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Exponential Forgetting and Geometric Ergodicity
in Hidden Markov Models*

Francois Le Gland! and Laurent Mevel

Abstract. We consider a hidden Markov model with multidimensional observa-
tions, and with misspecification, i.e., the assumed coefficients (transition probabil-
ity matrix and observation conditional densities) are possibly different from the
true coefficients. Under mild assumptions on the coefficients of both the true and
the assumed models, we prove that: (i) the prediction filter, and its gradient with
respect to some parameter in the model, forget almost surely their initial condi-
tion exponentially fast, and (ii) the extended Markov chain, whose components
are the unobserved Markov chain, the observation sequence, the prediction filter,
and its gradient, is geometrically ergodic and has a unique invariant probability
distribution.
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1. Introduction

This paper is concerned with large time asymptotic properties in hidden Markov
models (HMMSs), i.e., in partially observed stochastic systems of the following
fairly general form.

Let {X,,n > 0} and {Y,,n > 0} be two random sequences defined on the prob-
ability space (Q,.Z,P,), with values in the finite set S = {1,..., N} and in R,
respectively. It is assumed that:

¢ The unobserved state sequence {X,,n > 0} is a time-homogeneous Markov
chain with transition probability matrix Q. = (¢./), i.e., for any integer
n >0, and forany i, j € S,

PX, 1 =j|X,=i]= Qf"}
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64 F. Le Gland and L. Mevel

and initial probability distribution p, = (p!), i.e., for any i € S,
P.[Xp = i] = pl.

e The observations {Y,,n > 0} are mutually independent given the sequence of
states of the Markov chain, i.e., for any integer n > 0, and for any i,...,
in €S,

n
P.[Yn Edyn,...,YO Edy0|Xn = in,...,Xo :i()] = HP.[Yk Edyk|Xk = ik].
k=0

For any integer n > 0, and for any i € S, the conditional probability distribu-
tion of the observation Y, given that (X, = i) is absolutely continuous with
respect to a nonnegative and o-finite measure 4 on R, i.e.,

P.[Y, edy| X, =i] = by(y)(dy),
with a positive density. For any y € RY, let
bo(y) = (bs(y)) and B.(y) = diag(b.(»))-

Example 1.1 (Conditionally Gaussian Observations). Assume that the observa-
tions are of the form

Yn = h-(Xn) + Vm

for any integer n > 0, where {¥,,,n > 0} is a Gaussian white noise sequence inde-
pendent of {X,,n > 0}, with identity covariance matrix. The mapping /4, from
S to RY is equivalently defined as h, = (h) where hl € R? for any i€ S. In
this case, A is the Lebesgue measure on R, the mutual independence condition is
satisfied, and

bi(y) = (2m) P exp{~Lly — hiI’},

for any i € S, and any y € RY. Here and throughout the paper the notation |- |
denotes the Euclidean norm.
Throughout the paper we make the following assumption:

Assumption A. The stochastic matrix Q. = (¢//) is primitive.

Remark 1.2. Under Assumption A, there exist constants 0 < p, < 1 and K, > 1
such that, for any integer n > 1,

%}{.1,?;2 g7 — 4.1 < Kepd, (1)
’ jeS

and the Markov chain {X,,n > 0} is geometrically ergodic, with a unique invari-
ant probability distribution y, = (u.) on S. Here and throughout the paper (¢.”,)
denote the entries of the stochastic matrix Q¥ i.e., for any i, j € S,

P.[X, = j|Xo=1]=q.,



Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models 65

For any integer n > 1, let p% = (p!) denote the prediction filter, i.e., the condi-
tional probability distribution under P, of the state X, given observations
(Yy,...,Y,—):forany i€ S,

ph=PJX,=1i|Yo,..., Y]

The random sequence {p,n > 0} takes values in the set 2 = 2(S) of probability
distributions over the finite set .S, and satisfies the forward Baum equation

* B. Y, )
P = S, @
. n
for any integer n > 0, with initial condition p§ = p,. Here and throughout the
paper the notation * denotes the transpose of a matrix or a vector.

In practice, the transition probability matrix Q, and the initial probability
distribution p, of the unobserved Markov chain {X,,n > 0}, and the vector b,
of conditional densities of the observation sequence {Y,,n > 0} are possibly un-
known. For this reason, we consider instead of (2) the more general equation

_O'B(Yy)p,
Pr+1 *W*ﬂyml’n]’ (3)

for any integer n > 0, with initial condition p, = p, where Q = (¢"/) isan N x N
stochastic matrix, p = (p’) is a probability vector on S, and b = (b') is a vector of

positive densities on R, To make explicit the dependency with respect to the
initial condition and the observations, we introduce the notation

Pu+1 = f[Yna .- ~aYmapm]7

for any integers n, m such that n > m.

