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The Passive Model-Learning Problem

Definition: Passive learning

Input (S+,S−) ∈ (Σ∗)n+m

Output A model A s.t. S+ ⊆ L(A) and L(A) ∩ S− = ∅

Consider : A ∈ DFA
Example : S+ = {aa, ba, aba}, S− = {a, ab}.
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Occam’s razor

A more general model is required  find a simpler model.

Example : S+ = {aa, ba, aba}, S− = {a, ab}.

start
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Property: Gold 1978

“Given a sample S = (S+,S−) and k ∈ N, does a DFA with at
most k states and consistent with S exist ?” is NP-complete.
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RPNI

Input: (S+,S−)
Construct PTA(S+)
Order the states of PTA(S+) = {q0, .., qn} according to the
canonical order on words.
for i ∈ [1, n] do

if qi has not been merged with a smaller state then
Try to merge qi with q0, ..., qi−1 until a merged DFA does
not accept a word in S−

end
end
return the final DFA

Algorithm 1: Regular Positive Negative Inference
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RPNI properties

Property: Oncina and Garcia 1992

Given a sample S , RPNI provides a consistent DNA in poly-
nomial time.
Furthermore if "enough information" on the original language
L is provided in S , then RPNI returns the minimal accepting
DFA for L.
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Cyber-Physical Production Systems

I Complex and critical
systems.

⇓⇓⇓
Analysis and verification
desirable

I S− is not accessible

 CPPSs are learnt "from text".
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Probabilistic approach

Property: Gold 1967

Regular languages are not identifiable in the limit from positive
examples only.

Property: Angluin 1988

Stochastic regular languages are identifiable from text only
with probability 1 (when the probabilities are rational)
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Alergia & MDI
Integrating probabilities

ALERGIA
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Alergia & MDI
Integrating probabilities

ALERGIA

start

a

b a

MDI

∆(A,A′)

|A| − |A′|
(3)

Entropy increase
Generalization

———–
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Adding time
The splitting operation

General approach :
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With timing constraints :
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a; x ≤ 4
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a, b; true

splitting
a; x ≤ 4

b; x < 2

a, b; true

b; x ≥ 2
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Algorithms for timed CPPSs

Restricted to 1 clock, reset at each transition

Splitting criterion

Subtree difference

b; x < 2b; x ≥ 2

ab

Statistical inference
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More CPPSs learning

I Offline  Online
I According to a recent survey :

◦ A general learnable model is required → data-driven modeling ;
◦ such a model should be hybrid and explicitly timed ;
◦ a component wise approach is recommended to provide

symptoms of the problems.
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Software analysis

Greybox analysis Structural hypoteses

Specification

Behavior model

testing debuggingefficency increase
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k-Tail algorithm...
... and its variations

Non stochastic models
k-Tail : p ∼ p′ := ∀v ∈ Σ≤k , p.v ∈ P ↔ p′.v ∈ P
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gk-Tail :handles parameters by using an ad-hoc function
Tk-Tail : adds time modeled by unbounded number of clocks.
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Integrating testing and learning
... using TAUTOKO

Learning Testing

model

traces
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Active learning
the minimally adequate teacher

learner teacher
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Active learning
the minimally adequate teacher

learner teacher

start

b

a
start

b
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a, b

my model ?

no : ab /∈ L
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Active learning
the minimally adequate teacher

learner teacher

start

b

a
start

b

a

a, b

Inclusion ω ?

Equivalence L ?
result

Y/Counterexample
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Observation tables

ε a ba

ε 1 0 0
a 0 1 0
b 0 1 0
aa 1 1 1
ab 0 0 1
ba 1 1 1
bb 1 0 0

R

R.Σ

S

closed ∀u ∈ R,∀a ∈ Σ,∃v ∈ Ru.a ∼O v

consistent ∀u, v ∈ R, (u ∼O v ⇒ ∀a ∈ Σu.a ∼O v .a)
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L∗

Construct an empty observation table O (R = S = ∅)
repeat

Make O closed and consistent (with membership queries)
Perform an equivalence query
if The teacher provided a counterexample u then

Add u to O (R ← R ∪ u)
Complete O (with membership queries)

end
until the teacher replies "yes" to an equivalence query ;
Result: the model constructed from O
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Learning and testing
on Mealy machines with timers

Learner Teacher

Inclusion ω ?

Equivalence L ?

result

Y/Counterexample
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Event recording automata

I Deterministic ERA can be learned by active learning ;

I A very high complexity can be mitigated by targeting
subclasses.
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Take Away

Model Inference

Passive Learning Active Learning

CPPSsSoftware Test & Learn
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