
Activity Report 2023

Team DIVERSE

Diversity-centric Software Engineering

Joint team with Centre Inria de l’Université de Rennes

D4 – Language and Software Engineering

Team DIVERSE IRISA Activity Report 2023

ii

Contents

Project-Team DIVERSE 1

1 Team members, visitors, external collaborators 2

2 Overall objectives 4

3 Research program 4

3.1 Context . 4

3.2 Scientific background . 6

3.2.1 Model-Driven Engineering . 6

3.2.2 Variability modeling . 6

3.2.3 Component-based software development . 8

3.2.4 Validation and verification . 9

3.2.5 Empirical software engineering . 9

3.3 Research axis . 9

3.3.1 Axis #1: Software Language Engineering . 10

3.3.2 Axis #2: Spatio-temporal Variability in Software and Systems 12

3.3.3 Axis #3: DevSecOps and Resilience Engineering for Software and Systems 13

4 Application domains 14

5 Social and environmental responsibility 14

5.1 Footprint of research activities . 14

5.2 Impact of research results . 14

6 Highlights of the year 15

6.1 Awards . 15

7 New software, platforms, open data 15

7.1 New software . 15

7.1.1 GEMOC Studio . 15

7.1.2 Interacto . 16

7.1.3 HyperAST . 16

7.1.4 CorrectExam . 17

7.1.5 PolyglotAST . 17

7.1.6 HydroPredictUI . 17

7.2 New platforms . 17

7.3 Open data . 18

8 New results 18

8.1 Results for Axis #1: Software Language Engineering . 18

8.1.1 Modeling: From CASE Tools to SLE and Machine Learning 18

8.1.2 A Generic Framework for Representing and Analysing Model Concurrency 18

8.1.3 Adaptive Structural Operational Semantics . 19

8.1.4 Testing Metamodel and Code Co-evolution . 19

8.1.5 Practical Runtime Instrumentation of Software Languages: The Case of SciHook . . 19

8.1.6 Polyglot Software Development and Code Analysis . 20

8.1.7 Pull Requests Integration Process Optimization: An Empirical Study 20

8.2 Results for Axis #2: Spatio-temporal Variability in Software and Systems 20

8.2.1 Generative AI and Large Language Models for Variability 20

8.2.2 Reverse Engineering Variability . 21

8.2.3 A Specialized Language to Realize Variability at Airbus 22

8.2.4 Debloating Variability . 22

8.2.5 Software Build Variability . 22

8.2.6 Deep Variability . 23

IRISA Activity Report 2023

8.2.7 Variability-Aware debugging . 23

8.2.8 Representation of variability . 24

8.2.9 Scaling Diff computation in temporal variability . 24

8.2.10 Benchmarking platform for uniform random sampling 24

8.3 Results for Axis #3: DevSecOps and Resilience Engineering for Software and Systems 24

8.3.1 Fingerprinting and Building Large Reproducible Datasets 25

8.3.2 Caught in the Game: On the History and Evolution of Web Browser Gaming 25

8.3.3 On Understanding Context Modelling for Adaptive Authentication Systems 25

8.3.4 Uncertainty-aware Simulation of Adaptive Systems . 26

8.3.5 Open-source software supply chain security . 26

8.3.6 Efficient Resource Management for Adaptive Software 27

8.3.7 GDPR Enforcement By The Operating System . 27

8.3.8 Model-Based DevOps: Foundations and Challenges 27

9 Bilateral contracts and grants with industry 27

9.1 Bilateral contracts with industry . 27

10 Partnerships and cooperations 29

10.1 International initiatives . 29

10.1.1 Associate Teams in the framework of an Inria International Lab or in the framework

of an Inria International Program . 29

10.1.2 Inria associate team not involved in an IIL or an international program 29

10.2 International research visitors . 30

10.2.1 Visits of international scientists . 30

10.2.2 Visits to international teams . 30

10.3 European initiatives . 30

10.3.1 Horizon Europe . 30

10.4 National initiatives . 32

10.4.1 ANR . 32

10.4.2 DGA . 32

10.4.3 DGAC . 33

10.4.4 PEPR . 33

10.4.5 Campus Cyber . 34

10.5 Regional initiatives . 34

11 Dissemination 35

11.1 Promoting scientific activities . 35

11.1.1 Scientific events: organisation . 35

11.1.2 Scientific events: selection . 35

11.1.3 Journal . 36

11.1.4 Invited talks . 37

11.1.5 Leadership within the scientific community . 37

11.1.6 Scientific expertise . 37

11.1.7 Research administration . 38

11.2 Teaching - Supervision - Juries . 38

11.2.1 Teaching . 38

11.2.2 Supervision . 38

11.2.3 Juries . 39

11.3 Popularization . 39

11.3.1 Internal or external Inria responsibilities . 39

11.3.2 Articles and contents . 40

11.3.3 Education . 41

11.3.4 Interventions . 41

IRISA Activity Report 2023

12 Scientific production 41

12.1 Major publications . 41

12.2 Publications of the year . 43

12.3 Other . 47

12.4 Cited publications . 48

IRISA Activity Report 2023

Project DIVERSE 1

Project-Team DIVERSE

Creation of the Project-Team: 2014 July 01

Keywords

Computer sciences and digital sciences

A1.2.1. – Dynamic reconfiguration

A1.3.1. – Web

A1.3.5. – Cloud

A1.3.6. – Fog, Edge

A2.1.3. – Object-oriented programming

A2.1.10. – Domain-specific languages

A2.5. – Software engineering

A2.5.1. – Software Architecture & Design

A2.5.2. – Component-based Design

A2.5.3. – Empirical Software Engineering

A2.5.4. – Software Maintenance & Evolution

A2.5.5. – Software testing

A2.6.4. – Ressource management

A4.1.1. – Malware analysis

A4.4. – Security of equipment and software

A4.6. – Authentication

A4.7. – Access control

A4.8. – Privacy-enhancing technologies

Other research topics and application domains

B3.1. – Sustainable development

B3.1.1. – Resource management

B6.1. – Software industry

B6.1.1. – Software engineering

B6.1.2. – Software evolution, maintenance

B6.4. – Internet of things

B6.5. – Information systems

B6.6. – Embedded systems

B8.1.2. – Sensor networks for smart buildings

B9.5.1. – Computer science

B9.10. – Privacy

IRISA Activity Report 2023

2 Inria Annual Report 2023

1 Team members, visitors, external collaborators

Research Scientists

• Djamel Khelladi [CNRS, Researcher]

• Gunter Mussbacher [UNIV MCGILL, Advanced Research Position]

• Olivier Zendra [INRIA, Researcher, HDR]

Faculty Members

• Olivier Barais [Team leader, UNIV RENNES, Professor, HDR]

• Mathieu Acher [INSA RENNES, Professor, HDR]

• Aymeric Blot [UNIV RENNES, Associate Professor, from Sep 2023]

• Arnaud Blouin [INSA RENNES, Associate Professor, HDR]

• Johann Bourcier [UNIV RENNES, Associate Professor, HDR]

• Stéphanie Challita [UNIV RENNES, Associate Professor]

• Benoît Combemale [UNIV RENNES, Professor, HDR]

• Jean-Marc Jezequel [UNIV RENNES, Professor, HDR]

• Quentin Perez [INSA RENNES, Associate Professor, from Sep 2023]

• Noël Plouzeau [UNIV RENNES, Associate Professor]

• Walter Rudametkin Ivey [UNIV RENNES, Professor, HDR]

• Paul Temple [UNIV RENNES, Associate Professor]

Post-Doctoral Fellows

• Gwendal Jouneaux [UNIV RENNES, from Sep 2023]

• Faezeh Khorram [CNRS, Post-Doctoral Fellow, until Mar 2023]

• Quentin Perez [UNIV RENNES, until Aug 2023]

• Xhevahire Ternava [UNIV RENNES, Post-Doctoral Fellow, until Aug 2023]

PhD Students

• Lina Bilal [UNIV RENNES, from Oct 2023]

• Ewen Brune [INRIA, from Oct 2023]

• Anne Bumiller [ORANGE, until Sep 2023]

• Theo Giraudet [OBEO, CIFRE]

• Philemon Houdaille [CNRS, from Sep 2023]

• Gwendal Jouneaux [UNIV RENNES, until Aug 2023]

• Zohra Kebaili [CNRS, from Jan. 2022]

• N’Guessan Hermann Kouadio [CGI, CIFRE, from Dec 2023]

IRISA Activity Report 2023

Project DIVERSE 3

• Piergiorgio Ladisa [SAP, CIFRE]

• Clement Lahoche [INRIA, from Dec 2023]

• Quentin Le Dilavrec [UNIV RENNES, until Oct 2023]

• Romain Lefeuvre [UNIV RENNES, from Nov 2023]

• Georges Aaron Randrianaina [UNIV RENNES]

• Chiara Relevat [UNIV RENNES, from Sep 2023]

• Sterenn Roux [UNIV RENNES, from Oct 2023]

Technical Staff

• Florian Badie [INRIA, Engineer, until Apr 2023]

• Romain Belafia [UNIV RENNES, Engineer, until Aug 2023]

• Emmanuel Chebbi [INRIA, Engineer]

• Guy De Spiegeleer [UNIV RENNES, Engineer, until Aug 2023]

• Quentin Le Dilavrec [INRIA, Engineer, from Nov 2023]

• Romain Lefeuvre [INRIA, Engineer, until Oct 2023]

• Charly Reux [INRIA, Engineer, from Oct 2023]

• Didier Vojtisek [INRIA, Engineer]

Interns and Apprentices

• Paul Adam [ENS RENNES, Intern, from May 2023 until Jul 2023]

• Arthur Allain [UNIV RENNES, Intern, from May 2023 until Aug 2023]

• Yazid Benjamaa [UNIV RENNES, Intern, from Jun 2023 until Sep 2023]

• Jeremy Bindel [UNIV RENNES, Intern, from Jun 2023 until Sep 2023]

• Jean-Baptiste Doderlein [ENS RENNES, Intern, from Mar 2023 until May 2023]

• Philemon Houdaille [INRIA, Intern, until Jul 2023]

• Margaux Millour [UNIV RENNES, Intern, from Jun 2023 until Jul 2023]

• Yawa Germaine Nyatsikor [UNIV RENNES, Intern, from Sep 2023]

• Benjamin Ramone [Univ Rennes, from May 2023 until Aug 2023]

• Bastien Sauvat [UNIV RENNES, Intern, from Jun 2023 until Sep 2023]

• Abdullah Sen [UNIV RENNES, Intern, from May 2023 until Jul 2023]

• Cyriaque Tossou [UNIV RENNES, Intern, from May 2023 until Aug 2023]

Administrative Assistant

• Sophie Maupile [CNRS]

IRISA Activity Report 2023

4 Inria Annual Report 2023

External Collaborator

• Gurvan Le Guernic [DGA]

2 Overall objectives

DIVERSE’s research agenda targets core values of software engineering. In this fundamental domain we

focus on and develop models, methodologies and theories to address major challenges raised by the

emergence of several forms of diversity in the design, deployment and evolution of software-intensive

systems. Software diversity has emerged as an essential phenomenon in all application domains borne by

our industrial partners. These application domains range from complex systems brought by systems of

systems (addressed in collaboration with Thales, Safran, CEA and DGA) and Instrumentation and Control

(addressed with EDF) to pervasive combinations of Internet of Things and Internet of Services (addressed

with TellU and Orange) and tactical information systems (addressed in collaboration with civil security

services). Today these systems seem to be all radically different, but we envision a strong convergence

of the scientific principles that underpin their construction and validation, bringing forwards sane and

reliable methods for the design of flexible and open yet dependable systems. Flexibility and openness are

both critical and challenging software layer properties that must deal with the following four dimensions

of diversity: diversity of languages, used by the stakeholders involved in the construction of these

systems; diversity of features, required by the different customers; diversity of runtime environments,

where software has to run and adapted; diversity of implementations, which are necessary for resilience

by redundancy.

In this context, the central software engineering challenge consists in handling diversity from variab-

ility in requirements and design to heterogeneous and dynamic execution environments. In particular,

this requires considering that the software system must adapt, in unpredictable yet valid ways, to changes

in the requirements as well as in its environment. Conversely, explicitly handling diversity is a great

opportunity to allow software to spontaneously explore alternative design solutions, and to mitigate

security risks.

Concretely, we want to provide software engineers with the following abilities:

• to characterize an “envelope” of possible variations;

• to compose envelopes (to discover new macro correctness envelopes in an opportunistic manner);

• to dynamically synthesize software inside a given envelope.

The major scientific objective that we must achieve to provide such mechanisms for software engin-

eering is summarized below:

Scientific objective for DIVERSE: To automatically compose and synthesize software diversity from

design to runtime to address unpredictable evolution of software-intensive systems

Software product lines and associated variability modeling formalisms represent an essential aspect

of software diversity, which we already explored in the past, and this aspect stands as a major foundation

of DIVERSE’s research agenda. However, DIVERSE also exploits other foundations to handle new forms

of diversity: type theory and models of computation for the composition of languages; distributed

algorithms and pervasive computation to handle the diversity of execution platforms; functional and

qualitative randomized transformations to synthesize diversity for robust systems.

3 Research program

3.1 Context

Applications are becoming more complex and the demand for faster development is increasing. In order

to better adapt to the unbridled evolution of requirements in markets where software plays an essential

role, companies are changing the way they design, develop, secure and deploy applications, by relying on:

• A massive use of reusable libraries from a rich but fragmented eco-system;

IRISA Activity Report 2023

Project DIVERSE 5

• An increasing configurability of most of the produced software;

• A strongly increase in evolution frequency;

• Cloud-native architectures based on containers, naturally leading to a diversity of programming

languages used, and to the emergence of infrastructure, dependency, project and deployment

descriptors (models);

• Implementations of fully automated software supply chains;

• The use of lowcode/nocode platforms;

• The use of ever richer integrated development environments (IDEs), more and more deployed in

SaaS mode;

• The massive use of data and artificial intelligence techniques in software production chains.

These trends are set to continue, all the while with a strong concern about the security properties of the

produced and distributed software.

The numbers in the examples below help to understand why this evolution of modern software engineer-

ing brings a change of dimension:

• When designing a simple kitchen sink (hello world) with the angular framework, more than 1600

dependencies of JavaScript libraries are pulled.

• The numbers revealed by Google in 2018 showed that over 500 million tests are run per day inside

Google’s systems, leading to over 4 millions daily builds.

• Also at Google, they reported 86 TB of data, including two billion lines of code in nine million

source files [127]. Their software also rapidly evolves both in terms of frequency and in terms of

size. Again, at Google, 25,000 developers typically commit 16,000 changes to the codebase on a

single workday. This is also the case for most of software code, including open source software.

• x264, a highly popular and configurable video encoder, provides 100+ options that can take boolean,

integer or string values. There are different ways of compiling x264, and it is well-known that the

compiler options (e.g., -O1 –O2 –O3 of gcc) can influence the performance of a software; the widely

used gcc compiler, for example, offers more than 200 options. The x264 encoder can be executed

on different configurations of the Linux operating system, whose options may in turn influence

x264 execution time; in recent versions (> 5), there are 16000+ options to the Linux kernel. Last

but not least, x264 should be able to encode many different videos, in different formats and with

different visual properties, implying a huge variability of the input space. Overall, the variability

space is enormous, and ideally x264 should be run and tested in all these settings. But a rough

estimation shows that the number of possible configurations, resulting from the combination of

the different variability layers, is 106000.

The DIVERSE research project is working and evolving in the context of this acceleration. We are

active at all stages of the software supply chain. Software supply chain covers all the activities and all the

stakeholders that relate to software production and delivery. All these activities and stakeholders have to

be smartly managed together as part of an overall strategy. The goal of supply chain management (SCM)

is to meet customer demands with the most efficient use of resources possible.

In this context, DIVERSE is particularly interested in the following research questions:

• How to engineer tool-based abstractions for a given set of experts in order to foster their socio-

technical collaboration;

• How to generate and exploit useful data for the optimization of this supply chain, in particular for

the control of variability and the management of the co-evolution of the various software artifacts;

• How to increase the confidence in the produced software, by working on the resilience and security

of the artifacts produced throughout this supply chain.

IRISA Activity Report 2023

6 Inria Annual Report 2023

3.2 Scientific background

3.2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) aims at reducing the accidental complexity associated with developing

complex software-intensive systems (e.g., use of abstractions of the problem space rather than abstrac-

tions of the solution space) [131]. It provides DIVERSE with solid foundations to specify, analyze and

reason about the different forms of diversity that occur throughout the development life cycle. A primary

source of accidental complexity is the wide gap between the concepts used by domain experts and the

low-level abstractions provided by general-purpose programming languages [103]. MDE approaches

address this problem through modeling techniques that support separation of concerns and automated

generation of major system artifacts from models (e.g., test cases, implementations, deployment and

configuration scripts). In MDE, a model describes an aspect of a system and is typically created or derived

for specific development purposes [86]. Separation of concerns is supported through the use of different

modeling languages, each providing constructs based on abstractions that are specific to an aspect of

a system. MDE technologies also provide support for manipulating models, for example, support for

querying, slicing, transforming, merging, and analyzing (including executing) models. Modeling lan-

guages are thus at the core of MDE, which participates in the development of a sound Software Language

Engineering, including a unified typing theory that integrates models as first class entities [133].

Incorporating domain-specific concepts and a high-quality development experience into MDE tech-

nologies can significantly improve developer productivity and system quality. Since the late nineties, this

realization has led to work on MDE language workbenches that support the development of domain-

specific modeling languages (DSMLs) and associated tools (e.g., model editors and code generators).

A DSML provides a bridge between the field in which domain experts work and the implementation

(programming) field. Domains in which DSMLs have been developed and used include, among others,

automotive, avionics, and cyber-physical systems. A study performed by Hutchinson et al. [108] indicates

that DSMLs can pave the way for wider industrial adoption of MDE.

More recently, the emergence of new classes of systems that are complex and operate in heterogen-

eous and rapidly changing environments raises new challenges for the software engineering community.

These systems must be adaptable, flexible, reconfigurable and, increasingly, self-managing. Such char-

acteristics make systems more prone to failure when running and thus the development and study of

appropriate mechanisms for continuous design and runtime validation and monitoring are needed. In

the MDE community, research is focused primarily on using models at the design, implementation, and

deployment stages of development. This work has been highly productive, with several techniques now

entering a commercialization phase. As software systems are becoming more and more dynamic, the use

of model-driven techniques for validating and monitoring runtime behavior is extremely promising [117].

3.2.2 Variability modeling

While the basic vision underlying Software Product Lines (SPL) can probably be traced back to David

Parnas’ seminal article [124] on the Design and Development of Program Families, it is only quite recently

that SPLs have started emerging as a paradigm shift towards modeling and developing software system

families rather than individual systems [121]. SPL engineering embraces the ideas of mass customization

and software reuse. It focuses on the means of efficiently producing and maintaining multiple related

software products, exploiting what they have in common and managing what varies among them.

Several definitions of the software product line concept can be found in the research literature.

Clements et al. define it as a set of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and are developed from a common

set of core assets in a prescribed way [122]. Bosch provides a different definition [92]: A SPL consists of a

product line architecture and a set of reusable components designed for incorporation into the product

line architecture. In addition, the PL consists of the software products developed using the mentioned

reusable assets. In spite of the similarities, these definitions provide different perspectives of the concept:

market-driven, as seen by Clements et al., and technology-oriented for Bosch.