Notice that these misspecification issues are of a different nature. We expect
that a wrong initial condition for the prediction filter is rapidly forgotten, so
that we could use any initial condition with practically the same effect. On the
other hand, we expect that two different transition probability matrices and two
different vectors of observation conditional densities will produce two signifi-
cantly different observation sequences, so that we could estimate the unknown
transition probability matrix and the unknown vector of observation conditional
densities accurately, by accumulating observations. Indeed, it can be shown that
the log-likelihood function for the estimation of the unknown transition
probability matrix and the unknown vector of observation conditional densities,
can be expressed as an additive functional of the extended Markov chain {Z, =
(Xy, Yu, p,),n = 0}. Consequently, an explicit expression can be obtained for the
corresponding Kullback—Leibler information provided some ergodicity property
holds. This and other statistical applications mentioned below will be found in
a forthcoming work on identification of HMMs, and have been announced in
[LM2].

Here is a short overview of the results obtained in the first part of this paper,
which have been announced in [LM3]:
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Exponential forgetting. In Theorem 2.1 we obtain an explicit bound for the
Lipschitz constant of the solution map associated with (3). A similar result
has been obtained in Proposition 2.1 of [LM1] for the time-dependent case.
This nonlogarithmic and nonasymptotic bound goes to zero at exponential
rate as time goes to infinity, and as a consequence in Theorem 2.2 we obtain
an upper bound for the P,-a.s. exponential rate of forgetting of the initial
condition for (3). A statistical application is to prove that the prediction
filter, hence the log-likelihood function, is Lipschitz continuous with respect
to some parameter in the model, uniformly in time.

Geometric ergodicity. In Theorem 3.5 we prove the geometric ergodicity of
the extended Markov chain {Z, = (X, Y,, p,),n = 0}. We prove also the
existence of a unique invariant probability distribution, and the existence of
a solution to the associated Poisson equation. From this point, the law of
large numbers and the central limit theorem can be proved for the extended
Markov chain {Z, = (X,, Ya, p,),n = 0}. A statistical application is to obtain
an explicit expression for the P,-a.s. limit of the log-likelihood function (suit-
ably normalized), i.e., for the Kullback—Leibler information.

Notice that

Q*B(yn)Q*B(ym)p Mﬂ-mp
fyna--.aym?p = = ’ = m " Ps
[ ] e*[Q*B(yn) T Q*B(ym)p} e*Mn.mp m
where - denotes the projective product, and where e = (1,...,1)" denotes the N-
dimensional vector with all entries equal to 1, provided we define

M, = Q*B(yn) e Q*B(ym)a

and our results will be based on auxiliary estimates for products of column-
allowable nonnegative matrices, which improve earlier estimates obtained by
Furstenberg and Kesten [FK], Kaijser [K1], and Arapostathis and Marcus [AM].
Our results are stated and proved in the companion paper [ LM4].

The large time asymptotic properties of products of random matrices with
Markovian dependence is thoroughly studied by Guivarc’h [G] and Bougerol
[B1], [B2], see also additional references therein. In these works, the existence and
properties of the Lyapunov spectrum are proved under the assumption that all the
matrices considered are invertible, so that products of random matrices can be
seen as random walks on a group, the group of invertible matrices.

In [H] the invertibility assumption is replaced by a positivity assumption, which
is much more natural in the context of HMMs. Indeed, for an HMM without
misspecification, with finite state space, positive transition probability matrix, and
conditionally Gaussian observations, the exact exponential rate of forgetting is
expressed in Corollary 2.1 of [AZ] as the difference between the two top Lyapu-
nov exponents of (2). However, no explicit expression is available in general for
these Lyapunov exponents, and estimates for the exponential rate are given in
Theorems 1.3 and 1.4 of [AZ] when the signal-to-noise ratio is large or small,
respectively.
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It must be pointed out that our model is very general, in the sense that we con-
sider a misspecifitd HMM, with primitive transition probability matrices (for
both the true and the assumed models) and arbitrary observation conditional
densities. Another important issue is that we not only obtain explicit bounds for
the exponential rate of forgetting, but we also obtain nonlogarithmic and non-
asymptotic bounds. Our proof of the geometric ergodicity of the extended
Markov chain is based on these explicit bounds.

