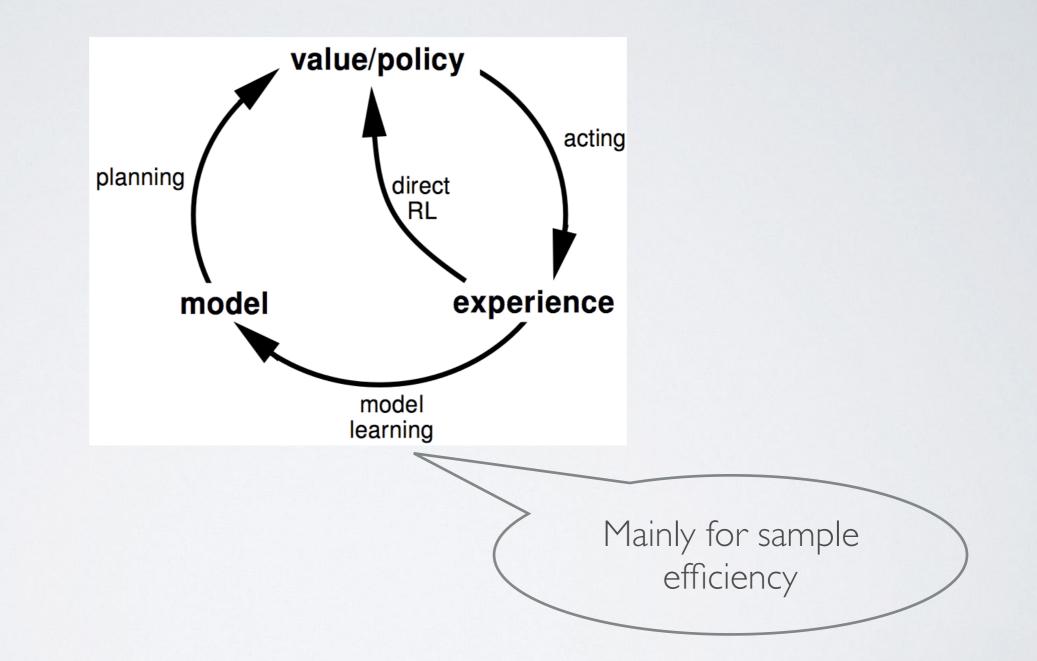


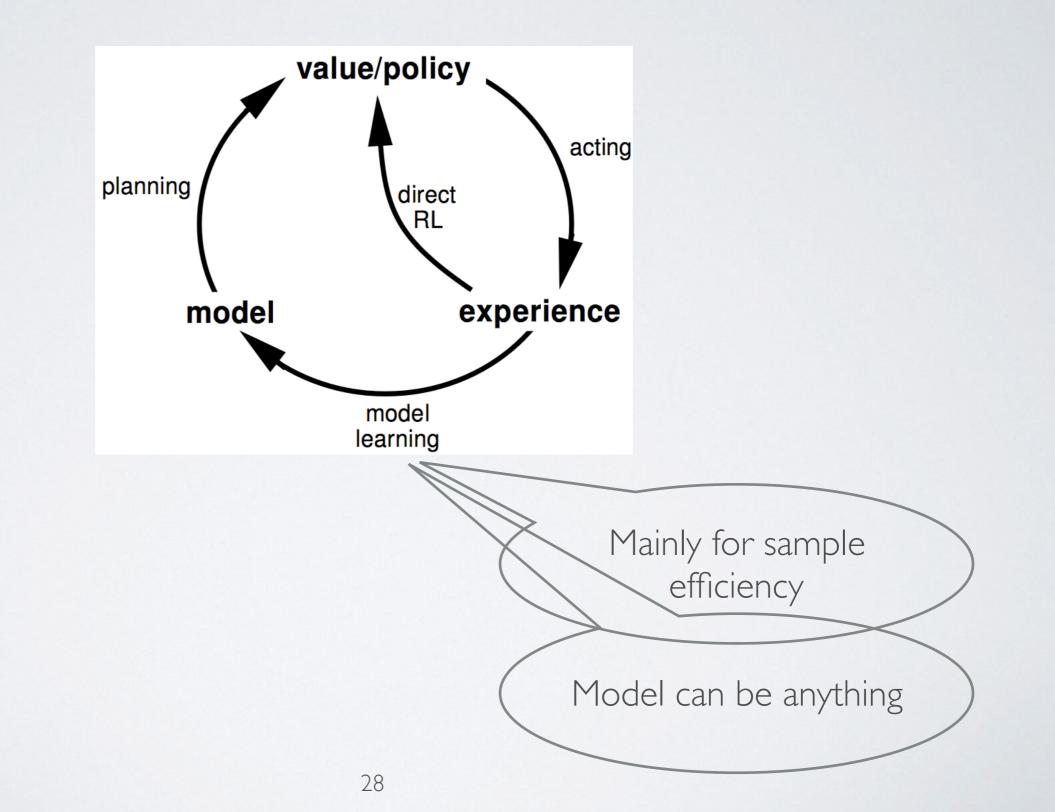
2 Nash Equilibria, 1 optimal