SPL engineering is a process focusing on capturing the commonalities (assumptions true for each

family member) and variability (assumptions about how individual family members differ) between

several software products [98]. Instead of describing a single software system, a SPL model describes a

IRISA Activity Report 2023

Project DIVERSE 7

set of products in the same domain. This is accomplished by distinguishing between elements common

to all SPL members, and those that may vary from one product to another. Reuse of core assets, which

form the basis of the product line, is key to productivity and quality gains. These core assets extend

beyond simple code reuse and may include the architecture, software components, domain models,

requirements statements, documentation, test plans or test cases.

The SPL engineering process consists of two major steps:

1. Domain Engineering, or development for reuse, focuses on core assets development.

2. Application Engineering, or development with reuse, addresses the development of the final

products using core assets and following customer requirements.

Central to both processes is the management of variability across the product line [105]. In common

language use, the term variability refers to the ability or the tendency to change. Variability management

is thus seen as the key feature that distinguishes SPL engineering from other software development

approaches [93]. Variability management is thus increasingly seen as the cornerstone of SPL development,

covering the entire development life cycle, from requirements elicitation [135] to product derivation [139]

to product testing [120, 119].

Halmans et al. [105] distinguish between essential and technical variability, especially at the require-

ments level. Essential variability corresponds to the customer’s viewpoint, defining what to implement,

while technical variability relates to product family engineering, defining how to implement it. A clas-

sification based on the dimensions of variability is proposed by Pohl et al. [126]: beyond variability

in time (existence of different versions of an artifact that are valid at different times) and variability

in space (existence of an artifact in different shapes at the same time) Pohl et al. claim that variability

is important to different stakeholders and thus has different levels of visibility: external variability is

visible to the customers while internal variability, that of domain artifacts, is hidden from them. Other

classification proposals come from Meekel et al. [114] (feature, hardware platform, performance and

attributes variability) or Bass et al. [84] who discusses about variability at the architectural level.

Central to the modeling of variability is the notion of feature, originally defined by Kang et al. as: a

prominent or distinctive user-visible aspect, quality or characteristic of a software system or systems [110].

Based on this notion of feature, they proposed to use a feature model to model the variability in a SPL. A

feature model consists of a feature diagram and other associated information: constraints and dependency

rules. Feature diagrams provide a graphical tree-like notation depicting the hierarchical organization

of high level product functionalities represented as features. The root of the tree refers to the complete

system and is progressively decomposed into more refined features (tree nodes). Relations between nodes

(features) are materialized by decomposition edges and textual constraints. Variability can be expressed in

several ways. Presence or absence of a feature from a product is modeled using mandatory or optional

features. Features are graphically represented as rectangles while some graphical elements (e.g., unfilled

circle) are used to describe the variability (e.g., a feature may be optional).

Features can be organized into feature groups. Boolean operators exclusive alternative (XOR), inclusive

alternative (OR) or inclusive (AND) are used to select one, several or all the features from a feature group.

Dependencies between features can be modeled using textual constraints: requires (presence of a feature

requires the presence of another), mutex (presence of a feature automatically excludes another). Feature

attributes can be also used for modeling quantitative (e.g., numerical) information. Constraints over

attributes and features can be specified as well.

Modeling variability allows an organization to capture and select which version of which variant of

any particular aspect is wanted in the system [93]. To implement it cheaply, quickly and safely, redoing by

hand the tedious weaving of every aspect is not an option: some form of automation is needed to leverage

the modeling of variability [88]. Model Driven Engineering (MDE) makes it possible to automate this

weaving process [109]. This requires that models are no longer informal, and that the weaving process is

itself described as a program (which is as a matter of fact an executable meta-model [118]) manipulating

these models to produce for instance a detailed design that can ultimately be transformed to code, or to

test suites [125], or other software artifacts.

IRISA Activity Report 2023

8 Inria Annual Report 2023

3.2.3 Component-based software development

Component-based software development [134] aims at providing reliable software architectures with a

low cost of design. Components are now used routinely in many domains of software system designs: dis-

tributed systems, user interaction, product lines, embedded systems, etc. With respect to more traditional

software artifacts (e.g., object oriented architectures), modern component models have the following

distinctive features [99]: description of requirements on services required from the other components;

indirect connections between components thanks to ports and connectors constructs [112]; hierarchical

definition of components (assemblies of components can define new component types); connectors

supporting various communication semantics [96]; quantitative properties on the services [91].

In recent years component-based architectures have evolved from static designs to dynamic, adaptive

designs (e.g., SOFA [96], Palladio [89], Frascati [115]). Processes for building a system using a statically

designed architecture are made of the following sequential lifecycle stages: requirements, modeling,

implementation, packaging, deployment, system launch, system execution, system shutdown and system

removal. If for any reason after design time architectural changes are needed after system launch

(e.g., because requirements changed, or the implementation platform has evolved, etc) then the design

process must be reexecuted from scratch (unless the changes are limited to parameter adjustment in the

components deployed).

Dynamic designs allow for on the fly redesign of a component based system. A process for dynamic

adaptation is able to reapply the design phases while the system is up and running, without stopping

it (this is different from a stop/redeploy/start process). Dynamic adaptation processes support chosen

adaptation, when changes are planned and realized to maintain a good fit between the needs that the

system must support and the way it supports them [111]. Dynamic component-based designs rely

on a component meta-model that supports complex life cycles for components, connectors, service

specification, etc. Advanced dynamic designs can also take platform changes into account at runtime,

without human intervention, by adapting themselves [97, 137]. Platform changes and more generally

environmental changes trigger imposed adaptation, when the system can no longer use its design to

provide the services it must support. In order to support an eternal system [90], dynamic component

based systems must separate architectural design and platform compatibility. This requires support for

heterogeneity, since platform evolution can be partial.

The Models@runtime paradigm denotes a model-driven approach aiming at taming the complexity

of dynamic software systems. It basically pushes the idea of reflection one step further by considering the

reflection layer as a real model “something simpler, safer or cheaper than reality to avoid the complexity,

danger and irreversibility of reality [129]”. In practice, component-based (and/or service-based) plat-

forms offer reflection APIs that make it possible to introspect the system (to determine which components

and bindings are currently in place in the system) and dynamic adaptation (by applying CRUD opera-

tions on these components and bindings). While some of these platforms offer rollback mechanisms to

recover after an erroneous adaptation, the idea of Models@runtime is to prevent the system from actually

enacting an erroneous adaptation. In other words, the “model at run-time” is a reflection model that can

be uncoupled (for reasoning, validation, simulation purposes) and automatically resynchronized.

Heterogeneity is a key challenge for modern component based systems. Until recently, component

based techniques were designed to address a specific domain, such as embedded software for command

and control, or distributed Web based service oriented architectures. The emergence of the Internet of

Things paradigm calls for a unified approach in component based design techniques. By implementing

an efficient separation of concern between platform independent architecture management and platform

dependent implementations, Models@runtime is now established as a key technique to support dynamic

component based designs. It provides DIVERSE with an essential foundation to explore an adaptation

envelope at run-time. The goal is to automatically explore a set of alternatives and assess their relevance

with respect to the considered problem. These techniques have been applied to craft software architecture

exhibiting high quality of services properties [104]. Multi Objectives Search based techniques [100]

deal with optimization problem containing several (possibly conflicting) dimensions to optimize. These

techniques provide DIVERSE with the scientific foundations for reasoning and efficiently exploring an

envelope of software configurations at run-time.

IRISA Activity Report 2023

Project DIVERSE 9

3.2.4 Validation and verification

Validation and verification (V&V) theories and techniques provide the means to assess the validity of a

software system with respect to a specific correctness envelope. As such, they form an essential element

of DIVERSE’s scientific background. In particular, we focus on model-based V&V in order to leverage the

different models that specify the envelope at different moments of the software development lifecycle.

Model-based testing consists in analyzing a formal model of a system (e.g., activity diagrams, which

capture high-level requirements about the system, statecharts, which capture the expected behavior of

a software module, or a feature model, which describes all possible variants of the system) in order to

generate test cases that will be executed against the system. Model-based testing [136] mainly relies

on model analysis, constraint solving [101] and search-based reasoning [113]. DIVERSE leverages in

particular the applications of model-based testing in the context of highly-configurable systems and [138]

interactive systems [116] as well as recent advances based on diversity for test cases selection [107].

Nowadays, it is possible to simulate various kinds of models. Existing tools range from industrial tools

such as Simulink, Rhapsody or Telelogic to academic approaches like Omega [123], or Xholon. All these

simulation environments operate on homogeneous environment models. However, to handle diversity in

software systems, we also leverage recent advances in heterogeneous simulation. Ptolemy [95] proposes

a common abstract syntax, which represents the description of the model structure. These elements can

be decorated using different directors that reflect the application of a specific model of computation on

the model element. Metropolis [85] provides modeling elements amenable to semantically equivalent

mathematical models. Metropolis offers a precise semantics flexible enough to support different models

of computation. ModHel’X [106] studies the composition of multi-paradigm models relying on different

models of computation.

Model-based testing and simulation are complemented by runtime fault-tolerance through the

automatic generation of software variants that can run in parallel, to tackle the open nature of software-

intensive systems. The foundations in this case are the seminal work about N-version programming [83],

recovery blocks [128] and code randomization [87], which demonstrated the central role of diversity in

software to ensure runtime resilience of complex systems. Such techniques rely on truly diverse software

solutions in order to provide systems with the ability to react to events, which could not be predicted at

design time and checked through testing or simulation.

3.2.5 Empirical software engineering

The rigorous, scientific evaluation of DIVERSE’s contributions is an essential aspect of our research

methodology. In addition to theoretical validation through formal analysis or complexity estimation, we

also aim at applying state-of-the-art methodologies and principles of empirical software engineering.

This approach encompasses a set of techniques for the sound validation contributions in the field of

software engineering, ranging from statistically sound comparisons of techniques and large-scale data

analysis to interviews and systematic literature reviews [132, 130]. Such methods have been used for

example to understand the impact of new software development paradigms [94]. Experimental design

and statistical tests represent another major aspect of empirical software engineering. Addressing large-

scale software engineering problems often requires the application of heuristics, and it is important to

understand their effects through sound statistical analyses [82].

3.3 Research axis

DIVERSE explore Software Diversity. Leveraging our strong background on Model-Driven Engineering,

and our large expertise on several related fields (programming languages, distributed systems, GUI,

machine learning, security...), we explore tools and methods to embrace the inherent diversity in software

engineering, from the stakeholders and underlying tool-supported languages involved in the software

system life cycle, to the configuration and evolution space of the modern software systems, and the

heterogeneity of the targeted execution platforms. Hence, we organize our research directions according

to three axes (cf. Fig. 1):

• Axis #1: Software Language Engineering. We explore the future engineering and scientific environ-

ments to support the socio-technical coordination among the various stakeholders involved across

IRISA Activity Report 2023

10 Inria Annual Report 2023

modern software system life cycles.

• Axis #2: Spatio-temporal Variability in Software and Systems. We explore systematic and auto-

matic approaches to cope with software variability, both in space (software variants) and time

(software maintenance and evolution).

• Axis #3: DevSecOps and Resilience Engineering for Software and Systems. We explore smart

continuous integration and deployment pipelines to ensure the delivery of secure and resilient

software systems on heterogeneous execution platforms (cloud, IoT. . .).

Figure 1: The three research axes of DIVERSE, relying on model driven engineering scientific background

and leveraging several related fields

3.3.1 Axis #1: Software Language Engineering

Overall objective. The disruptive design of new, complex systems requires a high degree of flexibility

in the communication between many stakeholders, often limited by the silo-like structure of the organ-

ization itself (cf. Conway’s law). To overcome this constraint, modern engineering environments aim

to: (i) better manage the necessary exchanges between the different stakeholders; (ii) provide a unique

and usable place for information sharing; and (iii) ensure the consistency of the many points of view.

Software languages are the key pivot between the diverse stakeholders involved, and the software systems

they have to implement. Domain-Specific (Modeling) Languages enable stakeholders to address the

diverse concerns through specific points of view, and their coordinated use is essential to support the

socio-technical coordination across the overall software system life cycle.

Our perspectives on Software Language Engineering over the next period is presented in Figure 2 and

detailed in the following paragraphs.

DSL Executability. Providing rich and adequate environments is key to the adoption of domain-specific

languages. In particular, we focus on tools that support model and program execution. We explore

the foundations to define the required concerns in language specification, and systematic approaches

to derive environments (e.g., IDE, notebook, design labs) including debuggers, animators, simulators,

loggers, monitors, trade-off analysis, etc.

Modular & Distributed IDE. IDEs are indispensable companions to software languages. They are

increasingly turning towards Web-based platforms, heavily relying on cloud infrastructures and forges.

Since all language services require different computing capacities and response times (to guarantee a

user-friendly experience within the IDE) and use shared resources (e.g., the program), we explore new

architectures for their modularization and systematic approaches for their individual deployment and

dynamic adaptation within an IDE. To cope with the ever-growing number of programming languages,

manufacturers of Integrated Development Environments (IDE) have recently defined protocols as a way

to use and share multiple language services in language-agnostic environments. These protocols rely on

IRISA Activity Report 2023

Project DIVERSE 11

Figure 2: Perspectives on Software Language Engineering (axis #1)

a proper specification of the services that are commonly found in the tool support of general-purpose

languages, and define a fixed set of capabilities to offer in the IDE. However, new languages regularly

appear offering unique constructs (e.g., DSLs), and which are supported by dedicated services to be

offered as new capabilities in IDEs. This trend leads to the multiplication of new protocols, hard to

combine and possibly incompatible (e.g., overlap, different technological stacks). Beyond the proposition

of specific protocols, we will explore an original approach to be able to specify language protocols and

to offer IDEs to be configured with such protocol specifications. IDEs went from directly supporting

languages to protocols, and we envision the next step: IDE as code, where language protocols are created

or inferred on demand and serve as support of an adaptation loop taking in charge of the (re)configuration

of the IDE.

Design Lab. Web-based and cloud-native IDEs open new opportunities to bridge the gap between the

IDE and collaborative platforms, e.g., forges. In the complex world of software systems, we explore new

approaches to reduce the distance between the various stakeholders (e.g., systems engineers and all those

involved in specialty engineering) and to improve the interactions between them through an adapted tool

chain. We aim to improve the usability of development cycles with efficiency, affordance and satisfaction.

We also explore new approaches to explore and interact with the design space or other concerns such

as human values or security, and provide facilities for trade-off analysis and decision making in the the

context of software and system designs.

Live & Polyglot Development. As of today, polyglot development is massively popular and virtually

all software systems put multiple languages to use, which not only complexifies their development, but

also their evolution and maintenance. Moreover, as software are more used in new application domains

(e.g., data analytics, health or scientific computing), it is crucial to ease the participation of scientists,

decision-makers, and more generally non-software experts. Live programming makes it possible to

change a program while it is running, by propagating changes on a program code to its run-time state.

This effectively bridges the gulf of evaluation between program writing and program execution: the effects

a change has on the running system are immediately visible, and the developer can take immediate

action. The challenges at the intersection of polyglot and live programming have received little attention

so far, and we envision a language design and implementation approach to specify domain-specific

languages and their coordination, and automatically provide interactive domain-specific environments

for live and polyglot programming.

Self-Adaptable Language. Over recent years, self-adaptation has become a concern for many software

systems that operate in complex and changing environments. At the core of self-adaptation lies a feedback

loop and its associated trade-off reasoning, to decide on the best course of action. However, existing

software languages do not abstract the development and execution of such feedback loops for self-

IRISA Activity Report 2023

12 Inria Annual Report 2023

adaptable systems. Developers have to fall back to ad-hoc solutions to implement self-adaptable systems,

often with wide-ranging design implications (e.g., explicit MAPE-K loop). Furthermore, existing software

languages do not capitalize on monitored usage data of a language and its modeling environment. This

hinders the continuous and automatic evolution of a software language based on feedback loops from

the modeling environment and runtime software system. To address the aforementioned issues, we will

explore the concept of Self-Adaptable Language (SAL) to abstract the feedback loops at both system and

language levels.

3.3.2 Axis #2: Spatio-temporal Variability in Software and Systems

Overall objective. Leveraging our longstanding activity on variability management for software product

lines and configurable systems covering diverse scenarios of use, we will investigate over the next period

the impact of such a variability across the diverse layers, incl. source code, input/output data, compil-

ation chain, operating systems and underlying execution platforms. We envision a better support and

assistance for the configuration and optimisation (e.g., non-functional properties) of software systems

according to this deep variability. Moreover, as software systems involve diverse artefacts (e.g., APIs, tests,

models, scripts, data, cloud services, documentation, deployment descriptors...), we will investigate

their continuous co-evolution during the overall lifecycle, including maintenance and evolution. Our

perspectives on spatio-temporal variability over the next period is presented in Figure 3 and is detailed in

the following paragraphs.

Figure 3: Perspectives on Spatio-temporal Variability in Software and Systems (axis #2)

Deep Software Variability. Software systems can be configured to reach specific functional goals and

non-functional performance, either statically at compile time or through the choice of command line

options at runtime. We observed that considering the software layer only might be a naive approach to

tune the performance of the system or to test its functional correctness. In fact, many layers (hardware,

operating system, input data, etc.), which are themselves subject to variability, can alter the performance

or functionalities of software configurations. We call deep software variability the interaction of all

variability layers that could modify the behavior or non-functional properties of a software. Deep software

variability calls to investigate how to systematically handle cross-layer configuration. The diversification

of the different layers is also an opportunity to test the robustness and resilience of the software layer in

multiple environments. Another interesting challenge is to tune the software for one specific executing

environment. In essence, deep software variability questions the generalization of the configuration

knowledge.

Continuous Software Evolution. Nowadays, software development has become more and more com-

plex, involving various artefacts, such as APIs, tests, models, scripts, data, cloud services, documentation,

etc., and embedding millions of lines of code (LOC). Recent evidence highlights continuous software

IRISA Activity Report 2023

Project DIVERSE 13

evolution based on thousands of commits, hundreds of releases, all done by thousands of developers.

We focus on the following essential backbone dimensions in software engineering: languages, models,

APIs, tests and deployment descriptors, all revolving around software code implementation. We will

explore the foundations of a multidimensional and polyglot co-evolution platform, and will provide a

better understanding with new empirical evidence and knowledge.

3.3.3 Axis #3: DevSecOps and Resilience Engineering for Software and Systems

Overall objective. The production and delivery of modern software systems involves the integration of

diverse dependencies and continuous deployment on diverse execution platforms in the form of large

distributed socio-technical systems. This leads to new software architectures and programming models,

as well as complex supply chains for final delivery to system users. In order to boost cybersecurity, we

want to provide strong support to software engineers and IT teams in the development and delivery

of secure and resilient software systems, ie. systems able to resist or recover from cyberattacks. Our

perspectives on DevSecOps and Resilience Engineering over the next period are presented in Figure 4

and detailed in the following paragraphs.

Figure 4: Perspectives on DevSecOps and Resilience Eng. for Software and Systems (axis #3)

Secure & Resilient Architecture. Continuous integration and deployment pipelines are processes

implementing complex software supply chains. We envision an explicit and early consideration of

security properties in such pipelines to help in detecting vulnerabilities. In particular, we integrate the

security concern in Model-Based System Analysis (MBSA) approaches, and explore guidelines, tools

and methods to drive the definition of secure and resilient architectures. We also investigate resilience

at runtime through frameworks for autonomic computing and data-centric applications, both for the

software systems and the associated deployment descriptors.

Smart CI/CD. Dependencies management, Infrastructure as Code (IaC) and DevOps practices open

opportunities to analyze complex supply chains. We aim at providing relevant metrics to evaluate and

ensure the security of such supply chains, advanced assistants to help in specifying corresponding

pipelines, and new approaches to optimize them (e.g., software debloating, scalability. . .). We study

how supply chains can actively leverage software variability and diversity to increase cybersecurity and

resilience.

