
MULTI-AGENT LEARNING
From theory to practice

 1

Ann Nowé
AI Lab

ai.vub.ac.be

http://ai.vub.ac.be

REINFORCEMENT LEARNING
• Origin in psychology
• Learning from interaction
• Learning about, from, and while interacting with
• Learning what to do - how to map situations to

actions - so as to maximise a numerical reward

KEY FEATURES OF RL
• Learner is not told which action to take
• Trial-and-error approach
• Possibility of delayed reward

- Sacrifice short term gains for greater long-term gains
• Need to balance exploration and exploitation
• Considers the whole problem of a goal-oriented agent

interacting with an uncertain environment

 3

POLE BALANCING DEMO

 4

SUPERVISED VS UNSUPERVISED
Supervised learning

Training info = desired (target) outputs

Error = (target output - actual output)

 5

Unsupervised learning
Training info = evaluations

Objective: get as much reward as
possible

Supervised
learning system

Reinforcement
learning system

Inputs Outputs Input “states” Output “actions”

THE AGENT-ENVIRONMENT INTERFACE
Agent interacts at discrete time steps t = 0,1,2, ….

• Observes state
• Selects action
• Obtains immediate reward 

• Observes resulting state

 6

Agent

Environment

atrt
rt+1

st+1

st

AGENT-ENVIRONMENT INTERFACE

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

14

st 2 S

at 2 A(st)

rt+1 2 R
st+1

LEARNING HOW TO BEHAVE
• The agent’s policy at time t is

- a mapping from states to action probabilities
-

• Reinforcement learning methods specify how the agent
changes its policy as a result of experience

• Roughly, the agent’s goal is to get as much reward as
it can over the long run

 7

⇡t(s, a) = P (at = a|st = s)

⇡

THE OBJECTIVE
• Episodic tasks: interaction breaks naturally into episodes,

e.g., plays of a game

• Continuing tasks: interaction does to have natural episodes

• where is the discount factor
 8

Rt = rt+1 + �rt+2 + �2rt+3 + . . . =
1X

k=0

�krt+k+1

� 2 [0, 1]

Rt = rt+1 + rt+2 + . . .+ rT

Immediate reward
Long term reward

EXAMPLE: POLE BALANCING
• An episodic task where episode ends upon failure: 

- reward = +1 for each step 
- return = # steps before failure

• A continuing task with discounted return: 
- reward = -1 upon failure  
- return = , for k step before failure

• Return is maximized by avoiding failure as long as possible

 9

1X

k=0

�krt+k+1

��k

AN EXAMPLE

• As an episodic task where episode ends upon failure

• reward = +1 for each step before failure

• return = number of steps before failure

• As a continuing task with discounted return:

• reward = -1 upon failure, 0 otherwise

• return = , for k steps before failure��k

In either case, return is
maximized by avoiding failure

for as long as possible

20

THE OBJECTIVE
• Goal: learn (could be stochastic)
• That maximises: 

 10

⇡ : S ! A

V ⇡(s) = E{rr+1 + � · rt+2 + �2 · rt+3 + . . . |st = s,⇡}
= E{rt+1}+ � · E{rt+2 + � · rt+3 + . . . |st+1 = s,⇡}

rewards

V ⇤(s) = max
⇡

V ⇡(s)8s

INTUITIVELY
 values express how good a state is given a policy  

 express how good it is to apply action a in state s,  
and from the next state on apply

 11

⇡⇤V ⇤(s) = max
⇡

V ⇡(s)8s

V (s) = max
a

Q(s, a)

⇡⇤

⇡⇤

INTUITIVELY

 12

V ⇤(s) = max
⇡

V ⇡(s)8s

V (s) = max
a

Q(s, a)
⇡⇤

V (s) = max
a

Q(s, a)V ⇤(s) = max
⇡

V ⇡(s)8s*

*

*

⇡⇤*

⇡⇤*

 values express how good a state is given the optimal
policy 

 express how good it is to apply action a in state s,  
and from the next state on apply

Q-LEARNING
One-step Q-learning:

 13

Q(s, a) Q(s, a) + ↵[rt+1 + �max
a0

Q(st+1, a
0)�Q(s, a)]

DYNAMIC PROGRAMMING : MODEL BASED

 14

TT TT T

T T TT T

st

st+1

rt+1

REINFORCEMENT LEARNING : MODEL FREE

 15

TT TT T

T T TT T

st

st+1

rt+1

EXPLORATION - EXPLOITATION
• Random action selection
• Greedy action selection
• -Greedy action selection

• Softmax action selection
• Exploration bomus (curiosity driven)
• Regret minimisation

 16

at = a⇤t = argmax
a

Qt(a)

at =

⇢
a⇤t with probability 1 - ✏
random action with probability ✏

✏

eQt(a)/⌧

Pn
b=1 e

Qt(b)/⌧

EXTENSIONS FOR PRACTICAL APPLICATIONS

Continuous states and actions
• Deep NN, Kernels, Tile coding, fuzzy, etc.

Take advantage of asynchronous updates
• Propagate interesting information more quickly
• Prioritized sweeping, eligibility traces

Incorporate domain knowledge
• Initialise policy
• Steer exploration
• Combine with model information (planning)

Continuous time extensions
Multi-criteria

 17

CONVERGENCE OF Q-LEARNING

Q-learning is guaranteed to converge in an MDP setting

Tsitsiklis, J.N. Asynchronous Stochastic Approximation and Q-learning.
Machine Learning, Vol 16:pp185-202, 1994.