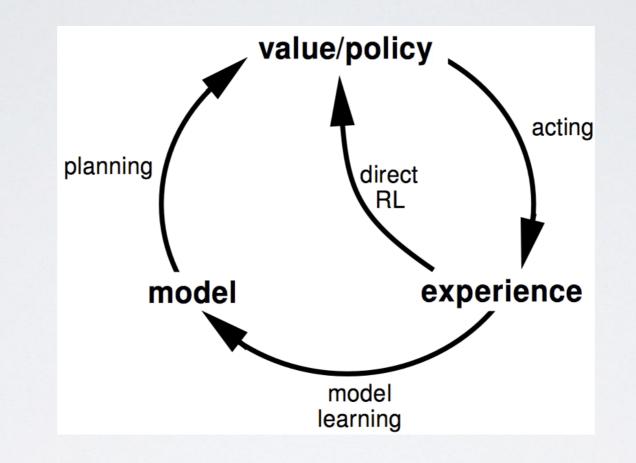


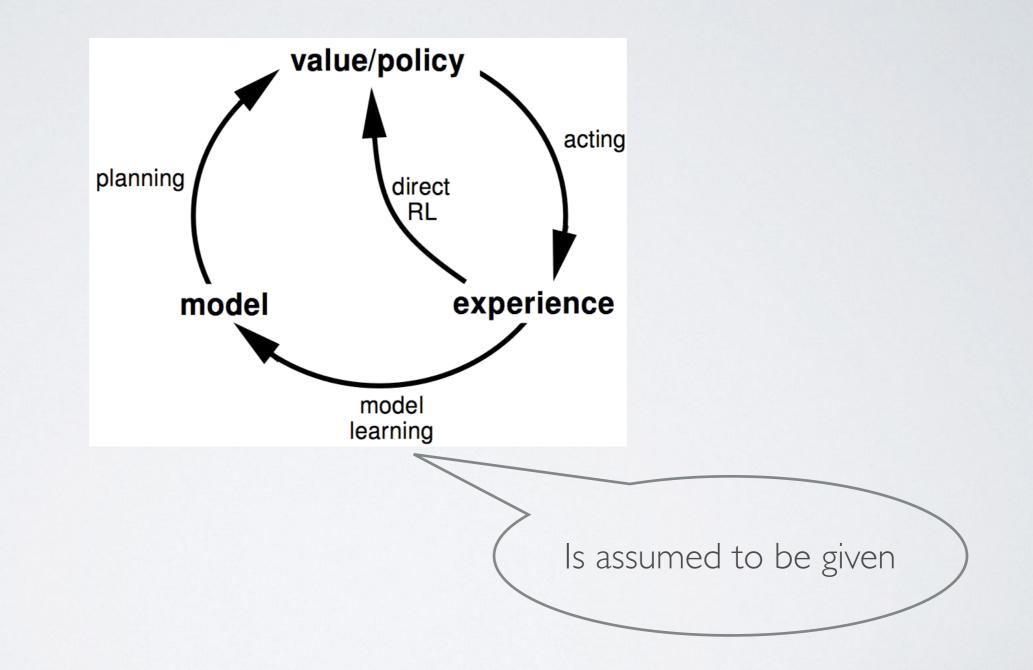
initial temperature 10000 is decayed at rate 0.995