Secure Supply Chain. In order to produce secure and resilient software systems, we explore new

secure-by-design foundations that integrate security concerns as first class entities through a seamless

continuum from the design to the continuous integration and deployment. We explore new models,

architectures, inter-relations, and static and dynamic analyses that rely on explicitly expressed security

IRISA Activity Report 2023

14 Inria Annual Report 2023

concerns to ensure a secure and resilient supply chain. We lead research on automatic vulnerability

and malware detection in modern supply chains, considering the various artefacts either as white boxes

enabling source code analysis (to avoid accidental vulnerabilities or intentional ones or code poisoning),

or as black boxes requiring binary analysis (to find malware or vulnerabilities). We also conduct research

activities in dependencies and deployment descriptors security analysis.

4 Application domains

Information technology affects all areas of society. The need to develop software systems is therefore

present in a huge number of application domains. One of the goals of software engineering is to apply a

systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software

whatever the application domain.

As a result, the team covers a wide range of application domains and never refrains from exploring

a particular field of application. Our primary expertise is in complex, heterogeneous and distributed

systems. While we historically collaborated with partners in the field of systems engineering, it should be

noted that for several years now, we have investigated several new areas in depth:

• the field of web applications, with the associated design principles and architectures, for applica-

tions ranging from cloud-native applications to the design of modern web front-ends.

• the field of scientific computing in connection with the CEA DAM, Safran and scientists from other

disciplines such as the ecologists of the University of Rennes. In this field where the writing of

complex software is common, we explore how we could help scientists to use software engineering

approach, in particular, the use of SLE and approximate computing techniques.

• the field of large software systems such as the Linux kernel or other open-source projects. In this

field, we explore, in particular, the variability management, the support of co-evolution and the use

of polyglot approaches.

5 Social and environmental responsibility

5.1 Footprint of research activities

We share the vision that reducing the environmental footprint of research activities is crucial for promot-

ing sustainability within academic and scientific communities. Here are some examples of actions that

we promote within the team:

We encourage virtual seminars (e.g., the creation of the EDT Community (cf. https://edt.community)

on the engineering of digital twins) and meetings (not conferences) to reduce the need for long-distance

travel. When travel is necessary, we try to opt for modes of transportation with lower carbon footprints,

such as trains. We want to share that INRIA has to improve the booking system that do not offer trains

that go to London for example, as well as reasonable per diem reimbursements that cover the actual costs

(e.g., Amsterdam where even the travel agency is incapable of proposing hotels within the budget) so that

as people can stay longer working with colleagues when they have to travel.

We try to engage students of the field through educational outreach: We raise awareness about the

importance of environmental sustainability within research communities through educational programs

and seminars (We organise ICT4S this year as a joint event with the GDRGPL days). We encourage

students to incorporate sustainable practices into their work. We have also started to create scientific

results on the impact of software development practices on environmental sustainability. Quentin Perez

has been hired as a new faculty member on this research topic.

5.2 Impact of research results

The DiverSE project-team initiated several research activities at the crossroads of sustainability and

software engineering. In particular, the research challenges are twofold: i) GreenIT, and more specifically

how to measure the energy consumption of software all along the development life cycle and the DevOps

IRISA Activity Report 2023

Project DIVERSE 15

pipelines, and ii) IT for green, more specifically the engineering of digital twins either to optimize

and reconfigure, or to support informed decisions in tradeoff analysis and design space exploration.

In this context, the project-team organized in 2023 the international conference on Information and

Communications Technology for Sustainability (ICT4S), with not only a research program, but also a so

called OFF! Program which complements the research program with a set of satellite events bringing

together researchers, practitioners, decision and policy makers, artists, students and the general public.

It proposed various kinds of events on campus as well as in pubs downtown. In particular, the OFF!

Program included general keynotes, panels, debates, art performances, etc.

Moreover, the DiverSE project-team is currently exploring several research axes related to social and

environmental challenges, all in a pluri-disciplinary context. In particular, the team is involved in both: i)

collaboration with environmental sciences and sociology on the use of climate change scientific models

for decision-makers, and ii) collaboration with sociology on the privacy in web applications.

6 Highlights of the year

• Jean-Marc Jézéquel has been appointed as a fellow of the Institut Universitaire de France (IUF) in

Sept. 2023.

• We organised the ICT4S conference and the GDR GPL days in parallel. We brought together over

400 students and researchers for a week on the subjects of software engineering and sustainability

(e.g., greenIT and IT4Green).

• Olivier Zendra got his Habilitation à Dirigier des Recherches (HDR) on 20 September 2023.

6.1 Awards

• It was a great journey working with Airbus, leading to scientific contributions and concrete applica-

tions! We got a best paper award certificate of Models 2023 for our paper about software product

lines and a combination of negative and positive variability [47]. Great collaboration with Airbus,

McGill, and University of Rennes!

• CSAW’23 award for Piergiogio Ladisa. The CSAW event brought together the elite young researchers

in cybersecurity who had published in the most prestigious conferences in the field over the

previous year. During the final, the authors presented their research to a panel of experts and

pitched their project for 3 minutes to the general public. The judges had the difficult task of

deciding between the finalists, with each of the projects presented being particularly impressive

and having a significant impact on future security techniques. First place: Piergiorgio Ladisa: SAP

Security Research & Université de Rennes 1, Inria, IRISA (France) : SoK: Taxonomy of Attacks on

Open-Source Software Supply Chains

7 New software, platforms, open data

7.1 New software

7.1.1 GEMOC Studio

Name: GEMOC Studio

Keywords: DSL, Language workbench, Model debugging

Scientific Description: The language workbench put together the following tools seamlessly integrated

to the Eclipse Modeling Framework (EMF):

1) Melange, a tool-supported meta-language to modularly define executable modeling languages

with execution functions and data, and to extend (EMF-based) existing modeling languages. 2)

MoCCML, a tool-supported meta-language dedicated to the specification of a Model of Concur-

rency and Communication (MoCC) and its mapping to a specific abstract syntax and associated

IRISA Activity Report 2023

16 Inria Annual Report 2023

execution functions of a modeling language. 3) GEL, a tool-supported meta-language dedicated to

the specification of the protocol between the execution functions and the MoCC to support the

feedback of the data as well as the callback of other expected execution functions. 4) BCOoL, a

tool-supported meta-language dedicated to the specification of language coordination patterns

to automatically coordinates the execution of, possibly heterogeneous, models. 5) Monilog, an

extension for monitoring and logging executable domain-specific models 6) Sirius Animator, an

extension to the model editor designer Sirius to create graphical animators for executable modeling

languages.

Functional Description: The GEMOC Studio is an Eclipse package that contains components supporting

the GEMOC methodology for building and composing executable Domain-Specific Modeling

Languages (DSMLs). It includes two workbenches: The GEMOC Language Workbench: intended to

be used by language designers (aka domain experts), it allows to build and compose new executable

DSMLs. The GEMOC Modeling Workbench: intended to be used by domain designers to create,

execute and coordinate models conforming to executable DSMLs. The different concerns of a

DSML, as defined with the tools of the language workbench, are automatically deployed into the

modeling workbench. They parametrize a generic execution framework that provides various

generic services such as graphical animation, debugging tools, trace and event managers, timeline.

URL: http://gemoc.org/studio.html

Publications: hal-00850770, hal-01355391, hal-01609576, hal-01651801, hal-01152342, hal-03374955,

hal-01614561, hal-01616154

Contact: Benoît Combemale

Participants: Didier Vojtisek, Erwan Bousse, Julien Deantoni

Partners: I3S, Université de Nantes

7.1.2 Interacto

Keywords: GUI (Graphical User Interface), User Interfaces, HCI, Software engineering

Functional Description: Interacto is a framework for developing user interfaces and user interactions.

It complements other general graphical framework by providing a fluent API specifically designed

to process user interface event and develop complex user interactions. Interacto is currently

developped in Java and TypeScript to target both Java desktop applications (JavaFX) and Web

applications (Angular).

URL: https://interacto.github.io

Publications: hal-03231669, tel-02354530, inria-00590891, inria-00477627

Contact: Arnaud Blouin

Participants: Arnaud Blouin, Olivier Beaudoux

7.1.3 HyperAST

Keywords: Code analysis, Git svn

Functional Description: The HyperAST is an AST structured as a Direct Acyclic Graph (DAG) (similar to

MerkleDAG used in Git). An HyperAST is efficiently constructed by leveraging Git and TreeSitter.

It reimplements the Gumtree algorithm in Rust while using the HyperAST as the underlying AST

structure.

It implements a use-def solver, that uses a context-free indexing of references present in subtrees

(each subtree has a bloom filter of contained references).

Author: Quentin Le Dilavrec

Contact: Olivier Barais

IRISA Activity Report 2023

Project DIVERSE 17

7.1.4 CorrectExam

Name: CorrectExam: GRADE YOUR ASSESSMENTS MORE EFFICIENTLY

Keyword: Digital pedagogy

Functional Description: The first objective of the correctexam project is pedagogical. The aim is to

be able to send feedback to students as quickly as possible on the marking of their papers, to

easily generate a standard answer key from answers marked as excellent by the marker, and to

facilitate a constructive exchange between students and the teaching team. This helps to overcome

a shortcoming at university where, as examinations generally take place partly at the end of the

course, students are not strongly encouraged to look at their marked papers in order to understand

their mistakes. The second objective is to seek to increase the efficiency of exam marking and the

administrative aspects associated with an exam by using AI techniques to mark certain questions,

and by factoring standard comments added to an exam paper, generating documents in the format

expected by the school, and so on. Finally, the last notable element of the project that could be

discussed concerns the choice of technical architecture. Even though an application server is used

to store the students’ results, all the processing of the scans (pdf), images and AI is carried out

completely on the browser side, using the possibilities offered by modern browsers such as WASM

or worker services. This is an opportunity to significantly limit the power required on the server

side.

Release Contributions: See https://correctexam.github.io/#about

Contact: Olivier Barais

Partner: Université de Rennes 1

7.1.5 PolyglotAST

Name: PolyglotAST

Keywords: Code analysis, Static analysis

Functional Description: Framework to facilitate the static analysis of multilingual programs on GraalVM,

by providing a unified representation of the various sub-programs via a single AST

Author: Philemon Houdaille

Contact: Olivier Barais

7.1.6 HydroPredictUI

Name: Jupyter graphical interface for HydroModPy

Keywords: GUI (Graphical User Interface), Jupyter, Simulator, Scientific computing, Distributed Applica-

tions

Functional Description: HydroModPy is a Python tool for running numerical simulations of groundwa-

ter flow. The aim of the HydroPredictUi software is to provide a graphical interface in the form of a

Jupyter notebook to make it easier to learn and run simulations on a remote server.

Contact: Johann Bourcier

7.2 New platforms

A platform for experimentation as part of the digital twins of Industry 4.0.

IRISA Activity Report 2023

18 Inria Annual Report 2023

Participants: Olivier Barais, Benoit Combemale, Jean-Marc Jézéquel, Quentin Perez,

Didier Vojtisek.

As part of the ANR MBDO project in conjunction with our German partners, we are creating a platform

to emulate the behaviour of a factory. On the hardware side, this platform consists of a FisherTechnik

base. FisherTechnik The digital twins software layer is built using the GEMOC platform. In 2023, we

worked mainly on the specification, equipment orders and initial experiments. This platform will be

further developed in 2024.

7.3 Open data

• Piergiorgio Ladisa contributes to the Backstabbers-Knife-Collection dataset https://github.c

om/cybertier/Backstabbers-Knife-Collection/.

• Piergiorgio Ladisa created a public dataset of runnable examples for multiple ecosystems, explain-

ing how a 3rd-party dependency can trigger execution in downstream projects, ultimately resulting

in OSS supply chain attacks. https://github.com/SAP-samples/risk-explorer-execution

-pocs

• In the context of a collaboration with Université de Montréal and Software Heritage, we proposed

an approach for fingerprinting and building large reproducible datasets [74]. We show how it can

help reduce the limitations researchers face when creating or reproducing datasets.

8 New results

8.1 Results for Axis #1: Software Language Engineering

Participants: Olivier Barais, Johann Bourcier, Benoît Combemale, Jean-

Marc Jézéquel, Djamel Eddine Khelladi, Gurvan Leguernic,

Gunter Mussbacher, Noël Plouzeau, Didier Vojtisek.

8.1.1 Modeling: From CASE Tools to SLE and Machine Learning

Finding better ways to handle software complexity (both inherent and accidental) is the holy grail for a

significant part of the software engineering community, and especially for the Model Driven Engineering

(MDE) one. To that purpose, plenty of techniques have been proposed, leading to a succession of trends

in model based software developments paradigms in the last decades. While these trends seem to pop

out from nowhere, we claim in [65] that most of them actually stem from trying to get a better grasp on

the variability of software. We revisit the history of MDE trying to identify the main aspect of variability

they wanted to address when they were introduced. We conclude on what are the variability challenges

of our time, including variability of data leading to machine learning of models.

8.1.2 A Generic Framework for Representing and Analysing Model Concurrency

Recent results in language engineering simplify the development of tool-supported executable domain-

specific modelling languages (xDSMLs), including editing (e.g., completion and error checking) and

execution analysis tools (e.g., debugging, monitoring and live modelling). However, such frameworks

are currently limited to sequential execution traces, and cannot handle execution traces resulting from

an execution semantics with a concurrency model supporting parallelism or interleaving. This prevents

the development of concurrency analysis tools, like debuggers supporting the exploration of model

executions resulting from different interleavings. In [41], we present a generic framework to integrate

execution semantics with either implicit or explicit concurrency models, to explore the possible execution

traces of conforming models, and to define strategies for helping in the exploration of the possible

IRISA Activity Report 2023

Project DIVERSE 19

executions. This framework is complemented with a protocol to interact with the resulting executions

and hence to build advanced concurrency analysis tools. The approach has been implemented within

the GEMOC Studio. We demonstrate how to integrate two representative concurrent meta-programming

approaches (MoCCML/Java and Henshin), which use different paradigms and underlying foundations to

define an xDSML’s concurrency model. We also demonstrate the ability to define an advanced concurrent

omniscient debugger with the proposed protocol. The work, thus, contributes key abstractions and an

associated protocol for integrating concurrent meta-programming approaches in a language workbench,

and dynamically exploring the possible executions of a model in the modelling workbench.

8.1.3 Adaptive Structural Operational Semantics

Software systems evolve more and more in complex and changing environments, often requiring runtime

adaptation to best deliver their services. When self-adaptation is the main concern of the system, a manual

implementation of the underlying feedback loop and trade-off analysis may be desirable. However, the

required expertise and substantial development effort make such implementations prohibitively difficult

when it is only a secondary concern for the given domain. In [49], we present ASOS, a metalanguage

abstracting the runtime adaptation concern of a given domain in the behavioral semantics of a domain-

specific language (DSL), freeing the language user from implementing it from scratch for each system

in the domain. We demonstrate our approach on RobLANG, a procedural DSL for robotics, where we

abstract a recurrent energy-saving behavior depending on the context. We provide formal semantics for

ASOS and pave the way for checking properties such as determinism, completeness, and termination

of the resulting self-adaptable language. We provide first results on the performance of our approach

compared to a manual implementation of this selfadaptable behavior. We demonstrate, for RobLANG,

that our approach provides suitable abstractions for specifying sound adaptive operational semantics

while being more efficient.

8.1.4 Testing Metamodel and Code Co-evolution

Models play a significant role in Model-Driven Engineering (MDE) and metamodels are commonly

transformed into code. Developers intensively rely on the generated code to build language services and

tooling, such as editors and views which are also tested to ensure their behavior. The metamodel evolution

between releases updates the generated code, and this may impact the developers’ additional, client

code. Accordingly, the impacted code must be co-evolved too, but there is no guarantee of preserving

its behavior correctness. In [50], we envision an automatic approach for ensuring code co-evolution

correctness. It first aims to trace the tests impacted by the metamodel evolution before and after the code

co-evolution, and then compares them to analyze the behavior of the code. Preliminary evaluation on

two implementations of OCL and Modisco Eclipse projects showed that we can successfully trace the

impacted tests automatically by selecting 738 and 412 tests, before and after co-evolution respectively,

based on 303 metamodel changes. By running these impacted tests, we observed both behaviorally

correct and incorrect code co-evolution.

8.1.5 Practical Runtime Instrumentation of Software Languages: The Case of SciHook

Software languages have pros and cons, and are usually chosen accordingly. In this context, it is common

to involve different languages in the development of complex systems, each one specifically tailored for a

given concern. However, these languages create de facto silos, and offer little support for interoperability

with other languages, be it statically or at runtime. In [56], we report on our experiment on extracting a

relevant behavioral interface from an existing language, and using it to enable interoperability at runtime.

In particular, we present a systematic approach to define the behavioral interface and we discuss the

expertise required to define it. We illustrate our work on the case study of SciHook, a C++ library enabling

the runtime instrumentation of scientific software in Python. We present how the proposed approach,

combined with SciHook, enables interoperability between Python and a domain-specific language

dedicated to numerical analysis, namely NabLab, and discuss overhead at runtime.

IRISA Activity Report 2023

20 Inria Annual Report 2023

8.1.6 Polyglot Software Development and Code Analysis

The notion of polyglot software development refers to the fact that most software projects nowadays

rely on multiple languages to deal with widely different concerns, from core business concerns to user

interface, security, and deployment concerns among many others. Many different wordings around this

notion have been proposed in the literature, with little understanding of their differences. In [39], we

propose a concise and unambiguous definition of polyglot software development including a conceptual

model and its illustration on a well-known, open-source project. We further characterize the techniques

used for the specification and operationalization of polyglot software development with a feature model,

concentrating on polyglot programming. Finally, we outline the many challenges and perspectives raised

by polyglot software development.

In this contexts, GraalVM and PolyNote are examples of runtimes allowing polyglot programming.

However, there is a striking lack of support at design time for building and analyzing polyglot code.

To the best of our knowledge, there is no uniform language-agnostic way of reasoning over multiple

languages to provide seamless code analysis, since each language comes with its own form of Abstract

Syntax Trees (AST). In [48], we present an approach to build a uniform yet polyglot AST over polyglot

code, so that it is easier to perform global analysis. We first motivate this challenge and identify the main

requirements for building a polyglot AST. We then propose a proof of concept implementation of our

solutions on GraalVM’s polyglot API. On top of the polyglot AST, we demonstrate the ability to implement

several polyglot-specific analysis services, namely auto-completion, consistency checking, type inference,

and rename refactoring. Our evaluation on three polyglot projects taken from GitHub, and involving

JavaScript and Python code, shows that we can build a polyglot AST without significant overhead. We

also demonstrate the usefulness of the polyglot analysis services through the provided automation, as

well as their scalability.

8.1.7 Pull Requests Integration Process Optimization: An Empirical Study

Pull-based Development (PbD) is widely used in collaborative development to integrate changes into a

project codebase. In this model, contributions are notified through Pull Request (PR) submissions. Project

administrators are responsible for reviewing and integrating PRs. In the integration process, conflicts

occur when PRs are concurrently opened on a given target branch and propose different modifications

for a same code part. In a previous work, we proposed an approach, called IP Optimizer, to improve the

Integration Process Efficiency (IPE) by prioritizing PRs. In this work [67], we conduct an empirical study

on 260 open-source projects hosted by GitHub that use PRs intensively in order to quantify the frequency

of conflicts in software projects and analyze how much the integration process can be improved. Our

results indicate that regarding the frequency of conflicts in software projects, half of the projects have

a moderate and high number of pairwise conflicts and half have a low number of pairwise conflicts or

none. Futhermore, on average 18.82% of the time windows have conflicts. On the other hand, regarding

how much the integration process can be improved, IP Optimizer improves the IPE in 94.16% of the time

windows and the average improvement percentage is 146.15%. In addition, it improves the number of

conflict resolutions in 67.16% of the time windows and the average improvement percentage is 134.28%.