 18

Q(st, at) Q(st, at) + ↵(t)[E

rt+1 + �max

a
Q(st+1, a)

�
�Q(st, at)]

Q(st, at) Q(st, at) + ↵(t)[E

rt+1 + �max

a
Q(st+1, a)

�
�Q(st, at)]

+

✓
(rt+1 + �max

a
Q(st+1, a))� E

rt+1 + �max

a
Q(st+1, a)

�◆

()

(
)

PROOF BY TSITSIKLIS, CONT.

 19

Stochastic approximation

t

qi

Fi

Fi + noise

qj

PROOF BY TSITSIKLIS, CONT.

 20

Stochastic approximation

t

qi

qk

MULTI-AGENT RL

 21

MULTI-AGENT RL

 22

LEARNING AUTOMATA
Players in an n-person non-zero sum game who use independently a reward-
inaction update scheme with an arbitrarily small step size will always converge to
a pure equilibrium point. (Narendra and Wheeler, 1989)

If the game has a pure NE, the equilibrium point will be one of the pure NE.

Interesting building block to design MARL algorithms.

Dynamics can be studied through evolutionary game theory
Daan Bloembergen, Karl Tuyls, Daniel Hennes, Michael Kaisers:
Evolutionary Dynamics of Multi-Agent Learning: A Survey. J. Artif. Intell. Res. 53: 659-697 (2015)

Has also been used to understand convergence of ACO
Verbeeck K., Nowé A. Colonies of Learning Automata, IEEE Transactions on Systems, Man and Cybernetics 2002.

 23

https://dblp.org/pers/hd/t/Tuyls:Karl
https://dblp.org/pers/hd/h/Hennes:Daniel
https://dblp.org/pers/hd/k/Kaisers:Michael
https://dblp.org/db/journals/jair/jair53.html#BloembergenTHK15

LA IN STRATEGIC GAMES

Paths induced by a linear reward-inaction LA.
Starting points are chosen randomly
x-axis = prob. of the first player to play Bach
y-axis = prob. of the second player to play Bach

Battle of the sexes
Bach Strav.

Bach 2,1 0

Strav. 0 1,2

 24

2 pure Nash equilibria

1 mixed Nash equilibrium
((2/3 B, 1/3 S) , (1/3 B, 2/3 S))

(B,B)

(S,S)
0 1

1

0

CLIMBING GAME
a0 a1 a2

b0 11 -30 0

b1 -30 7 6

b2 0 0 5

Action a2

Action a0

Action b2

Action b1

Action b0

2 Nash Equilibria , 1 optimal

 25

Action a1

initial temperature 10000 is decayed at rate 0.995

WHERE (MULTI-AGENT) REINFORCEMENT LEARNING
AND VERIFICATION MIGHT MEET

 26

WHERE (MULTI-AGENT) REINFORCEMENT LEARNING
AND VERIFICATION MIGHT MEET

 27

Mainly for sample
efficiency

WHERE (MULTI-AGENT) REINFORCEMENT LEARNING
AND VERIFICATION MIGHT MEET

 28

Mainly for sample
efficiency

Model can be anything

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND
VERIFICATION MIGHT MEET

 29

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND
VERIFICATION MIGHT MEET

 30

Is assumed to be given

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND
VERIFICATION MIGHT MEET

 31

Is assumed to be given

Is specified in a more
generic way
And checked

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND
VERIFICATION MIGHT MEET

 32

Is assumed to be given

Is specified in a more
generic way
And checked

WHERE MULTI-AGENT REINFORCEMENT LEARNING AND
VERIFICATION MIGHT MEET

 33

Is assumed to be given

Is specified in a more
generic way
And checked

WHERE (MULTI-AGENT) REINFORCEMENT LEARNING
AND VERIFICATION MIGHT MEET

 34

Can be synthesised 
in to a more abstract

or symbolic representation
that allows generalisation

Model with right
level of abstraction

to allow verification of the
Model wrt the real world and

the synthesised/
generalised plan

POLICY ABSTRACTION

 35

Policy Simplification

Tim Brys and Ann Nowé

Vrije Universiteit Brussel
Pleinlaan 2, Brussels, Belgium
{ timbrys,anowe}@vub.ac.be

Abstract. Research question: With the goal of explainable AI in mind,
is it possible to simplify a policy so that it is more easy to communicate,
without losing too much of its performance? We provide some prelimi-
nary analysis and ideas in this text.

1 Analysis of Q(�) in Mountain Car

Before we attempt to invent procedures to simplify policies, we have a visual

look at the learning dynamics of Q(�) in mountain car. The figures below show

(a) the value function (a spiral with higher values as absolute speed increases

and as the car moves away from the bottom of the valley), (b) the greedy actions

that should be taken according to this value function and (c) the number of state

visits accumulated over the course of the learning.

A successful policy in mountain car is relatively simple to describe: apply

force to go right to gain height until you cannot anymore, then apply force to go

left, gaining speed and first losing height but then gaining more height on the

opposite hill, and then in the same way, going right again to reach the top of the

right hill. This behaviour is illustrated by the red line in the figures. The policy

as just described can also be deduced from the greedy action plot (b), with large

areas of left or right being the greedy actions. Yet, there is a lot of ’noise’ as

well: either due to areas of the state-space where the action does not matter, or

areas that have been visited very infrequently (compare with (c)). The question

is: how can we distil this messy policy into a simpler, easily communicable form?

(a) V -function (b) Greedy Policy (c) # of state visits

2 Q-value and Policy Inertia in Mario

One intuitive idea to simplify policies is to ’smooth’ them. What we mean by this

is to reduce the number of subsequent action changes (in a discrete action setting)

A flavour of how to use meta-information