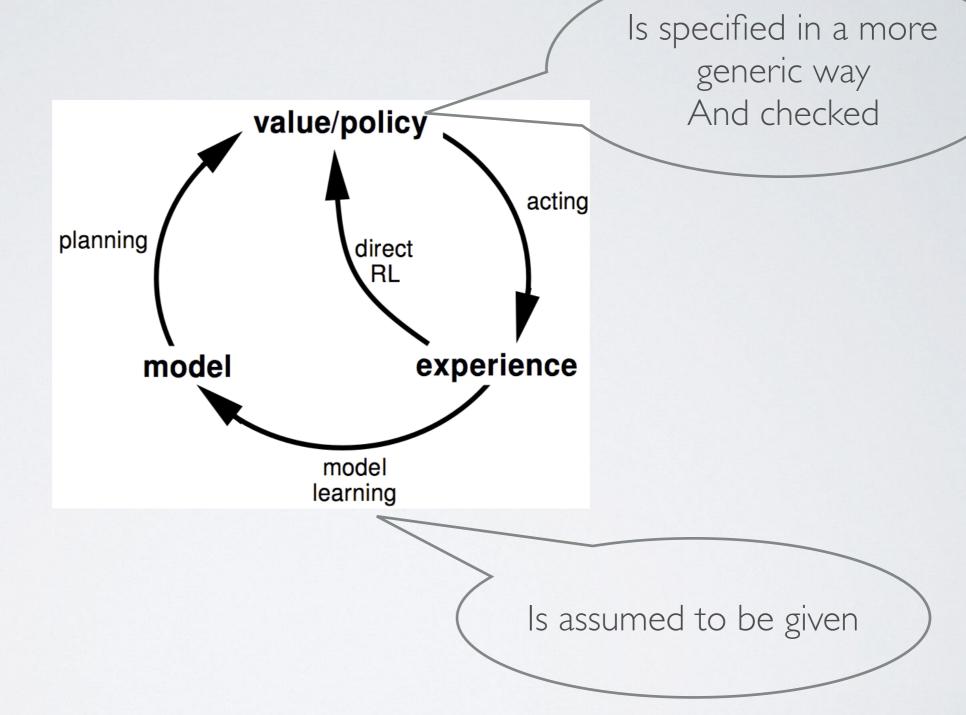


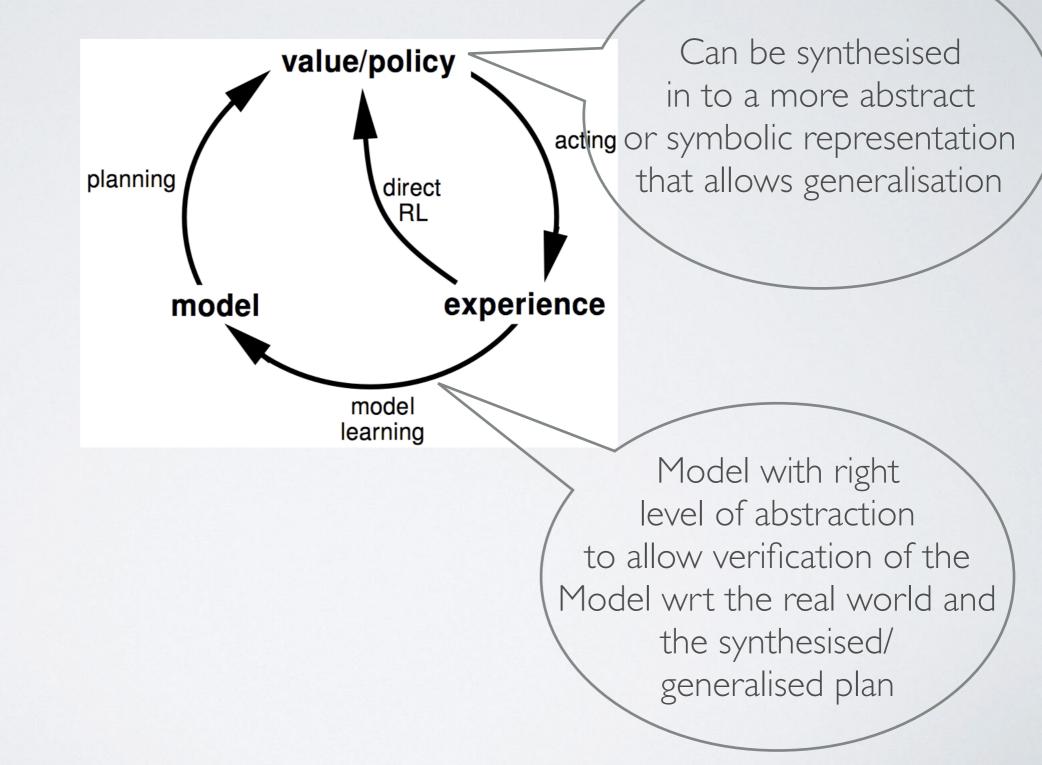
WHERE MULTI-AGENT REINFORCEMENT LEARNING AND VERIFICATION MIGHT MEET Is specified in a more value/policy acting planning direct RL experience model model learning

31

Is assumed to be given

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND VERIFICATION MIGHT MEET Is specified in a more generic way value/policy acting planning direct RL experience model model learning Is assumed to be given





POLICY ABSTRACTION

A flavour of how to use meta-information