8.2 Results for Axis #2: Spatio-temporal Variability in Software and Systems

Participants: Mathieu Acher, Olivier barais, Arnaud Blouin, Benoît Combe-

male, Jean-Marc Jézéquel, Djamel Eddine Khelladi, Olivier Zendra,

Paul Temple

.

8.2.1 Generative AI and Large Language Models for Variability

LLM for programming variability Programming variability is central to the design and implementation of

software systems that can adapt to a variety of contexts and requirements, providing increased flexibility

and customization. Managing the complexity that arises from having multiple features, variations, and

IRISA Activity Report 2023

Project DIVERSE 21

possible configurations is known to be highly challenging for software developers. In this work, we explore

how large language model (LLM)-based assistants can support the programming of variability. In [43] we

report on new approaches made possible with LLM-based assistants, like: features and variations can be

implemented as prompts; augmentation of variability out of LLM-based domain knowledge; seamless

implementation of variability in different kinds of artefacts, programming languages, and frameworks, at

different binding times (compile-time or run-time).

LLM for re-engineering variants We are interested in the following problem: given a set of variants

(Java, C, SVG, UML, state charts, etc.) how to build a configurable program (a software product line aka

SPL) that allows you to retrieve/derive them? For instance let us say you have three variants written in

Java. What would be the Java program that can be configured to retrieve them? You can do it manually but

it is error-prone and time-consuming. In [45] we explore the use of LLM and ChatGPT for this problem.

We revisit four illustrative cases of the literature where the challenge is to migrate variants written in a

different formalism (UML class diagrams, Java, GraphML, statecharts). We systematically report on our

experience with ChatGPT-4, describing our strategy to prompt LLMs and documenting positive aspects

but also failures. We compare the use of LLMs with a state-of-the-art approach, BUT4Reuse. While LLMs

offer potential in assisting domain analysts and developers in transitioning software variants into SPLs,

their intrinsic stochastic nature and restricted ability to manage large variants or complex structures

necessitate a semiautomatic approach, complete with careful review, to counteract inaccuracies.

End-user customization with generative AI Producing a variant of code is highly challenging, particu-

larly for individuals unfamiliar with programming. In [42], we introduce a novel use of generative AI to

aid end-users in customizing code. We first describe how generative AI can be used to customize code

through prompts and instructions, and further demonstrate its potential in building end-user tools for

configuring code. We showcase how to transform an undocumented, technical, low-level TikZ into a

user-friendly, configurable, Web-based customization tool written in Python, HTML, CSS, and JavaScript

and itself configurable. We discuss how generative AI can support this transformation process and

traditional variability engineering tasks, such as identification and implementation of features, synthesis

of a template code generator, and development of end-user configurators. We believe it is a first step

towards democratizing variability programming, opening a path for end-users to adapt code to their

needs.

8.2.2 Reverse Engineering Variability

Software Product Lines (SPLs) are families of systems that share common assets allowing disciplined

software reuse. The adoption of SPLs practices has been shown to enable significant technical and

economic benefits for the companies that employ them. However, successful SPLs rarely start from

scratch. Instead, they usually start from a set of existing legacy systems that must undergo a well-defined

re-engineering process.

Many approaches to conduct such re-engineering processes have been proposed and documented in

the literature. This handbook is the result of the collective community expertise and knowledge acquired

in conducting theoretical and empirical research also in partnership with industry. The topic discussed

in this handbook is a recurrent and challenging problem faced by many companies. Conducting a

reengineering process could unlock new levels of productivity and competitiveness. The chapter authors

are all experts in different topics of the re-engineering process, which brings valuable contributions to

the content of this handbook. Additionally, organizing the international workshop on REverse Variability

Engineering (REVE) has contributed to this topic during the last decade. REVE has fostered research

collaborations between Software Re-engineering and SPL Engineering (SPLE) communities. Thus, this

handbook is also a result of our expertise and knowledge acquired from the fruitful discussions with the

attendants of REVE. Our handbook aims to bring together into a single, comprehensive, and cohesive

reference the wealth of experience and expertise in the area of re-engineering software intensive systems

into SPLs. We cover the entire re-engineering life-cycle, from requirements gathering to maintenance

and evolution tasks. Also, we provide future directions and perspectives.

We released the book "Handbook of Re-Engineering Software Intensive Systems into Software Product

Lines". It is the result of a collective effort over the last 3 years. It underwent a rigorous and careful

selection and edition process. The selected contributors are worldwide experts in their field, and all

chapters were peer reviewed.

IRISA Activity Report 2023

22 Inria Annual Report 2023

We also contributed with a chapter "Machine Learning for Feature Constraints Discovery" that

provides an overview of methods and applications of automatically extracting unspecified constraints

out of a software system (e.g., Linux, 3D printing models, video generator).

8.2.3 A Specialized Language to Realize Variability at Airbus

In software product line (SPL) engineering, feature models are the de facto standard for modeling

variability. A user can derive products out of a base model by selecting features of interest. Doing it

automatically, however, requires a realization model, which is a description of how a base model should

be modified when a given feature is selected/unselected. A realization model then necessarily depends on

the base metamodel, asking for ad hoc solutions that have flourished in recent years. In [47], we propose

Greal, a generic solution to this problem in the form of (1) a generic declarative realization language that

can be automatically composed with one or more base metamodels to yield a domain-specific realization

language and (2) a product derivation algorithm applying a realization model to a base model and a

resolved model to yield a derived product. We describe how, on top of Greal, we specialized a realization

language to support both positive and negative variability, fit the syntax and semantics of the targeted

language (BPMN) and take into account modeling practices at Airbus. We report on lessons learned of

applying this approach on Program Development Plans based on business process models and discuss

open problems.

We won a best paper at the ACM/IEEE 26th International Conference on Model-Driven Engineering

Languages and Systems. link

8.2.4 Debloating Variability

A call to remove variability. Software variability is largely accepted and explored in software engineering

and seems to have become a norm and a must, if only in the context of product lines. Yet, the removal

of superfluous or unneeded software artefacts and functionalities is an inevitable trend. It is frequently

investigated in relation to software bloat. In [44] we call the community on software variability to devise

methods and tools that will facilitate the removal of unneeded variability from software systems. The

advantages are expected to be numerous in terms of functional and non-functional properties, such as

maintainability (lower complexity), security (smaller attack surface), reliability, and performance (smaller

binaries).

Specializing configuration space through debloating. Numerous software systems are highly config-

urable through runtime options (e.g., command-line parameters). Users can tune some of the options

to meet various functional and non-functional requirements such as footprint, security, or execution

time. However, some options are never set for a given system instance, and their values remain the

same whatever the use cases of the system. In [62], we design a controlled experiment in which the

system’s run-time configuration space can be specialized at compile-time and combinations of options

can be removed on demand. We perform an in-depth study of the well-known x264 video encoder and

quantify the effects of its specialization to its non-functional properties, namely on binary size, attack

surface, and performance while ensuring its validity. Our exploratory study suggests that the configurable

specialization of a system has statistically significant benefits on most of its analysed non-functional

properties, which benefits depend on the number of the debloated options. While our empirical results

and insights show the importance of removing code related to unused run-time options to improve

software systems, an open challenge is to further automate the specialization process.

8.2.5 Software Build Variability

Software engineers are acutely aware that the building of software is an essential but resource-intensive

step in any software development process. This is especially true when building large systems or highly

configurable systems whose vast number of configuration options results in a space explosion in the

number of versions that should ideally be built and evaluated. Linux is precisely one such large and

highly configurable system with thousands of options that can be combined. A previous study showed

the benefit of incremental build, however, only on small-sized configurable software systems, unlike

Linux. In [78], we show preliminary results of our ongoing work on enabling efficient exploration of the

Linux configuration space with incremental builds. Although incremental compilation for post-commit is

IRISA Activity Report 2023

Project DIVERSE 23

used in Linux, we show that the build of large numbers of random Linux configurations does not benefit

from incremental build. Thus, we introduce and detail PyroBuildS, our new approach to efficiently

explore, with incremental builds, the very large configuration space of Linux. Very much like fireworks,

PyroBuildS starts from several base configurations ("rockets") and generates mutated configurations

("sparks") derived from each of the base ones. This enables exploring the configuration space with an

efficient incremental build of the mutants, while keeping a good amount of diversity. We show on a

total of 2520 builds that our PyroBuildS approach does trigger synergies with the caching capabilities of

Make, hence significantly decreasing builds time with gains up to 85%, while having a diversity of 33% of

options and 15 out of 17 subsystems. Overall, individual contributors and continuous integration services

can leverage PyroBuildS to efficiently augment their configuration builds, or reduce the cost of building

numerous configurations.

8.2.6 Deep Variability

Deep software variability refers to the interaction of all external layers (hardware, operating system,

compiler, versions, etc.) modifying the behavior of software. Configuring software is a powerful means to

reach functional and performance goals of a system, but many layers of variability can make this difficult.

One dimension of the problem is of course that performance depends on the input data: e.g., a video

as input to an encoder like x264 or a file fed to a tool like xz . To achieve good performance, users should

therefore take into account both dimensions of (1) software variability and (2) input data. In [37] we detail

a large study over 8 configurable systems that quantifies the existing interactions between input data and

configurations of software systems. The results exhibit that (1) inputs fed to software systems can interact

with their configuration options in non-monotonous ways, significantly impacting their performance

properties (2) input sensitivity can challenge our knowledge of software variability and question the

relevance of performance predictive models for a field deployment. Given the results of our study, we

call researchers to address the problem of input sensitivity when tuning, predicting, understanding, and

benchmarking configurable systems.

Owing to the significance of the input-configuration interplay, we propose solutions and methods to

address the problem. In [38], we empirically evaluate how supervised and transfer learning methods can

be leveraged to efficiently learn performance models based on configuration options and input data. Our

study over 1,941,075 data points empirically shows that measuring the performance of configurations on

multiple inputs allows one to reuse this knowledge and train performance models robust to the change

of input data. To the best of our knowledge, this is the first domain-agnostic empirical evaluation of

machine learning methods addressing the input-aware performance prediction problem.

This line of work is a fruitful collaboration between Simula and Inria through RESIST-EA associate

team RESIST

8.2.7 Variability-Aware debugging

Business processes have to manage variability in their execution, e.g., to deliver the correct building

permit in different municipalities. This variability is visible in event logs, where sequences of events are

shared by the core process (building permit authorisation) but may also be specific to each municipality.

To rationalise resources (e.g., derive a configurable business process capturing all municipalities’ permit

variants) or to debug anomalous behaviour, it is mandatory to identify to which variant a given trace

belongs. Manually providing this whole mapping is labour-intensive. [102] experimented with variant-

based mapping using supervised machine learning (ML) to identify the variants responsible of the

production of a given execution trace, and demonstrated that recurrent neural networks (RNNs) work

well (≥ 80% accuracy) when trained on datasets in which we label execution traces with variants. However,

this mapping (i) may not scale to large VIS because of combinatorial explosion and (ii) makes the internal

ML representation hard to understand. In [77], we discuss the design of a novel approach: feature-based

mapping learning; where contrarily to our previous work, we do not want to map execution traces to

configurations directly but to features composing the configurations.

IRISA Activity Report 2023

24 Inria Annual Report 2023

8.2.8 Representation of variability

Building on this idea of changing the perspective of the addressed problems and representation in variab-

ility; [60] discusses the differences in practices regarding feature engineering in the ML community and

in the software variability community. While initiatives in applying ML models to software variability

has increased, we noticed that the representation space in which ML models work and the ones used

in software variability differ. ML models like their representation spaces to be continuous and differ-

entiable while software variability practitioners usually work on the features used to describe software

configurations. These features can be heterogeneous (i.e., some may be numerical values like integers

or float values, while other may be Boolean) preventing the space from being continuous and requiring

being extra-careful when using ML models since they may have trouble coping with heterogeneity. [60]

discusses the fact that to be able to use deep learning models in the world of software variability, we need

to think differently to create a representation space that is continuous and derivable but at the cost of

interpretability; or we stick to machine learning models that are less efficient but on which we can have a

better control and better understanding.

8.2.9 Scaling Diff computation in temporal variability

With the advent of fast software evolution and multistage releases, temporal code analysis is becoming

useful for various purposes, such as bug cause identification, bug prediction or code evolution analysis.

Temporal code analyses can consist in analyzing multiple Abstract Syntax Trees (ASTs) extracted from

code evolutions, e.g. one AST for each commit or release. Core feature to temporal analysis is code

differencing: the computation of the so-called Diff or edit script between two given versions of the code.

However, jointly analyzing and computing the difference on thousands versions of code faces scalability

issues. Mainly because of the cost of: 1) parsing the original and evolved code in two source and target

ASTs; 2) wasting resources by not reusing intermediate computation results that can be shared between

versions. In [55], we detail a novel approach based on time-oriented data structures that makes code

differencing scale up to large software codebases. In particular, we leverage on the HyperAST, a novel

representation of code histories, to propose an incremental and memory efficient approach by lazifying

the well known GumTree diffing algorithms, a mainstream code differencing algorithm and tool. We

evaluated our approach on a curated list of 19 large software projects and compared it to GumTree. Our

approach outperforms it in scalability both in time and memory. We observed an order-of-magnitude

difference: 1) in CPU time from x1.2 to x12.7 for the total time of diff computation and up to x226 in

intermediate phases of the diff computation, and 2) in memory footprint of x4.5 per AST node. The

approach produced 99.3% of identical diffs with respect to GumTree.

8.2.10 Benchmarking platform for uniform random sampling

In [26], we present BURST, a benchmarking platform for uniform random sampling techniques. With

BURST, researchers have a flexible, controlled environment in which they can evaluate the scalability and

uniformity of their sampling. BURST comes with an extensive — and extensible — benchmark dataset

comprising 128 feature models, including challenging, real-world models of the Linux kernel. BURST

takes as inputs a sampling tool, a set of feature models and a sampling budget. It automatically translates

any feature model of the set in DIMACS and invokes the sampling tool to generate the budgeted number

of samples. To evaluate the scalability of the sampling tool, BURST measures the time the tool needs to

produce the requested sample. To evaluate the uniformity of the produced sample, BURST integrates the

state-of-the-art and proven statistical test Barbarik. We envision BURST to become the starting point of a

standardisation initiative of sampling tool evaluation. Given the huge interest of research for sampling

algorithms and tools, this initiative would have the potential to reach and crosscut multiple research

communities including AI, ML, SAT and SPL.

8.3 Results for Axis #3: DevSecOps and Resilience Engineering for Software and

Systems

IRISA Activity Report 2023

Project DIVERSE 25

Participants: Mathieu Acher, Olivier Barais, Arnaud Blouin, Stephanie Challita, Ben-

oît Combemale, Jean-Marc Jézéquel, Olivier Zendra.

8.3.1 Fingerprinting and Building Large Reproducible Datasets

Obtaining a relevant dataset is central to conducting empirical studies in software engineering. However,

in the context of mining software repositories, the lack of appropriate tooling for large scale mining

tasks hinders the creation of new datasets. Moreover, limitations related to data sources that change

over time (e.g., code bases) and the lack of documentation of extraction processes make it difficult to

reproduce datasets over time. This threatens the quality and reproducibility of empirical studies. In [74],

we propose a tool-supported approach facilitating the creation of large tailored datasets while ensuring

their reproducibility. We leveraged all the sources feeding the Software Heritage append-only archive

which are accessible through a unified programming interface to outline a reproducible and generic

extraction process. We propose a way to define a unique fingerprint to characterize a dataset which, when

provided to the extraction process, ensures that the same dataset will be extracted. We demonstrate the

feasibility of our approach by implementing a prototype. We show how it can help reduce the limitations

researchers face when creating or reproducing datasets.

8.3.2 Caught in the Game: On the History and Evolution of Web Browser Gaming

Web browsers have come a long way since their inception, evolving from a simple means of displaying text

documents over the network to complex software stacks with advanced graphics and network capabilities.

As personal computers grew in popularity, developers jumped at the opportunity to deploy cross-platform

games with centralized management and a low barrier to entry. Simply going to the right address is now

enough to start a game. From text-based to GPU-powered 3D games, browser gaming has evolved to

become a strong alternative to traditional console and mobile-based gaming, targeting both casual and

advanced gamers. Browser technology has also evolved to accommodate more demanding applications,

sometimes even supplanting functions typically left to the operating system. Today, websites display

rich, computationally intensive, hardware-accelerated graphics, allowing developers to build ever-more

impressive applications and games. In this work [57], we present the evolution of browser gaming and the

technologies that enabled it, from the release of the first text-based games in the early 1990s to current

open-world and game-engine-powered browser games. We discuss the societal impact of browser gaming

and how it has allowed a new target audience to access digital gaming. Finally, we review the potential

future evolution of the browser gaming industry.

8.3.3 On Understanding Context Modelling for Adaptive Authentication Systems

In many situations, it is of interest for authentication systems to adapt to context (e.g., when the user’s

behavior differs from the previous behavior). Hence, representing the context with appropriate and

well-designed models is crucial. In [27], we provide a comprehensive overview and analysis of research

work on Context Modelling for Adaptive Authentication systems (CM4AA) . To this end, we pursue three

goals based on the Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) research

methodologies. We first present a SMS to structure the research area of CM4AA (goal 1). We complement

the SMS with a SLR to gather and synthesise evidence about context information and its modelling for

adaptive authentication systems (goal 2). From the knowledge gained from goal 2, we determine the

desired properties of the context information model and its use for adaptive authentication systems (

goal 3). Motivated to find out how to model context information for adaptive authentication, we provide

a structured survey of the literature to date on CM4AA and a classification of existing proposals according

to several analysis metrics. We demonstrate the ability of capturing a common set of contextual features

that are relevant for adaptive authentication systems independent from the application domain. We

emphasise that despite the possibility of a unified framework, no standard for CM4AA exists.

IRISA Activity Report 2023

26 Inria Annual Report 2023

8.3.4 Uncertainty-aware Simulation of Adaptive Systems

Adaptive systems manage and regulate the behavior of devices or other systems using control loops to

automatically adjust the value of some measured variables to equal the value of a desired set-point. These

systems normally interact with physical parts or operate in physical environments, where uncertainty is

unavoidable. Traditional approaches to manage that uncertainty use either robust control algorithms

that consider bounded variations of the uncertain variables and worst-case scenarios, or adaptive control

methods that estimate the parameters and change the control laws accordingly. In this work [35] we

propose to include the sources of uncertainty in the system models as first-class entities using random

variables, in order to simulate adaptive and control systems more faithfully, including not only the use of

random variables to represent and operate with uncertain values, but also to represent decisions based

on their comparisons. Two exemplar systems are used to illustrate and validate our proposal.

8.3.5 Open-source software supply chain security

Open-source software supply chain attacks aim at infecting downstream users by poisoning open-

source packages. The common way of consuming such artifacts is through package repositories and the

development of vetting strategies to detect such attacks is ongoing research. Despite its popularity, the

Java ecosystem is the less explored one in the context of supply chain attacks. In this work [36], we study

simple-yet-effective indicators of malicious behavior that can be observed statically through the analysis

of Java bytecode. Then we evaluate how such indicators and their combinations perform when detecting

malicious code injections. We do so by injecting three malicious payloads taken from real-world examples

into the Top-10 most popular Java libraries from libraries.io. We found that the analysis of strings in the

constant pool and of sensitive APIs in the bytecode instructions aids in the task of detecting malicious

Java packages by significantly reducing the information, thus, making also manual triage possible.

