Study Group on FM and Al

When: Once a month?

Aim: understand AI methods (learning...), from FM point of view. Share what we know, learn and read.

For: - Use AI methods in our FM works (more efficiency...)

- Develop FM techniques to answer some problems in AI (e.g.: trustworthy learning)
- Understand for what AI methods work best, and for what FM methods work best

(e.g.: AI for classification, MF for analysing dynamical behaviors)

Today: Replay of Summit on Machine Learning Meets Formal Methods, Oxford 2018. <u>https://easychair.org/smart-slide/conference/FBG9</u> (see also talk by Platzer <u>https://easychair.org/smart-slide/slide/jTdT#</u>) Talk of Marta Kwiatkowska <u>Safety verification for deep neural networks with provable guarantees</u> Based on:

CAV 2017 <u>https://arxiv.org/pdf/1610.06940.pdf</u>

IJCAI 2018 https://arxiv.org/pdf/1805.02242.pdf

TACAS 2018 https://arxiv.org/pdf/1710.07859.pdf

Demystifying Al

Talk by Kwiatkowska shows us DNN is not entirely satisfactory even for what it does best (classification).

Use in videogame is quite impressive, but:

Solo skills

learning):

But...

(Reinforcement

Beat every human

Learn from 30.000

years of plays

OPENAI 1V1 BOT	OPENAI FIVE
60,000 CPU cores on Azure	128,000 preemptible CPU cores on GCP
256 K80 GPUs on Azure	256 P100 GPUs on GCP
~300 years per day	~180 years per day (~900 years per day counting each hero separately)
~3.3 kB	~36.8 kB
10	7.5
8,388,608 observations	1,048,576 observations
~20	~60
	OPENAI 1V1 BOT 60,000 CPU cores on Azure 256 K80 GPUs on Azure -300 years per day -3.3 kB 10 8,388,608 observations -20

https://blog.openai.com/openai-five/

Demystifying Al

Talk by Kwiatkowska shows us DNN is not entirely satisfactory even for what it does best (classification).

Use in videogame is quite impressive, but:

https://blog.openai.com/openai-five/

	OPENAI 1V1 BOT	OPENAI FIVE	
CPUs	60,000 CPU cores on Azure	128,000 preemptible CPU cores on GCP	Teamplay (Reinforcement learning): Learn from 100.000 years of plays Good results, but still not at the top
GPUs	256 K80 GPUs on Azure	256 P100 GPUs on GCP	
Experience collected	~300 years per day	~180 years per day (~900 years per day counting each hero separately)	https://www.youtube.com/watch?v=nGhkCuQloX
Size of observation	~3.3 kB	~36.8 kB	Showmatch 1 [edit] Showmatch 2 [edit]
Observations per second	10 7.5	7.5	Place Team Place Team
of gameplay			W PaiN Gaming W Big God
Batch size	8,388,608 observations	1,048,576 observations	L SpenAl Five L SpenAl Five
Batches per minute	~20	~60	

Next 68NQRT by Hugo Bazille on 11 October : Learning trustworthy Markov Chains.

Topics to be presented

- Planning (logica)
- Reinforcement learning
- Process discovery
- SAT/SMT solvers (heuristics)
- Learning automata (Angluin / passive learning...), Testing learning timed automata.
- Distance between automata =>
- Supervisory control and learning.
- Understanding backpropagation in DNN.

November: different approaches for learning models December: Eric? January – logica on planing