In this context of Supply chain attacks on open-source projects, recent work systematized the know-

ledge about such attacks and proposed a taxonomy in the form of an attack tree [51]. We propose a

visualization tool called Risk Explorer [36] for Software Supply Chains, which allows inspecting the tax-

onomy of attack vectors, their descriptions, references to real-world incidents and other literature, as

well as information about associated safeguards. Being open-source itself, the community can easily

reference new attacks, accommodate for entirely new attack vectors or reflect the development of new

safeguards. This tool is also available online 1

Current software supply chains heavily rely on open-source packages hosted in public repositories.

Given the popularity of ecosystems like npm and PyPI, malicious users started to spread malware by

publishing open-source packages containing malicious code. Recent works apply machine learning

techniques to detect malicious packages in the npm ecosystem. However, the scarcity of samples poses a

challenge to the application of machine learning techniques in other ecosystems. Despite the differences

between JavaScript and Python, the open-source software supply chain attacks targeting such languages

show noticeable similarities (e.g., use of installation scripts, obfuscated strings, URLs). In this work [52],

we present a novel approach that involves a set of language-independent features and the training of

models capable of detecting malicious packages in npm and PyPI by capturing their commonalities. This

methodology allows us to train models on a diverse dataset encompassing multiple languages, thereby

overcoming the challenge of limited sample availability. We evaluate the models both in a controlled

experiment (where labels of data are known) and in the wild by scanning newly uploaded packages for

both npm and PyPI for 10 days. We find that our approach successfully detects malicious packages for

both npm and PyPI. Over an analysis of 31,292 packages, we reported 58 previously unknown malicious

packages (38 for npm and 20 for PyPI), which were consequently removed from the respective repositories.

The increasing popularity of certain programming languages has spurred the creation of ecosystem-

specific package repositories and package managers. Such repositories (e.g., npm, PyPI) serve as public

databases that users can query to retrieve packages for various functionalities, whereas package managers

automatically handle dependency resolution and package installation on the client side. These mech-

anisms enhance software modularization and accelerate implementation. However, they have become

a target for malicious actors seeking to propagate malware on a large scale. In this work [53], we show

how attackers can leverage capabilities of popular package managers and languages to achieve arbitrary

1Risk explorer web site

IRISA Activity Report 2023

Project DIVERSE 27

code execution on victim machines, thereby realizing open-source software supply chain attacks. Based

on the analysis of 7 ecosystems, we identify 3 install-time and 4 runtime techniques, and we provide

recommendations describing how to reduce the risk when consuming third-party dependencies. We will

provide proof-of-concepts that demonstrate the identified techniques. Furthermore, we describe evasion

strategies employed by attackers to circumvent detection mechanisms.

8.3.6 Efficient Resource Management for Adaptive Software

Serverless is a trending service model for cloud computing. It shifts a lot of the complexity from customers

to service providers. However, current serverless platforms mostly consider the provider’s infrastructure

as homogeneous, as well as the users’ requests. This limits possibilities for the provider to leverage het-

erogeneity in their infrastructure to improve function response time and reduce energy consumption. We

propose a heterogeneity-aware serverless orchestrator for private clouds that consists of two components:

the autoscaler allocates heterogeneous hardware resources (CPUs, GPUs, FPGAs) for function replicas,

while the scheduler maps function executions to these replicas. Our objective is to guarantee function

response time, while enabling the provider to reduce resource usage and energy consumption. This

work [54] considers a case study for a deepfake detection application relying on CNN inference. We

devised a simulation environment that implements our model and a baseline Knative orchestrator, and

evaluated both policies with regard to consolidation of tasks, energy consumption and SLA penalties.

Experimental results show that our platform yields substantial gains for all those metrics, with an average

of 35% less energy consumed for function executions while consolidating tasks on less than 40% of the

infrastructure’s nodes, and more than 60% less SLA violations.

We also demonstrated that by proactively caching functions from the same application using adequate

storage on the same nodes, we seek to minimize cold starts and data movement to improve total response

times. We evaluate our platform in a simulation environment using workload traces derived from

Microsoft’s Azure Functions, enriched with measurements from a deepfake detection project at the

B<>com Institute of Research and Technology [79].

8.3.7 GDPR Enforcement By The Operating System

Currently, it is very hard for companies driven by personal data to make their applications GDPR-

compliant, especially if those applications were developed before the GDPR was established. In [59],

we present rgpdOS, a GDPR-aware operating system that aims to bring GDPR-compliance to every

application, while requiring minimal changes to application code.

8.3.8 Model-Based DevOps: Foundations and Challenges

Time-to-market and continuous improvement are key success indicators to deliver for Industry 4.0

Cyber-Physical Systems (CPSs). There is thus a growing interest in adapting DevOps approaches coming

from software systems to CPSs. However, CPSs are made not only of software but also of physical parts

that need to be monitored at runtime. In [46], we claim that Model-Driven Engineering can facilitate

DevOps for CPSs by automatically connecting a CPS design model to its runtime monitoring, in the form

of a digital twin.

9 Bilateral contracts and grants with industry

9.1 Bilateral contracts with industry

BCOM

Participants: Olivier Barais.

• Coordinator: UR1

• Dates: 2018-2024

IRISA Activity Report 2023

28 Inria Annual Report 2023

• Abstract: The aim of the Falcon project is to investigate how to improve the resale of available

resources in private clouds to third parties. In this context, the collaboration with DiverSE mainly

aims at working on efficient techniques for the design of consumption models and resource

consumption forecasting models. These models are then used as a knowledge base in a classical

autonomous loop.

Test4Science

Participants: Benoît Combemale, Arnaud Blouin.

• Partners: Inria/CEA DAM

• Dates: 2023-2026

• Abstract: Test4Science aims to propose a disciplined and tool-supported approach for scientific

software testing. Test4Science is a bilateral collaboration (2023-2026), between the CEA DAM/DIF

and the DiverSE team at Inria (follow-up of the previous collaboration, aka. Debug4Science, from

2020 to 2022).

Orange

Participants: Olivier Barais, Benoît Combemale, Stéphanie Chalita.

• Partners: Inria/Orange

• Dates: 2020-2023

• Abstract: We aim at working on the context of adaptive authentification for trying to go beyond risk

Scores : Context-Aware Adaptive Authentication

Obeo

Participants: Benoît Combemale, Arnaud Blouin.

• Partners: UR1/Obéo

• Dates: 2022-2025

• Abstract: Low-code language workbench, Theo Giraudet’s PhD Cifre project.

SAP

Participants: Olivier Barais.

• Partners: UR1/SAP

• Dates: 2021-2024

• Abstract: Research focusing on Open-source software Supply Chain security. Piergiorgio Ladisa’s

PhD Cifre project.

IRISA Activity Report 2023

Project DIVERSE 29

CGI

Participants: Olivier Barais, Mathieu Acher, Jean-Marc Jézéquel.

• Partners: UR1/CGI

• Dates: 2023-2026

• Abstract: Research focusing on legacy source code reeingineering using LLM.

10 Partnerships and cooperations

10.1 International initiatives

10.1.1 Associate Teams in the framework of an Inria International Lab or in the framework of an

Inria International Program

ALE

Title: Agile Language Engineering

Duration: 2017 -> 2024

Coordinator: Tijs van der Storm

Partners:

• CWI (The Netherlands)

Inria contact: Benoit Combemale

Summary: The team contributes to the field of Software Language Engineering, aiming to provide more

agility to both language designers and language users. We explore extreme modularity constructs

for the development of Domain-Specific Languages, and advanced mechanisms for live modeling.

10.1.2 Inria associate team not involved in an IIL or an international program

RESIST_EA

Title: Resilient Software Science

Duration: 2021 ->

Coordinator: Arnaud Gotlieb (arnaud@simula.no)

Partners:

• SIMULA (Norvège)

Inria contact: Mathieu Acher

Summary: The Science of Resilient Software (RESIST_EA) intends to create software-systems which can

resist failures without significantly degrading their functionality. For several years, creating resilient

software-systems has become extremely important in various application domains. For example,

in robotics, the deployment of advanced collaborative robots which have to cope with uncertainty

and unexpected behaviors while being able to recover from their failures has led to new research

challenges. A recent area where these challenges have become pregnant is industrial robotics

for car manufacturing where major issues faced by an “excessive automation” have surfaced. For

instance, Tesla has struggled with painting, welding, assembling industrial robots in its advanced

California car factory since 2018. Generally speaking, Autonomous Software-Systems (AS) such

IRISA Activity Report 2023

30 Inria Annual Report 2023

as self-driving cars, autonomous ships or industrial robots require the development of resilient

software-systems as they have to manage unexpected events, such as faults or hazards. The goal

of the Associate Team “Resilient Software Science” (and the main innovation of this project) is to

explore the Science of resilient software by laying the ground to foundational work on advanced a

priori testing methods such as metamorphic testing and a posteriori continuous improvements

through digital twins.

10.2 International research visitors

10.2.1 Visits of international scientists

Inria International Chair Gunter Mussbacher has an Inria International Chair, and he is visiting the

DiverSE team 4 months per year.

Other international visits to the team

Joerg Kienzle

Status (Professor)

Institution of origin: McGill University

Country: Canada

Dates: July 2024

Context of the visit: Collaboration with the team on different papers regarding SLE and Variability.

Mobility program/type of mobility: research stay

Lola Burgueno

Status (Associate Professor)

Institution of origin: Malaga University

Country: Spain

Dates: July 2024

Context of the visit: Collaboration with the team on different papers regarding SLE and Variability.

Mobility program/type of mobility: research stay

10.2.2 Visits to international teams

Research stays abroad

Paul Temple visited University of NAMUR in April, July, September, October, December 2023.

Mathieu Acher visited KTH in SWEDEN in June 2023.

Jean-Marc Jézéquel visited University of Montreal in september 2023.

10.3 European initiatives

10.3.1 Horizon Europe

IRISA Activity Report 2023

Project DIVERSE 31

HiPEAC

Participants: Olivier Zendra, Jean-Marc Jézéquel.

HiPEAC project on cordis.europa.eu

Title: High Performance, Edge And Cloud computing

Duration: From December 1, 2022 to May 31, 2025

Partners:

• INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (INRIA),

France

• ECLIPSE FOUNDATION EUROPE GMBH (EFE GMBH), Germany

• INSIDE, Netherlands

• UNIVERSITEIT GENT (UGent), Belgium

• RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN (RWTH AACHEN),

Germany

• COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES (CEA), France

• SINTEF AS (SINTEF), Norway

• IDC ITALIA SRL, Italy

• THALES (THALES), France

• CLOUDFERRO SA, Poland

• BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION

(BSC CNS), Spain

Inria contact: Olivier Zendra

Coordinator: Ghent University

Summary: The objective of HiPEAC is to stimulate and reinforce the development of the dynamic

European computing ecosystem that supports the digital transformation of Europe. It does so by

guiding the future research and innovation of key digital, enabling, and emerging technologies,

sectors, and value chains. The longer term goal is to strengthen European leadership in the global

data economy and to accelerate and steer the digital and green transitions through human-centred

technologies and innovations. This will be achieved via mobilising and connecting European

partnerships and stakeholders to be involved in the research, innovation and development of

computing and systems technologies. They will provide roadmaps supporting the creation of

next-generation computing technologies, infrastructures, and service platforms.

The key aim is to support and contribute to rapid technological development, market uptake

and digital autonomy for Europe in advanced digital technology (hardware and software) and

applications across the whole European digital value chain. HiPEAC will do this by connecting

and upscaling existing initiatives and efforts, by involving the key stakeholders, and by improving

the conditions for large-scale market deployment. The next-generation computing and systems

technologies and applications developed will increase European autonomy in the data economy.

This is required to support future hyper-distributed applications and provide new opportunities

for further disruptive digital transformation of the economy and society, new business models,

economic growth, and job creation.

The HiPEAC CSA proposal directly addresses the research, innovation, and development of next

generation computing and systems technologies and applications. The overall goal is to support

the European value chains and value networks in computing and systems technologies across the

computing continuum from cloud to edge computing to the Internet of Things (IoT).

IRISA Activity Report 2023

32 Inria Annual Report 2023

10.4 National initiatives

10.4.1 ANR

MC-Evo2 ANR JCJC

Participants: Djamel Eddine Khelladi.

• Coordinator: Djamel E. Khelladi

• DiverSE, CNRS/IRISA Rennes

• Dates: 2021-2025

• Abstract: Software maintenance represents 40% to 80% of the total cost of developing software. On

65 projects, an IT company reported a cost of several million dollars, with a 25% higher cost on

complex projects. Nowadays, software evolves frequently with the philosophy “Release early, release

often” embraced by IT giants like the GAFAM, thus making software maintenance difficult and

costly. Developing complex software inevitably requires developers to handle multiple dimensions,

such as APIs to use, tests to write, models to reason with, etc. When software evolves, a co-

evolution is usually necessary as a follow-up, to resolve the impacts caused by the evolution

changes. For example, when APIs evolve, code must be co-evolved, or when code evolves, its

tests must be co-evolved. The goals of this project are to: 1) address these challenges from a

novel perspective, namely a multidimensional co-evolution approach, 2) investigate empirically

the multidimensional co-evolution in practice in GitHub, Maven, and Eclipse, 3) automate and

propagate the multidimensional co-evolution between the software code, APIs, tests, and models.

MBDO

Participants: Jean-Marc Jezequel, Benoit Combemale, Quentin Perez, Didier Vojt-

isek.

• Coordinator: Jean-Marc Jezequel

• Coordinator: Univ. Rennes

• Partners: Aachen University, University of Stuttgart

• Dates: 2023-2026

• Abstract: Our goal in MBDO is to provide the foundations for a Model-Based DevOps framework

unifying these different forms of models in the specific context of cloud-native and IoT systems.

The proposed Model-Based DevOps framework would then allow engineers to smoothly go back

and forth from Dev time to Ops time by leveraging semi-automatically generated digital twins of

their systems.

10.4.2 DGA

LangSpecialize

Participants: Benoît Combemale, Olivier Barais.

• Coordinator: DGA

• Partners: DGA MI, INRIA

IRISA Activity Report 2023

Project DIVERSE 33

• Dates: 2023-2026

• Abstract: in the context of this project, DGA-MI and the INRIA team DiverSE explore the existing

approaches to ease the development of formal specifications of domain-Specific Languages (DSLs)

dedicated to packet filtering, while guaranteeing expressiveness, precision and safety. In the long

term, this work is part of the trend to provide to DGA-MI and its partners a tooling to design and

develop formal DSLs which ease the use while ensuring a high level of reasoning.

10.4.3 DGAC

MIP 4.0

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais.

• Coordinator: Safran

• Partners: Safran, Akka, Inria.

• Dates: 2022-2024

• Abstract: The MIP 4.0 project aims at investigating integrated methods for efficient and shared

propulsion systems. Inria explores new techniques for collaborative modeling over the time.

10.4.4 PEPR

PEPR Cloud Taranis

Participants: Olivier Barais, Paul Temple, Stéphanie Chalitta.

• Coordinator: INRIA

• Partners: INRIA, CNRS, UR.

• Dates: 2023-2030

• Abstract: In order to efficiently exploit new infrastructures, we propose a strategy based on a

significant abstraction of the application structure description to further automate application

and infrastructure management. Thus, it will be possible to globally optimize the resources used

with respect to multi-criteria objectives (price, deadline, performance, energy, etc.) on both the

user side (applications) and the provider side (infrastructures). This abstraction also includes the

challenges related to the abstraction of application reconfiguration and to automatically adapt the

use of resources.

PEPR Numpex Exasoft

Participants: Benoit Combemale, Olivier Barais.

• Coordinator: INRIA

• Partners: INRIA, CNRS, UR.

• Dates: 2023-2030

• Abstract: The ExaSoft project will study the software stack for future exascale machines (compilers,

programming and execution model, monitoring and optimisation tools and energy management.

IRISA Activity Report 2023

34 Inria Annual Report 2023

10.4.5 Campus Cyber

Software Heritage Sec

Participants: Olivier Barais, Mathieu Acher, Djamel Eddine Khelladi, Olivier Zendra.

• Coordinator: INRIA

• Partners: INRIA, IMT, CEA, Université Sorbone.

• Dates: 2023-2027

• Abstract: By analyzing the evolution of software source code over time, researchers and practitioners

will be able to gain a better understanding of the vulnerabilities and threats that may exist in

software systems, identify potential security risks early on and take proactive measures to mitigate

them.

10.5 Regional initiatives

IPSCo

Participants: Benoît Combemale, Didier Vojtisek, Olivier Barais.

• Coordinator: Jamespot

• Partners: Jamespot, UR1, Logpickr.

• Dates: 2022-2023

• Abstract: The IPSCo project aims at investigating new tools and methods to bring intelligence into

processes and communities.

SAD CoEvoMP

Participants: Djamel Eddine Khelladi, Benoît Combemale, Arnaud Blouin.

• Coordinator: Djamel E. Khelladi

• Partners: CNRS, UR1.

• Dates: 12/2022-12/2024

• Abstract: The CoEvoMP project aims at investigating polyglot co-evolution in parallel of the MC-

Evo2 project.

Privacy Bugs

Participants: Johann Bourcier, Walter Rudametkin.

• Coordinator: Johann Bourcier

• Partners: UR1, DGA.

IRISA Activity Report 2023

Project DIVERSE 35

• Dates: 2023-2026

• Creach labs funding

• Abstract: The Privacy Bugs project aims at investigating new tools and methods to detect and

quantify privacy bugs in frontend web applications.

11 Dissemination

Participants: Djamel Khelladi, Gunter Mussbacher, Olivier Zendra, Olivier Barais,

Mathieu Acher, Aymeric Blot, Arnaud Blouin, Johann Bourcier,

Stéphanie Challita, Benoît Combemale, Jean-Marc Jezequel,

Quentin Perez, Noël Plouzeau, Walter Rudametkin Ivey,

Paul Temple, Gwendal Jouneaux, Faezeh Khorram, Quentin Perez,

Xhevahire Ternava, Lina Bilal, Ewen Brune, Anne Bumiller,

Theo Giraudet, Philemon Houdaille, Gwendal Jouneaux, Zohra Kebaili,

N’Guessan Hermann Kouadio, Piergiorgio Ladisa, Clement Lahoche,

Quentin Le Dilavrec, Romain Lefeuvre, Georges Aaron Randri-

anaina, Chiara Relevat, Sterenn Roux, Florian Badie, Romain Belafia,

Emmanuel Chebbi, Guy De Spiegeleer, Quentin Le Dilavrec, Ro-

main Lefeuvre, Charly Reux, Didier Vojtisek.

11.1 Promoting scientific activities

11.1.1 Scientific events: organisation

General chair, scientific chair Benoit Combemale and Gunter Mussbacher have been General co-chairs

of ICT4S 2023 [70, 71], organized at the University of Rennes, France.

Member of the organizing committees Olivier Barais and Djamel Eddine Khelladi have co-organized

"Les Journées du GDR GPL 2023".

Arnaud Blouin has co-organized the:

• HuFaMo Workshop co-organizer at MODELS 2023

• 2023; MLE Workshop co-organizer at MODELS 2023

• GL-IHM Workshop co-organizer at IHM 2023 (French-Speaking conference)

Djamel Eddine Khelladi has co-organized the Models and Evolution (ME) workshop at MODELS.

Stéphanie Challita has been Student Volunteers Co-Chair at ICT4S’2023.

Quentin Perez has been Student Virtual Chair at ICT4S’2023.

Johann Bourcier has been Publicity chair at ICT4S’2023

11.1.2 Scientific events: selection

Member of the conference program committees Arnaud Blouin has been a member of the following

PCs:

• 15th ACM SIGCHI symposium on Engineering interactive computing systems (EICS 2023), 2023

• The 38th ACM/SIGAPP Symposium on Applied Computing (SAC), software engineering track, 2023

Olivier Barais has been a member of the following PCs:

• MODELS 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages

and Systems, Västerås, Sweden, Oct 1 - Oct 6, 2023

IRISA Activity Report 2023

36 Inria Annual Report 2023

Benoit Combemale has been a member of the following PCs:

• MODELS 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages

and Systems (MODELS 2023, Program Board)

• ECMFA 2023 The 19th European Conference on Modelling Foundations and Applications (ECMFA

2023)

• ModDiT’23 workshop at MODELS’23

• 3rd Eclipse Security, AI, Architecture and Modelling Conference on Cloud to Edge Continuum

Olivier Zendra has been a member of the PC of the 30th CE&SAR conference, CE&SAR 2023 by DGA,

at ECW 2023.

Jean-Marc Jézéquel has been a member of the following PCs:

• SEAMS 2023 18th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, May 23-24, 2023, Melbourne, Australia, co-located event with ICSE.

• SPLC 2023 The 26th International Software Product Line Conference (Industry Track), August 27-31,

2023, Tokyo, Japan

• MODELS 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages

and Systems, Västerås, Sweden, Oct 1 - Oct 6, 2023

Djamel Eddine Khelladi has been a member of the following PCs:

• MoDDiT’23, ME’23, MLE’23 at MODELS

• ESEC/FSE’23 Artifacts

• VariVolution’23 at SPLC

Reviewer Arnaud Blouin has served as an external reviewer for Interact 2023.

11.1.3 Journal

Member of the editorial boards Benoit Combemale is Editor-in-Chief of the Springer-Nature Interna-

tional Journal on Software and Systems Modeling (SoSyM) [33, 34, 28, 31, 30, 32, 29]. He is also member

of the Editorial Boards of the Springer Software Quality Journal (SQJ), the platinum open access JOT

journal (former deputy editor-in-chief of the journal, 2020-2023), and the Elsevier Journal of Computer

Languages (COLA).

Jean-Marc Jézéquel has been Associate Editor in Chief of IEEE Computer and of SoSYM, as well as a

member of the EB of JSS.

Stéphanie Challita has been Assistant Editor of the Journal of Software and Systems Modeling, Springer

(SoSyM).

Djamel Eddine Khelladi is the guest editor in the special issue on Model Driven Engineering for Digital

Twins in the the Journal of Software and Systems Modeling(SoSyM).

Reviewer - reviewing activities Arnaud Blouin has served as an external reviewer for IEEE Transactions

of Software Engineering.

Stéphanie Challita has been a reviewer at Annals of Telecommunications and SoSyM.

Olivier Barais has been a reviewer at SoSyM.

Benoit Combemale has served as an external reviewer for IEEE Transactions of Software Engineering,

and ACM Transactions on Software Engineering and Methodology.

Djamel Eddine Khelladi has served as an external reviewer for the Journal on Software and Systems

Modeling (SoSyM) and IEEE Transactions of Software Engineering, and ACM Transactions on Software

Engineering and Methodology.

IRISA Activity Report 2023

Project DIVERSE 37

11.1.4 Invited talks

Benoit Combemale gave a talk entitled "Expériences et défis scientifiques des jumeaux numériques." at

the network Aristote (21/09/23).

11.1.5 Leadership within the scientific community

Arnaud Blouin: Founding member and co-organiser of the French GDR-GPL research action on Software

Engineering and Human-Computer Interaction (GL-IHM).

Jean-Marc Jézéquel has been Vice-President of Informatics Europe, and elected as the new President

starting 2024.

Olivier Zendra is:

• Founder and a member of the Steering Committee of ICOOOLPS (International Workshop on

Implementation, Compilation, Optimization of OO Languages, Programs and Systems).

• Member of the EU HiPEAC CSA project Steering Committee

• Member of the HiPEAC Vision Editorial Board

Benoit Combemale is a founding member of the GEMOC initiative, an international effort to de-

velop techniques, frameworks, and environments to facilitate the creation, integration, and automated

processing of heterogeneous modeling languages. He is currently the scientific leader of the Research

Consortium GEMOC at the Eclipse Foundation.

Benoit Combemale is also a member of the steering committees of the ACM/IEEE Intl. Conference on

Model-Driven Engineering Languages and Systems (member since 2023), the ACM SIGPLAN Intl. Confer-

ence on Software Language Engineering (member since 2014, and chair of the steering committee from

2018 to 2022), the Intl. Conference on Information and Communications Technology for Sustainability

(member since 2022), the Modeling Language Engineering and Execution (MLE) workshop (founding

member, since 2019) and the Model-Driven Engineering of Digital Twins (ModDiT) workshop (founding

member, since 2021).

11.1.6 Scientific expertise

Arnaud Blouin: expert for the CIR agency (research tax credit, "crédit d’impôt recherche").

Olivier Barais: expert for the following call for projects:

• PHC FRANCE - GRECE 2023

• STIC AmSud 2023

• CONTRAT DOCTORAL UFA 2023

• VINCI 2023 Chapitre 2 – Aides à la mobilité pour thèses en cotutelle

• Bourses Irlande 2023

• SAMUEL DE CHAMPLAIN - Formation 2023

• PHC ALLIANCE GRANDE BRETAGNE 2023

• PHC CARLOS J. FINLAY CUBA 2023

• PHC ALLIANCE GRANDE BRETAGNE 2023

• Workshops Maupertuis Finlande 2023

• PHC FASIC ECPD AUSTRALIE 2023

• PHC BOSPHORE TURQUIE 2023

• PHC CEDRE LIBAN 2023

IRISA Activity Report 2023

38 Inria Annual Report 2023

• PHC GALILEE ITALIE 2023

• PHC UTIQUE TUNISIE 2023

• PHC BOSPHORE TURQUIE 2023

• PHC TOUBKAL MAROC 2023

• PHC UTIQUE TUNISIE 2023

Olivier Barais: member of the scientific board of Pole de compétitivité Image et Réseau

Stéphanie Challita has been a member of the Conference Activities Committee (CAC) at IEEE Com-

puter Society.

Olivier Zendra: scientific CIR/JEI expert for the MESR.

Johann Bourcier: expert for the CIR agency (research tax credit, "crédit d’impôt recherche") and

reviewer for an ANR JCJC.

11.1.7 Research administration

Olivier Barais is a new member of the CNU 27.

Olivier Zendra was a member of Inria Evaluation Committee (CE) till September 2023.

11.2 Teaching - Supervision - Juries

11.2.1 Teaching

The DIVERSE team bears the bulk of the teaching on Software Engineering at the University of Rennes 1

and at INSA Rennes, for the first year of the Master of Computer Science (Project Management, Object-

Oriented Analysis and Design with UML, Design Patterns, Component Architectures and Frameworks,

Validation & Verification, Human-Computer Interaction, Sustainable Software Engineering) and for

the second year of the MSc in software engineering (Model driven Engineering, DevOps, DevSecOps,

Validation & Verification, etc.).

Each of Jean-Marc Jézéquel, Noël Plouzeau, Olivier Barais, Benoît Combemale, Johann Bourcier,

Arnaud Blouin, Aymeric Blot, Quentin Perez, Stéphanie Challita and Mathieu Acher teaches about 250h

in these domains for a grand total of about 2000 hours, including several courses at IMT, ENS Rennes and

ENSAI Rennes engineering school.

Olivier Barais is deputy director of the electronics and computer science teaching department of the

University of Rennes 1.

Olivier Barais is the head of the Master in Computer Science at the University of Rennes 1.

Arnaud Blouin is in charge of industrial relationships for the computer science department at INSA

Rennes and elected member of this CS department council.

The DIVERSE team also hosts several MSc and summer trainees every year.

11.2.2 Supervision

• Piergiorgio Ladisa, CIFRE with SAP (defense in 2024). Olivier Barais is the supervisor of this thesis.

• Anne Bumiller, CIFRE with Orange (defense in 2023). Benoît Combemale, Stéphanie Chalita and

Olivier Barais are co-supervisors of this thesis.

• Theo Giraudet, CIFRE with Obéo (defense in 2025). Benoît Combemale and Arnaud Blouin are

co-supervisors of this thesis.

• Georges Aaron Randrianaina, (defense in 2024). Mathieu Acher, Djamel Eddine Khelladi and Olivier

Zendra are co-supervisors of this thesis.

• Quentin Le Dilavrec, (defense in 2024). Djamel Eddine Khelladi and Aranaud Blouin are co-

supervisors of this thesis.

IRISA Activity Report 2023

Project DIVERSE 39

• Gwendal Jouneaux, (defense in 2024). Benoît Combemale and Olivier Barais are co-supervisors of

this thesis.

• Lina Bilal (defense in 2026). Benoît Combemale and Jean-Marc Jézéquel are co-supervisors of this

thesis.

• Romain Lefeuvre (defense in 2026). Benoît Combemale and Quentin Perez are co-supervisors of

this thesis.

• Houdaille Philémon (defense in 2026). Benoît Combemale and Djamel Eddine Khelladi are co-

supervisors of this thesis.

• Sterenn Roux (defense in 2026). Johann Bourcier and Walter Rudametkin are co-supervisors of this

thesis.

• Kaouter Zohra Kebaili (defense in 2025). Djamel Eddine Khelladi and Mathieu Acher and Olivier

Barais are co-supervisors of this thesis.

• Ewen Brune (defense in 2026). Benoît Combemale and Arnaud Blouin are co-supervisors of this

thesis.

• Clément Lahoche (defense in 2026). Olivier Barais and Olivier Zendra are co-supervisors of this

thesis.

• N’Guessan Hermann Kouadio (defense in 2026). Olivier Barais and Mathieu Acher are co-supervisors

of this thesis.

• Chiara Relevat (defense in 2026). Benoit Combemale and Gurvan Le Guernic are co-supervisors of

this thesis.

11.2.3 Juries

Benoit Combemale was in the PhD jury (reviewer) of Hamza Bourbouh (ISAE-Supaéro), "Static analyses

and model checking of mixed data-flow/control-flow models for critical systems."

Arnaud Blouin was in the PhD jury (reviewer) of Philippe Schmid (University of Lille, Inria Lille,

France), "Développement d’historiques de commandes avancés pour améliorer le processus d’édition

numérique"

Olivier Barais was in the PhD jury (reviewer) of Romain Fouquet (University of Lille, Inria Lille, France),

"Improving Web User Privacy Through Content Blocking"

Olivier Barais was in the PhD jury (reviewer) of Santiago Bragagnolo (University of Lille, Inria Lille,

France), "An Holistic Approach to Migrate Industrial Legacy Systems"

Walter Rudametkin was in the PhD jury (reviewer) of Vero Sosnovik (University of Grenoble, France),

"Detection and analysis of online issue and political ads".

Walter Rudametkin was in the PhD jury (reviewer) of Anne Josiane Kouam (Institut polytechnique de

Paris) Bypass frauds in cellular networks : Understanding and Mitigation

Mathieu Acher was in the PhD jury (president/examiner) of Adrien GOUGEON (Université de Rennes)

"Optimizing a Dynamic and Energy Efficient Network Piloting the Electrical Grid".

Mathieu Acher was invited in the PhD jury (invited) of César Soto Valero (KTH, Sweden) "Debloating

Java Dependencies".

11.3 Popularization

11.3.1 Internal or external Inria responsibilities

Olivier Zendra, as a member of the HiPEAC Vision Editorial Board, contributed to the writing of the

overall HiPEAC Vision 2023 [63], also leading the writing of the cybersecurity chapter [69].

IRISA Activity Report 2023

40 Inria Annual Report 2023

11.3.2 Articles and contents

HiPEAC Olivier Zendra, as a member of the HiPEAC Vision Editorial Board, contributed to the writing of

the overall HiPEAC Vision 2023 [63], the focus of which is that we are in a race, both against time and with

the rest of the world. Indeed, technology never stands still. The last few years have once again seen rapid,

profound changes across the world, both from the technological point of view – with impressive advances

in artificial intelligence – and from the geopolitical point of view, where technology is increasingly seen

as a strategic asset. Different world regions are competing for leadership in several areas. Competition

between the United States (US) and China in the technology and artificial intelligence (AI) domains is

particularly fierce, and it is becoming more intense. This creates a threat to Europe, but at the same

time an opportunity. The recent change of ownership and leadership at Twitter is also a wake-up call

for Europe. Many of the essential services the European society depends on run on platforms that are

not controlled by Europe. This creates vulnerabilities in the event of conflict, comparable to European

dependency on Russian energy. These are just the evolutions of the last year. Change is taking place so

rapidly that it is also having an impact on the HiPEAC Vision: updating it every two years is no longer

sufficient to keep up with the speed of the evolution of computing systems. Therefore, from now on, there

will be a HiPEAC Vision every year. The speed of the evolution has also inspired the editorial board to

present the challenges of our community as six leadership races: for the “next web”, for AI, for innovative

hardware solutions, for cybersecurity, for digital sovereignty, and for sustainability solutions. Structurally,

the HiPEAC Vision 2023 has two parts: First, a set of recommendations for the HiPEAC community at

large. Second, a set of articles written by experts and grouped into six chapters each describing one

“global leadership race”.

In the the HiPEAC Vision 2023, Olivier Zendra was also specifically in charge of the Cybersecurity

chapter [69], that addresses "The race for cybersecurity", in which we explain that, after decades of

digitalization spreading into every area of our lives, with very little attention given to the aspects linked

to cybersecurity, information technology (IT) had essentially become an “open bar” for cybercriminals.

For a few years, with a marked degradation during the peak of the COVID-19 pandemic, the news has

been rife with reports of privacy breaches and cyberattacks (mainly ransomware) on companies and

institutions, especially local governments and hospitals. In addition, cyberwarfare has been making

the news too, especially in relation to the conflict in Ukraine. Thus, the era of blissful ignorance and

naiveté has ended. Although the wake-up call was abrupt, knowledge of these issues has expanded,

and governments and to some extent businesses have taken first moves to enhance the cybersecurity

frontline. However, cybersecurity is a highly competitive race between nations, between defenders

and attackers, with enormous stakes. The pervasiveness of IT provides a broad attack surface, and

attacks can be economically devastating, but they can also have tangible or even lethal repercussions on

the physical world. Despite several highly acclaimed advancements (e.g. the General Data Protection

Regulation-GDPR), the EU still has a great deal of work to do in this regard, particularly to maintain its

sovereignty and become a leader in the global competition. Cybersecurity is indeed a matter of both

economic leadership and national sovereignty. This chapter contains two contributions. In article “From

cybercrime to cyberwarfare, nobody can overlook cybersecurity any more” [68], we describe the current

state of IT system cybersecurity, showing how vulnerable systems are to the numerous dangers and

challenges posed by cybercrime and cyberwarfare. It goes on to present a few concrete ways to remedy

the issue, whether by technical, legal, sociological, or political means. Indeed, although the EU has

weaknesses, linked to its extremely high reliance on IT systems, it also has the potential to become a world

leader in cybersecurity, owing to both its strong technical culture and its regulatory capabilities. In article

“Is privacy possible in a digital world?” [64], we explain that over the last few years, privacy has become a

hot topic. However, this is in large part due to the fact that ever more data is being collected, not only by

governments, but also by companies. It is often unclear for which purposes this data ends up being used;

worse, it can even be leaked to third parties by attackers. Furthermore, even if this collected data would

appear not to be sensitive in and of itself, sometimes sensitive information can be deduced from it. In this

article, we present a summary of some of the ways in which data is gathered; how additional information

can be inferred from it and how this is problematic; and how we can try to protect our privacy.

Data Protection: GDPR Enforcement By The Operating System The challenges of effective data pro-

tection cannot be addressed solely by law. The demonstrated need for an alliance with technology has

IRISA Activity Report 2023

Project DIVERSE 41

led to the project of building an operating system incorporating data protection rules because it serves

as the intermediary between processing and data. Three central ideas structure the technical project

(the creation of active personal data, the focus of the OS on data rather than the process, and access at

the level of the data itself), suggesting an implementation of data protection rules at the level of each

personal data [40]. Such innovations do not fail to pose challenges, both in terms of the choices made

and the translation of legal rules. However, the project involves more fundamental issues at the micro

level – the modularity of personal data characteristics – as well as at the macro level – the correlative

modification of the data processing ecosystem.

11.3.3 Education

In the field of education, the team is applying some of its research results to develop a test scoring

platform for Universities: CorrectExam. This platform is gaining users, with more than 150 exams marked

on the platform. Discussions are underway to incubate the platform within the esup-portail association.

Olivier Barais gave several talks on the use of ChatGPT for education in front of a set of high-school

professors and the dean.

11.3.4 Interventions

As Professors, we introduce into our course a set of shared slides raising awareness of the academic

community and associated discipline. We might regret that a laboratory like the one in Rennes is not

easily open to our Masters students. This does not help in reducing the gap between academia and

industry. Indeed, many students can follow university or engineering degrees without going to the

laboratory.

12 Scientific production

12.1 Major publications

[1] M. Acher, R. E. Lopez-Herrejon and R. Rabiser. ‘Teaching Software Product Lines: A Snapshot of

Current Practices and Challenges’. In: ACM Transactions of Computing Education (May 2017).

URL: https://hal.inria.fr/hal-01522779.

[2] A. Blouin, V. Lelli, B. Baudry and F. Coulon. ‘User Interface Design Smell: Automatic Detection and

Refactoring of Blob Listeners’. In: Information and Software Technology 102 (May 2018), pp. 49–64.

DOI: 10.1016/j.infsof.2018.05.005. URL: https://hal.inria.fr/hal-01499106.

[3] M. Boussaa, O. Barais, G. Sunyé and B. Baudry. ‘Leveraging metamorphic testing to automatically

detect inconsistencies in code generator families’. In: Software Testing, Verification and Reliability

(Dec. 2019). DOI: 10.1002/stvr.1721. URL: https://hal.inria.fr/hal-02422437.

[4] E. Bousse, D. Leroy, B. Combemale, M. Wimmer and B. Baudry. ‘Omniscient Debugging for

Executable DSLs’. In: Journal of Systems and Software 137 (Mar. 2018), pp. 261–288. DOI: 10.1016

/j.jss.2017.11.025. URL: https://hal.inria.fr/hal-01662336.

[5] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J.-M. Jézéquel and J. Gray. ‘Globalizing

Modeling Languages’. In: IEEE Computer (June 2014), pp. 10–13. URL: https://hal.inria.fr

/hal-00994551.

[6] K. Corre, O. Barais, G. Sunyé, V. Frey and J.-M. Crom. ‘Why can’t users choose their identity

providers on the web?’ In: Proceedings on Privacy Enhancing Technologies 2017.3 (Jan. 2017),

pp. 72–86. DOI: 10.1515/popets-2017-0029. URL: https://hal.archives-ouvertes.fr/h

al-01611048.

[7] J.-E. Dartois, J. Boukhobza, A. Knefati and O. Barais. ‘Investigating Machine Learning Algorithms

for Modeling SSD I/O Performance for Container-based Virtualization’. In: IEEE transactions on

cloud computing 14 (2019), pp. 1–14. DOI: 10.1109/TCC.2019.2898192. URL: https://hal.in

ria.fr/hal-02013421.

IRISA Activity Report 2023

42 Inria Annual Report 2023

[8] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Clelang-Huang and P. Heymans. ‘Feature Model

Extraction from Large Collections of Informal Product Descriptions’. In: Proc. of the Europ. Soft-

ware Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineering

(ESEC/FSE). Sept. 2013, pp. 290–300. DOI: 10.1145/2491411.2491455. URL: https://hal.inr

ia.fr/hal-00859475.

[9] T. Degueule, B. Combemale, A. Blouin, O. Barais and J.-M. Jézéquel. ‘Melange: A Meta-language

for Modular and Reusable Development of DSLs’. In: Proc. of the Int. Conf. on Software Language

Engineering (SLE). Oct. 2015. URL: https://hal.inria.fr/hal-01197038.

[10] D. Foures, M. Acher, O. Barais, B. Combemale, J.-M. Jézéquel and J. Kienzle. ‘Experience in

Specializing a Generic Realization Language for SPL Engineering at Airbus’. In: MODELS 2023 -

26th International Conference on Model-Driven Engineering Languages and Systems. Västerås,

Sweden: IEEE, 2023, pp. 1–12. URL: https://inria.hal.science/hal-04216627.

[11] J. A. Galindo Duarte, M. Alférez, M. Acher, B. Baudry and D. Benavides. ‘A Variability-Based Testing

Approach for Synthesizing Video Sequences’. In: Proc. of the Int. Symp. on Software Testing and

Analysis (ISSTA). July 2014. URL: https://hal.inria.fr/hal-01003148.

[12] I. Gonzalez-Herrera, J. Bourcier, E. Daubert, W. Rudametkin, O. Barais, F. Fouquet, J.-M. Jézéquel

and B. Baudry. ‘ScapeGoat: Spotting abnormal resource usage in component-based reconfigurable

software systems’. In: Journal of Systems and Software (2016). DOI: 10.1016/j.jss.2016.02.02

7. URL: https://hal.inria.fr/hal-01354999.

[13] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and B. Baudry. ‘Test them all, is it worth it?

Assessing configuration sampling on the JHipster Web development stack’. In: Empirical Software

Engineering (July 2018), pp. 1–44. DOI: 10.1007/s10664-018-9635-4. URL: https://hal.inr

ia.fr/hal-01829928.

[14] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus and F. Fouquet. ‘Mashup of Meta-Languages

and its Implementation in the Kermeta Language Workbench’. In: Software and Systems Modeling

14.2 (2015), pp. 905–920. URL: https://hal.inria.fr/hal-00829839.

[15] D. E. Khelladi, B. Combemale, M. Acher and O. Barais. ‘On the Power of Abstraction: a Model-

Driven Co-evolution Approach of Software Code’. In: 42nd International Conference on Software

Engineering, New Ideas and Emerging Results. Séoul, South Korea, May 2020. URL: https://hal

.inria.fr/hal-03029426.

[16] D. E. Khelladi, B. Combemale, M. Acher, O. Barais and J.-M. Jézéquel. ‘Co-Evolving Code with

Evolving Metamodels’. In: ICSE 2020 - 42nd International Conference on Software Engineering.

Séoul, South Korea, 6th July 2020, pp. 1–13. URL: https://hal.inria.fr/hal-03029429.

[17] P. Laperdrix, W. Rudametkin and B. Baudry. ‘Beauty and the Beast: Diverting modern web browsers

to build unique browser fingerprints’. In: Proc. of the Symp. on Security and Privacy (S&P). May

2016. URL: https://hal.inria.fr/hal-01285470.

[18] Q. Le Dilavrec, D. E. Khelladi, A. Blouin and J.-M. Jézéquel. ‘HyperAST: Enabling Efficient Ana-

lysis of Software Histories at Scale’. In: ASE 2022 - 37th IEEE/ACM International Conference on

Automated Software Engineering. Oakland, United States: IEEE, 10th Oct. 2022, pp. 1–12. URL:

https://hal.inria.fr/hal-03764541.

[19] M. Leduc, T. Degueule, E. Van Wyk and B. Combemale. ‘The Software Language Extension Prob-

lem’. In: Software and Systems Modeling (2019), pp. 1–4. URL: https://hal.inria.fr/hal-023

99166.

[20] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J.-M. Jézéquel and D. E. Khelladi. ‘Transfer Learning

Across Variants and Versions: The Case of Linux Kernel Size’. In: IEEE Transactions on Software

Engineering 48.11 (1st Nov. 2022), pp. 4274–4290. DOI: 10.1109/TSE.2021.3116768. URL:

https://hal.inria.fr/hal-03358817.

[21] G. A. Randrianaina, X. Tërnava, D. E. Khelladi and M. Acher. ‘On the Benefits and Limits of Incre-

mental Build of Software Configurations: An Exploratory Study’. In: ICSE 2022 - 44th International

Conference on Software Engineering. Pittsburgh, Pennsylvania / Virtual, United States, 8th May

2022, pp. 1–12. URL: https://hal.science/hal-03547219.

IRISA Activity Report 2023

Project DIVERSE 43

[22] M. Rodriguez-Cancio, B. Combemale and B. Baudry. ‘Automatic Microbenchmark Generation to

Prevent Dead Code Elimination and Constant Folding’. In: Proc. of the Int. Conf. on Automated

Software Engineering (ASE). Sept. 2016. URL: https://hal.inria.fr/hal-01343818.

[23] P. Temple, M. Acher, J.-M. Jezequel and O. Barais. ‘Learning-Contextual Variability Models’. In:

IEEE Software 34.6 (Nov. 2017), pp. 64–70. DOI: 10.1109/MS.2017.4121211. URL: https://hal

.inria.fr/hal-01659137.

[24] P. Temple, M. Acher and J.-M. Jézéquel. ‘Empirical Assessment of Multimorphic Testing’. In: IEEE

Transactions on Software Engineering (July 2019), pp. 1–21. DOI: 10.1109/TSE.2019.2926971.

URL: https://hal.inria.fr/hal-02177158.

[25] P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli. ‘Empirical Assessment

of Generating Adversarial Configurations for Software Product Lines’. In: Empirical Software

Engineering (Dec. 2020), pp. 1–57. URL: https://hal.inria.fr/hal-03045797.

12.2 Publications of the year

International journals

[26] M. Acher, G. Perrouin and M. Cordy. ‘BURST: Benchmarking Uniform Random Sampling Tech-

niques’. In: Science of Computer Programming 226 (3rd Jan. 2023), pp. 1–10. DOI: 10.1016/j.sci

co.2022.102914. URL: https://inria.hal.science/hal-03897639.

[27] A. Bumiller, S. Challita, B. Combemale, O. Barais, N. Aillery and G. Le Lan. ‘On Understanding

Context Modelling for Adaptive Authentication Systems’. In: ACM Transactions on Autonomous

and Adaptive Systems (1st Jan. 2023), pp. 1–36. DOI: 10.1145/3582696. URL: https://hal.scie

nce/hal-04037520.

[28] S. Challita, B. Combemale, H. Ergin, J. Gray, B. Rumpe and M. Schindler. ‘Report on the State of

the SoSyM Journal end of 2022’. In: Software and Systems Modeling 22.1 (Feb. 2023), pp. 1–7. DOI:

10.1007/s10270-023-01085-6. URL: https://inria.hal.science/hal-04216688.

[29] B. Combemale, J. Gray and B. Rumpe. ‘Adopting the concept of a function as an underlying

semantic paradigm for modeling languages’. In: Software and Systems Modeling 22.6 (30th Nov.

2023), pp. 1733–1735. DOI: 10.1007/s10270-023-01140-2. URL: https://inria.hal.scien

ce/hal-04425740.

[30] B. Combemale, J. Gray and B. Rumpe. ‘ChatGPT in software modeling’. In: Software and Systems

Modeling 22.3 (11th May 2023), pp. 777–779. DOI: 10.1007/s10270-023-01106-4. URL: https:

//inria.hal.science/hal-04425731.

[31] B. Combemale, J. Gray and B. Rumpe. ‘How to define modeling languages?’ In: Software and

Systems Modeling 22.2 (2023), pp. 449–451. DOI: 10.1007/s10270-023-01098-1. URL: https:

//hal.science/hal-04128248.

[32] B. Combemale, J. Gray and B. Rumpe. ‘Large language models as an “operating” system for soft-

ware and systems modeling’. In: Software and Systems Modeling 22.5 (16th Sept. 2023), pp. 1391–

1392. DOI: 10.1007/s10270-023-01126-0. URL: https://inria.hal.science/hal-044257

34.

[33] B. Combemale, J. Gray and B. Rumpe. ‘Research software engineering and the importance of

scientific models’. In: Software and Systems Modeling 22.4 (Aug. 2023), pp. 1081–1083. DOI: 10.10

07/s10270-023-01119-z. URL: https://inria.hal.science/hal-04216671.

[34] B. Combemale, R. Eramo and J. de Lara. ‘Guest editorial for the theme section on modeling

language engineering’. In: Software and Systems Modeling 22.3 (Mar. 2023), pp. 795–796. DOI:

10.1007/s10270-023-01097-2. URL: https://inria.hal.science/hal-04216676.

[35] J.-M. Jézéquel and A. Vallecillo. ‘Uncertainty-aware Simulation of Adaptive Systems’. In: ACM

Transactions on Modeling and Computer Simulation (28th Mar. 2023), pp. 1–18. DOI: 10.1145/35

89517. URL: https://inria.hal.science/hal-04064771.

IRISA Activity Report 2023

44 Inria Annual Report 2023

[36] P. Ladisa, S. E. Ponta, A. Sabetta, M. Martinez and O. Barais. ‘Journey to the Center of Software

Supply Chain Attacks’. In: IEEE Security and Privacy Magazine 21.6 (Nov. 2023), pp. 34–49. DOI:

10.1109/MSEC.2023.3302066. URL: https://inria.hal.science/hal-04423786.

[37] L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel. ‘Input Sensitivity on the Performance of Config-

urable Systems: An Empirical Study’. In: Journal of Systems and Software (2023), pp. 1–18. DOI:

10.1016/j.jss.2023.111671. URL: https://inria.hal.science/hal-03476464.

[38] L. Lesoil, H. Spieker, A. Gotlieb, M. Acher, P. Temple, A. Blouin and J.-M. Jézéquel. ‘Learning

input-aware performance models of configurable systems: An empirical evaluation’. In: Journal

of Systems and Software (Nov. 2023), p. 111883. DOI: 10.1016/j.jss.2023.111883. URL:

https://hal.science/hal-04271476.

[39] G. Mussbacher, B. Combemale, J. Kienzle, L. Burgueño, A. Garcia-Dominguez, J.-M. Jézéquel,

G. Jouneaux, D.-E. Khelladi, S. Mosser, C. Pulgar, H. Sahraoui, M. Schiedermeier and T. van der

Storm. ‘Polyglot Software Development: Wait, What?’ In: IEEE Software (2024), pp. 1–8. DOI:

10.1109/MS.2023.3347875. URL: https://inria.hal.science/hal-04383286.

[40] L. Pailler, A. Tchana and B. Combemale. ‘Protéger les données jusqu’à l’OS’. In: Dalloz IP/IT : droit

de la propriété intellectuelle et du numérique (2023). URL: https://inria.hal.science/hal-0

4216866.

[41] S. Zschaler, E. Bousse, J. Deantoni and B. Combemale. ‘A Generic Framework for Representing

and Analysing Model Concurrency’. In: Software and Systems Modeling 22 (2023), pp. 1319–1340.

DOI: 10.1007/s10270-022-01073-2. URL: https://inria.hal.science/hal-03921704.

International peer-reviewed conferences

[42] M. Acher. ‘A Demonstration of End-User Code Customization Using Generative AI’. In: 18th

International Working Conference on Variability Modelling of Software-Intensive Systems. Bern,

Switzerland, 7th Feb. 2024. DOI: 10.1145/3634713.3634732. URL: https://hal.science/hal

-04312909.

[43] M. Acher, J. G. Duarte and J.-M. Jézéquel. ‘On Programming Variability with Large Language

Model-based Assistant’. In: SPLC 2023 - 27th ACM International Systems and Software Product

Lines Conference. Tokyo, Japan: ACM, 28th Aug. 2023, pp. 1–7. DOI: 10.1145/nnnnnnn.nnnnnnn.

URL: https://inria.hal.science/hal-04153310.

[44] M. Acher, L. Lesoil, G. A. Randrianaina, X. Tërnava and O. Zendra. ‘A Call for Removing Variability’.

In: VaMoS 2023 - 17th International Working Conference on Variability Modelling of Software-

Intensive Systems. Odense, Denmark, 25th Jan. 2023, p. 3. DOI: 10.1145/3571788.3571801. URL:

https://hal.science/hal-03882594.

[45] M. Acher and J. Martinez. ‘Generative AI for Reengineering Variants into Software Product Lines:

An Experience Report’. In: SPLC 2023 - 27th ACM International Systems and Software Product

Lines Conference. Vol. B. B. Tokyo, Japan: ACM, 25th Aug. 2023, pp. 1–9. DOI: 10.1145/3579028

.3609016. URL: https://inria.hal.science/hal-04160693.

[46] B. Combemale, J.-M. Jézéquel, Q. Perez, D. Vojtisek, N. Jansen, J. Michael, F. Rademacher, B.

Rumpe, A. Wortmann and J. Zhang. ‘Model-Based DevOps: Foundations and Challenges’. In:

2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems

Companion (MODELS-C). Västerås, France: IEEE, 1st Oct. 2023, pp. 429–433. DOI: 10.1109

/MODELS-C59198.2023.00076. URL: https://inria.hal.science/hal-04425802.

[47] D. Foures, M. Acher, O. Barais, B. Combemale, J.-M. Jézéquel and J. Kienzle. ‘Experience in

Specializing a Generic Realization Language for SPL Engineering at Airbus’. In: MODELS 2023 -

26th International Conference on Model-Driven Engineering Languages and Systems. Västerås,

Sweden: IEEE, 2023, pp. 1–12. URL: https://inria.hal.science/hal-04216627.

[48] P. Houdaille, D. E. Khelladi, R. Briend, R. Jongeling and B. Combemale. ‘Polyglot AST: Towards

Enabling Polyglot Code Analysis’. In: ICECCS 2023 - 27th International Conference on Engineering

of Complex Computer Systems. Toulouse, France, 2023, pp. 1–10. URL: https://inria.hal.sci

ence/hal-04077663.

IRISA Activity Report 2023

Project DIVERSE 45

[49] G. Jouneaux, D. Frölich, O. Barais, B. Combemale, G. Le Guernic, G. Mussbacher and L. T. van

Binsbergen. ‘Adaptive Structural Operational Semantics’. In: SLE 2023: Proceedings of the 16th

ACM SIGPLAN International Conference on Software Language Engineering. SLE 2023 - 16th ACM

SIGPLAN International Conference on Software Language Engineering. Cascais, Portugal: ACM,

23rd Oct. 2023, pp. 29–42. DOI: 10.1145/3623476.3623517. URL: https://inria.hal.scien

ce/hal-04252577.

[50] Z. K. Kebaili, D. E. Khelladi, M. Acher and O. Barais. ‘Towards Leveraging Tests to Identify Impacts of

Metamodel and Code Co-evolution’. In: CAiSE 2023 - 35th International Conference on Advanced

Information Systems Engineering. Vol. 477. Lecture Notes in Business Information Processing.

Zaragoza, Spain: Springer International Publishing; Springer International Publishing, 8th June

2023, pp. 129–137. DOI: 10.1007/978-3-031-34674-3_16. URL: https://inria.hal.scienc

e/hal-04126496.

[51] P. Ladisa, H. Plate, M. Martinez and O. Barais. ‘Taxonomy of Attacks on Open-Source Software

Supply Chains’. In: 2023 IEEE Symposium on Security and Privacy (SP). San Francisco, France:

IEEE, 21st May 2023, pp. 1509–1526. DOI: 10.1109/SP46215.2023.10179304. URL: https://i

nria.hal.science/hal-04423761.

[52] P. Ladisa, S. E. Ponta, N. Ronzoni, M. Martinez and O. Barais. ‘On the Feasibility of Cross-Language

Detection of Malicious Packages in npm and PyPI’. In: ACSAC ’23: Annual Computer Security

Applications Conference. Austin TX USA, France: ACM, 4th Dec. 2023, pp. 71–82. DOI: 10.1145/3

627106.3627138. URL: https://inria.hal.science/hal-04423806.

[53] P. Ladisa, M. Sahin, S. E. Ponta, M. Rosa, M. Martinez and O. Barais. ‘The Hitchhiker’s Guide to

Malicious Third-Party Dependencies’. In: CCS ’23: ACM SIGSAC Conference on Computer and

Communications Security. Copenhagen Denmark, France: ACM, 26th Nov. 2023, pp. 65–74. DOI:

10.1145/3605770.3625212. URL: https://inria.hal.science/hal-04423802.

[54] V. Lannurien, L. d’Orazio, O. Barais, E. Bernard, O. Weppe, L. Beaulieu, A. Kacete, S. Paquelet and

J. Boukhobza. ‘HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An

Application to Deepfake Detection’. In: CCGrid 2023 - IEEE/ACM 23rd International Symposium

on Cluster, Cloud and Internet Computing. Bangalore, India: IEEE, 1st May 2023, pp. 154–165. DOI:

10.1109/CCGrid57682.2023.00024. URL: https://inria.hal.science/hal-04165179.

[55] Q. Le Dilavrec, D. E. Khelladi, A. Blouin and J.-M. Jézéquel. ‘HyperDiff: Computing Source Code

Diffs at Scale’. In: ESEC/FSE 2023 - 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. San Francisco (CA, USA), United

States: ACM, 2023, pp. 1–12. DOI: 10.1145/3611643.3616312. URL: https://inria.hal.scie

nce/hal-04189855.

[56] D. Leroy, B. Combemale, B. Lelandais and M.-P. Oudot. ‘Practical Runtime Instrumentation of

Software Languages: The Case of SciHook’. In: SLE 2023 - 16th ACM SIGPLAN International

Conference on Software Language Engineering. Cascais, Lisbon, Portugal: ACM, 2023, pp. 1–6.

URL: https://inria.hal.science/hal-04249049.

[57] N. Mehanna and W. Rudametkin. ‘Caught in the Game: On the History and Evolution of Web

Browser Gaming’. In: Companion Proceedings of the ACM Web Conference 2023 (WWW ’23 Com-

panion), The Web Conference 2023. Austin (TX), United States, 2023, pp. 1–9. URL: https://hal

.science/hal-04084097.

[58] B. Rouxel, C. Brown, E. Ebeid, K. Eder, H. Falk, C. Grelck, J. Holst, S. Jadhav, Y. Marquer, M. M. D.

Alejandro, K. Nikov, A. Sahafi, U. P. S. Lundquist, A. Seewald, V. Vassalos, S. Wegener and O. Zendra.

‘The TeamPlay Project: Analysing and Optimising Time, Energy, and Security for Cyber-Physical

Systems’. In: DATE 2023 - Design, Automation and Test in Europe Conference (MPP - Multi-Partner

Projects Track). Antwerp, Belgium, 31st May 2023, pp. 1–6. URL: https://inria.hal.science

/hal-04108237.

IRISA Activity Report 2023

46 Inria Annual Report 2023

[59] A. Tchana, R. Colin, A. L. Berre, V. Berger, B. Combemale and L. Pailler. ‘rgpdOS: GDPR En-

forcement By The Operating System’. In: 2023 53rd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks - Supplemental Volume (DSN-S). Porto, France: IEEE,

27th June 2023, pp. 100–104. DOI: 10.1109/DSN-S58398.2023.00032. URL: https://inria.h

al.science/hal-04425768.

[60] P. Temple and G. Perrouin. ‘Explicit or Implicit? On Feature Engineering for ML-based Variability-

intensive Systems’. In: VaMoS ’23: Proceedings of the 17th International Working Conference on

Variability Modelling of Software-Intensive Systems. VaMoS 2023 - 17th International Working

Conference on Variability Modelling of Software-Intensive Systems. Odense, Denmark, 2023,

pp. 1–3. DOI: 10.1145/3571788.3571804. URL: https://hal.science/hal-03890876.

National peer-reviewed Conferences

[61] T. Giraudet and P.-C. David. ‘Fonctions d’utilisabilité dans les studios de conception de lan-

gages dédiés graphiques’. In: IHM 2023 - 34e Conférence Francophone sur l’Interaction Homme-

Machine. Troyes, France, 3rd Apr. 2023, pp. 1–2. DOI: 10.1145/nnnnnnn.nnnnnnn. URL: https:

//inria.hal.science/hal-04164888.

Conferences without proceedings

[62] X. Tërnava, M. Acher and B. Combemale. ‘Specialization of Run-time Configuration Space at

Compile-time: An Exploratory Study’. In: SAC 2023 - The 38th ACM/SIGAPP Symposium on

Applied Computing. Tallinn, Estonia: ACM, 27th Mar. 2023, pp. 1–10. URL: https://hal.scienc

e/hal-03916459.

Scientific books

[63] M. Duranton, K. D. Bosschere, B. Coppens, C. Gamrat, M. Gray, T. Hoberg, H. Munk, C. Robinson,

T. Vardanega and O. Zendra. HiPEAC Vision 2023: High Performance Embedded Architecture And

Compilation. Jan. 2023, pp. 1–238. URL: https://inria.hal.science/hal-04023794.

Scientific book chapters

[64] B. Coppens and O. Zendra. ‘Is privacy possible in a digital world?’ In: The HiPEAC Vision 2023. Jan.

2023, pp. 145–162. DOI: 10.5281/zenodo.7461921. URL: https://inria.hal.science/hal-

04113319.

[65] J.-M. Jézéquel. ‘Modeling: From CASE Tools to SLE and Machine Learning’. In: The French School

of Programming. Springer, 1st Sept. 2023, pp. 1–22. URL: https://hal.science/hal-04080311.

[66] H. Martin, P. Temple, M. Acher, J. A. Pereira and J.-M. Jézéquel. ‘Machine Learning for Feature

Constraints Discovery’. In: Handbook of Re-Engineering Software Intensive Systems into Software

Product Lines. Springer International Publishing, 5th July 2023, pp. 175–196. DOI: 10.1007/978-

3-031-11686-5_7. URL: https://inria.hal.science/hal-03921905.

[67] A. Olmedo, G. Arévalo, I. Cassol, Q. Perez, C. Urtado and S. Vauttier. ‘Pull Requests Integration

Process Optimization: An Empirical Study’. In: Evaluation of Novel Approaches to Software Engin-

eering. Vol. 1829. Communications in Computer and Information Science. Springer, 8th July 2023,

pp. 155–178. DOI: 10.1007/978-3-031-36597-3_8. URL: https://imt-mines-ales.hal.sc

ience/hal-04157804.

[68] O. Zendra and B. Coppens. ‘From cybercrime to cyberwarfare, nobody can overlook cybersecurity

any more’. In: The HiPEAC Vision 2023. Jan. 2023, pp. 130–144. DOI: 10.5281/zenodo.7461910.

URL: https://inria.hal.science/hal-04113296.

[69] O. Zendra and B. Coppens. ‘THE RACE FOR CYBERSECURITY’. In: The HiPEAC Vision 2023. Jan.

2023, pp. 127–129. URL: https://inria.hal.science/hal-04113336.

IRISA Activity Report 2023

Project DIVERSE 47

Edition (books, proceedings, special issue of a journal)

[70] T. Batista, B. Penzenstadler, B. Combemale and G. Mussbacher, eds. Preface: ICT4S 2023. 2023

International Conference on ICT for Sustainability (ICT4S). IEEE, 2023, pp. viii–x. DOI: 10.1109

/ICT4S58814.2023.00005. URL: https://inria.hal.science/hal-04425642.

[71] B. Combemale, G. Mussbacher, S. Betz, A. Friday, I. Hadar, J. Sallou, I. Groher, H. Muccini, O.

Le Meur, C. Herglotz, E. Eriksson, B. Penzenstadler, A.-K. Peters and C. C. Venters, eds. Joint

Proceedings of ICT4S 2023 Doctoral Symposium, Demonstrations & Posters Track and Workshopsco-

located with 9th International Conference on Information and Communications Technology for

Sustainability (ICT4S 2023). 9th International Conference on Information and Communications

Technology for Sustainability (ICT4S 2023). 2023. URL: https://inria.hal.science/hal-044

25662.

[72] G. Le Guernic, ed. C&ESAR’22: Ensuring Trust in a Decentralized World. Computer & Electronics

Security Application Rendezvous 2022. Vol. 3329. CEUR-WS.org, 13th Jan. 2023. URL: https://in

ria.hal.science/hal-04408264.

[73] G. Le Guernic, ed. C&ESAR’23: Cybersecurity of Smart Peripheral Devices (Mobiles / IoT / Edge).

Computer & Electronics Security Application Rendezvous 2023. Vol. 3610. CEUR-WS.org, 8th Jan.

2024. URL: https://inria.hal.science/hal-04408267.

[74] R. Lefeuvre, J. Galasso, B. Combemale, H. Sahraoui and S. Zacchiroli, eds. Fingerprinting and

Building Large Reproducible Datasets. ACM REP ’23: Proceedings of the 2023 ACM Conference

on Reproducibility and Replicability. 28th June 2023. DOI: 10.5281/zenodo.7989955. URL:

https://hal.science/hal-04132604.

Doctoral dissertations and habilitation theses

[75] C. Genevey-Metat. ‘Apprentissage automatique pour les attaques par canaux auxiliaires’. Uni-

versité de Rennes, 28th Sept. 2023. URL: https://theses.hal.science/tel-04241537.

[76] L. Lesoil. ‘Deep software variability for resilient performance models of configurable systems’.

Université de Rennes, 17th Apr. 2023. URL: https://theses.hal.science/tel-04190983.

Reports & preprints

[77] S. Fortz, P. Temple, X. Devroey and G. Perrouin. Towards Feature-based ML-enabled Behaviour

Location. 27th Nov. 2023. URL: https://inria.hal.science/hal-04309208.

[78] G. A. Randrianaina, D. E. Khelladi, O. Zendra and M. Acher. PyroBuildS: Enabling Efficient Explor-

ation of Linux Configuration Space with Incremental Build. 15th June 2023. URL: https://hal.s

cience/hal-04130361.

Other scientific publications

[79] V. Lannurien, L. D’orazio, O. Barais, S. Paquelet and J. Boukhobza. ‘Distributed Function Cache

for Heterogeneous Serverless Cloud’. In: Per3S - Performance and Scalability of Storage Systems.

Paris, France, 2023, pp. 1–1. URL: https://hal.science/hal-04303898.

[80] Q. Le Dilavrec, D. E. Khelladi, A. Blouin and J.-M. Jézéquel. Analyser efficacement de grands

historiques de code avec HyperAST : une démonstration. 17th July 2023. URL: https://inria.hal

.science/hal-04163509.

12.3 Other

Educational activities

[81] M. Acher, P. Temple and O. Barais. ‘Reproducible Science and Software Engineering’. Doctoral.

France, 5th July 2023. URL: https://inria.hal.science/hal-04152637.

IRISA Activity Report 2023

48 Inria Annual Report 2023

12.4 Cited publications

[82] A. Arcuri and L. C. Briand. ‘A practical guide for using statistical tests to assess randomized

algorithms in software engineering’. In: ICSE. 2011, pp. 1–10.

[83] A. Avizienis. ‘The N-version approach to fault-tolerant software’. In: Software Engineering, IEEE

Transactions on 12 (1985), pp. 1491–1501.

[84] F. Bachmann and L. Bass. ‘Managing variability in software architectures’. In: SIGSOFT Softw. Eng.

Notes 26 (3 May 2001), pp. 126–132. DOI: http://doi.acm.org/10.1145/379377.375274. URL:

http://doi.acm.org/10.1145/379377.375274.

[85] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A. Sangiovanni-Vincentelli. ‘Met-

ropolis: An integrated electronic system design environment’. In: Computer 36.4 (2003), pp. 45–

52.

[86] E. Baniassad and S. Clarke. ‘Theme: an approach for aspect-oriented analysis and design’. In: 26th

International Conference on Software Engineering (ICSE). 2004, pp. 158–167.

[87] E. G. Barrantes, D. H. Ackley, S. Forrest and D. Stefanović. ‘Randomized instruction set emulation’.

In: ACM Transactions on Information and System Security (TISSEC) 8.1 (2005), pp. 3–40.

[88] D. Batory, R. E. Lopez-Herrejon and J.-P. Martin. ‘Generating Product-Lines of Product-Families’.

In: ASE ’02: Automated software engineering. IEEE, 2002, pp. 81–92.

[89] S. Becker, H. Koziolek and R. Reussner. ‘The Palladio component model for model-driven per-

formance prediction’. In: Journal of Systems and Software 82.1 (Jan. 2009), pp. 3–22.

[90] N. Bencomo. ‘On the use of software models during software execution’. In: MISE ’09: Proceedings

of the 2009 ICSE Workshop on Modeling in Software Engineering. IEEE Computer Society, May

2009.

[91] A. Beugnard, J.-M. Jézéquel and N. Plouzeau. ‘Contract Aware Components, 10 years after’. In:

WCSI. 2010, pp. 1–11.

[92] J. Bosch. Design and use of software architectures: adopting and evolving a product-line approach.

New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.

[93] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink and K. Pohl. ‘Variability Issues in

Software Product Lines’. In: PFE ’01: Revised Papers from the 4th International Workshop on

Software Product-Family Engineering. London, UK: Springer-Verlag, 2002, pp. 13–21.

[94] L. C. Briand, E. Arisholm, S. Counsell, F. Houdek and P. Thévenod–Fosse. ‘Empirical studies

of object-oriented artifacts, methods, and processes: state of the art and future directions’. In:

Empirical Software Engineering 4.4 (1999), pp. 387–404.

[95] J. T. Buck, S. Ha, E. A. Lee and D. G. Messerschmitt. ‘Ptolemy: A framework for simulating and

prototyping heterogeneous systems’. In: Int. Journal of Computer Simulation (1994).

[96] T. Bures, P. Hnetynka and F. Plasil. ‘Sofa 2.0: Balancing advanced features in a hierarchical com-

ponent model’. In: Software Engineering Research, Management and Applications, 2006. Fourth

International Conference on. IEEE. 2006, pp. 40–48.

[97] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G.

Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M.

Tichy, M. Tivoli, D. Weyns and J. Whittle. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. Ed. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,

M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.

Vardi, G. Weikum, B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi and J. Magee. Vol. 5525. Betty H.

C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009.

[98] J. Coplien, D. Hoffman and D. Weiss. ‘Commonality and Variability in Software Engineering’. In:

IEEE Software 15.6 (1998), pp. 37–45.

IRISA Activity Report 2023

Project DIVERSE 49

[99] I. Crnkovic, S. Sentilles, A. Vulgarakis and M. R. Chaudron. ‘A classification framework for software

component models’. In: Software Engineering, IEEE Transactions on 37.5 (2011), pp. 593–615.

[100] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. ‘A fast and elitist multiobjective genetic algorithm:

NSGA-II’. In: Evolutionary Computation, IEEE Transactions on 6.2 (2002), pp. 182–197.

[101] R. DeMilli and A. J. Offutt. ‘Constraint-based automatic test data generation’. In: Software Engin-

eering, IEEE Transactions on 17.9 (1991), pp. 900–910.

[102] S. Fortz, P. Temple, X. Devroey, P. Heymans and G. Perrouin. ‘VaryMinions: leveraging RNNs

to identify variants in event logs’. In: International Workshop on Machine Learning Techniques

for Software Quality Evolution (MaLTeSQuE). Athènes, Greece: ACM, Aug. 2021, pp. 13–18. DOI:

10.1145/3472674.3473980. URL: https://hal.science/hal-03840073.

[103] R. B. France and B. Rumpe. ‘Model-driven Development of Complex Software: A Research

Roadmap’. In: Proceedings of the Future of Software Engineering Symposium (FOSE ’07). Ed. by

L. C. Briand and A. L. Wolf. IEEE, 2007, pp. 37–54.

[104] S. Frey, F. Fittkau and W. Hasselbring. ‘Search-based genetic optimization for deployment and

reconfiguration of software in the cloud’. In: Proceedings of the 2013 International Conference on

Software Engineering. IEEE Press. 2013, pp. 512–521.

[105] G. Halmans and K. Pohl. ‘Communicating the Variability of a Software-Product Family to Custom-

ers’. In: Software and System Modeling 2.1 (2003), pp. 15–36.

[106] C. Hardebolle and F. Boulanger. ‘ModHel’X: A component-oriented approach to multi-formalism

modeling’. In: Models in Software Engineering. Springer, 2008, pp. 247–258.

[107] H. Hemmati, L. C. Briand, A. Arcuri and S. Ali. ‘An enhanced test case selection approach for

model-based testing: an industrial case study’. In: SIGSOFT FSE. 2010, pp. 267–276.

[108] J. Hutchinson, J. Whittle, M. Rouncefield and S. Kristoffersen. ‘Empirical assessment of MDE in

industry’. In: Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11).

Ed. by R. N. Taylor, H. Gall and N. Medvidovic. ACM, 2011, pp. 471–480.

[109] J.-M. Jézéquel. ‘Model Driven Design and Aspect Weaving’. In: Journal of Software and Systems

Modeling (SoSyM) 7.2 (May 2008), pp. 209–218. URL: http://www.irisa.fr/triskell/publis

/2008/Jezequel08a.pdf.

[110] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson. Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Tech. rep. Carnegie-Mellon University Software Engineering

Institute, Nov. 1990.

[111] J. Kramer and J. Magee. ‘Self-Managed Systems: an Architectural Challenge’. In: Future of Software

Engineering. IEEE, 2007, pp. 259–268.

[112] K.-K. Lau, P. V. Elizondo and Z. Wang. ‘Exogenous connectors for software components’. In:

Component-Based Software Engineering. Springer, 2005, pp. 90–106.

[113] P. McMinn. ‘Search-based software test data generation: a survey’. In: Software Testing, Verification

and Reliability 14.2 (2004), pp. 105–156.

[114] J. Meekel, T. B. Horton and C. Mellone. ‘Architecting for Domain Variability’. In: ESPRIT ARES

Workshop. 1998, pp. 205–213.

[115] R. Mélisson, P. Merle, D. Romero, R. Rouvoy and L. Seinturier. ‘Reconfigurable run-time support

for distributed service component architectures’. In: the IEEE/ACM international conference. New

York, New York, USA: ACM Press, 2010, p. 171.

[116] A. M. Memon. ‘An event-flow model of GUI-based applications for testing’. In: Software Testing,

Verification and Reliability 17.3 (2007), pp. 137–157.

[117] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey and A. Solberg. ‘Models at Runtime to Support

Dynamic Adaptation’. In: IEEE Computer (Oct. 2009), pp. 46–53. URL: http://www.irisa.fr/t

riskell/publis/2009/Morin09f.pdf.

[118] P.-A. Muller, F. Fleurey and J.-M. Jézéquel. ‘Weaving Executability into Object-Oriented Meta-

Languages’. In: Proc. of MODELS/UML’2005. LNCS. Jamaica: Springer, 2005.

IRISA Activity Report 2023

50 Inria Annual Report 2023

[119] C. Nebut, Y. Le Traon and J.-M. Jézéquel. ‘System Testing of Product Families: from Requirements

to Test Cases’. In: Software Product Lines. Springer Verlag, 2006, pp. 447–478. URL: http://www.i

risa.fr/triskell/publis/2006/Nebut06b.pdf.

[120] C. Nebut, S. Pickin, Y. Le Traon and J.-M. Jézéquel. ‘Automated Requirements-based Generation of

Test Cases for Product Families’. In: Proc. of the 18th IEEE International Conference on Automated

Software Engineering (ASE’03). 2003. URL: http://www.irisa.fr/triskell/publis/2003/ne

but03b.pdf.

[121] L. M. Northrop. ‘A Framework for Software Product Line Practice’. In: Proceedings of the Workshop

on Object-Oriented Technology. London, UK: Springer-Verlag, 1999, pp. 365–366.

[122] L. M. Northrop. ‘SEI’s Software Product Line Tenets’. In: IEEE Softw. 19.4 (2002), pp. 32–40.

[123] I. Ober, S. Graf and I. Ober. ‘Validating timed UML models by simulation and verification’. In:

International Journal on Software Tools for Technology Transfer 8.2 (2006), pp. 128–145.

[124] D. L. Parnas. ‘On the Design and Development of Program Families’. In: IEEE Trans. Softw. Eng.

2.1 (1976), pp. 1–9.

[125] S. Pickin, C. Jard, T. Jéron, J.-M. Jézéquel and Y. Le Traon. ‘Test Synthesis from UML Models of

Distributed Software’. In: IEEE Transactions on Software Engineering 33.4 (Apr. 2007), pp. 252–268.

[126] K. Pohl, G. Böckle and F. J. van der Linden. Software Product Line Engineering: Foundations,

Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[127] R. Potvin and J. Levenberg. ‘Why Google stores billions of lines of code in a single repository’. In:

Communications of the ACM 59.7 (2016), pp. 78–87.

[128] B. Randell. ‘System structure for software fault tolerance’. In: Software Engineering, IEEE Transac-

tions on 2 (1975), pp. 220–232.

[129] J. Rothenberg, L. E. Widman, K. A. Loparo and N. R. Nielsen. ‘The Nature of Modeling’. In: in

Artificial Intelligence, Simulation and Modeling. John Wiley & Sons, 1989, pp. 75–92.

[130] P. Runeson and M. Höst. ‘Guidelines for conducting and reporting case study research in software

engineering’. In: Empirical Software Engineering 14.2 (2009), pp. 131–164.

[131] D. Schmidt. ‘Guest Editor’s Introduction: Model-Driven Engineering’. In: IEEE Computer 39.2

(2006), pp. 25–31.

[132] F. Shull, J. Singer and D. I. Sjberg. Guide to advanced empirical software engineering. Springer,

2008.

[133] J. Steel and J.-M. Jézéquel. ‘On Model Typing’. In: Journal of Software and Systems Modeling

(SoSyM) 6.4 (Dec. 2007), pp. 401–414. URL: http://www.irisa.fr/triskell/publis/2007

/Steel07a.pdf.

[134] C. Szyperski, D. Gruntz and S. Murer. Component software: beyond object-oriented programming.

Addison-Wesley, 2002.

[135] J.-C. Trigaux and P. Heymans. Modelling variability requirements in Software Product Lines: a

comparative survey. Tech. rep. FUNDP Namur, 2003.

[136] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan Kaufmann,

2010.

[137] P. Vromant, D. Weyns, S. Malek and J. Andersson. ‘On interacting control loops in self-adaptive

systems’. In: SEAMS 2011. ACM, 2011, pp. 202–207.

[138] C. Yilmaz, M. B. Cohen and A. A. Porter. ‘Covering arrays for efficient fault characterization in

complex configuration spaces’. In: Software Engineering, IEEE Transactions on 32.1 (2006), pp. 20–

34.

[139] T. Ziadi and J.-M. Jézéquel. ‘Product Line Engineering with the UML: Deriving Products’. In:

Springer Verlag, 2006, pp. 557–586.

IRISA Activity Report 2023