Concerning the existence of an invariant probability distribution, most results
found in the literature and discussed below are formulated for the filter, i.e., for
the probability distribution of the state X, given the observations (Yp,...,Y,),
rather than for the prediction filter introduced above, but this does not make any
significant difference. Our motivation for considering the prediction filter comes
from the same statistical applications as in [AM].

For an HMM without misspecification, the optimal, i.e., correctly initialized,
filter is a Markov chain under the probability measure P,, and the existence of an
invariant probability distribution is proved by Kunita [K2] in the case of a com-
pact state space, and generalized by Stettner [S1]. Another early result can be
found in [K1] in the special case of a finite state space and noise-fiee observations,
under the additional assumption of subrectangularity. Under the probability
measure P,, the wrongly initialized filter is not a Markov chain, but the pair
(state, filter) is a Markov chain, and the existence of an invariant probability dis-
tribution for the pair is proved by Stettner [S2], in the special case of a finite state
space S, primitive transition probability matrix, and one-dimensional condition-
ally Gaussian observations, under the additional assumption that the mapping
he = (hl) from S to R is injective.

Similarly for a misspecified HMM, the filter is not a Markov chain under the
probability measure P,, but the pair (state, wrong filter) is a Markov chain, and
the existence of an invariant probability distribution for the pair is proved by
Di Masi and Stettner [DS] in the special case of a finite state space S, positive
transition probability matrices (for both the true and the assumed models), and d-
dimensional conditionally Gaussian observations, under the assumption that the
mapping s, = (k) from S to R is injective with d = |S].

Closest to our results are those obtained by Arapostathis and Marcus [AM],
where the existence of an invariant probability distribution for the triple (state,
observation, wrong prediction filter) is proved in the special case of a finite
state space, positive transition probability matrices (for both the true and the
assumed model), and binary observations. Our methods of proof are also very
close.

In the second part of this paper, with a view toward identification of HMMs
we consider, as in [AM], the following more general problem. Assume that the
coefficients of (3), i.e., the transition probability matrix Q and the vector b of
observation conditional densities, depend on some one-dimensional parameter.
Differentiating (3) with respect to this parameter yields

B( Yn)pne*} B(Y,) dp,
b*(Yﬂ)pn b*(Yn)pn

apn+1 = Q* |:I - =+ 6f‘[Yn»pn]7
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where

o fly.p] = 22 BLIp B)pe') 2500

b*(y)p b*(y)p | b*(y)p’

for any y € RY and any p € 2. More generally, we consider the following linear
equation:

Ligi-

u[Ympn] :F[Ympnvwn}? (4)

Wap1 = Q" [1 _ B Yn)pne*} B(Y,)wn

+
b*(Yn)pn b*(YH)pn

where

o[- Brer) 3

b*(y)p | b*(y)p

is the Jacobian matrix at the point p € 2 of the mapping

9" BO)p
N OT = [y, pl,

and where .
e“uly,p] =0,
for any y € R and any p € 2. The random sequence {wu,n > 0} takes values in
the linear space
T={weR":e'w=0},

which is the linear tangent space to #. To make explicit the dependency with
respect to the initial condition and the observations, we introduce the notation

Wi+l = F[Ym cee ,Ynan> Wm]a

for any integers n, m such that n > m.
Here is a short overview of the results obtained in the second part of this paper:

Exponential forgetting. In Theorem 4.5 we obtain an explicit bound for the
Lipschitz constant of the solution map associated with (4). A similar result
has been obtained in Proposition 4.1 of [LM1] for the time-dependent case.
This nonlogarithmic and nonasymptotic bound goes to zero at exponential
rate as time goes to infinity, and as a consequence in Theorem 4.6 we obtain
an upper bound for the P,-a.s. exponential rate of forgetting of the initial
condition for (4), under some integrability assumption on the vectors b, and
b of observation conditional densities, and on the function u. A statistical
application is to prove that the gradient of the prediction filter, hence the
score function, is Lipschitz continuous with respect to some parameter in the
model, uniformly in time.

Geometric ergodicity. In Theorem 5.4 we prove the geometric ergodicity of
the extended Markov chain {Z) = (X, Y., p,, wn),n = 0}, under some inte-
grability assumption on the vectors b, and b of observation conditional
densities, and on the function u. We prove also the existence of a unique
invariant probability distribution, and the existence of a solution to the asso-
ciated Poisson equation. From this point, the law of large numbers and the
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central limit theorem can be proved for the extended Markov chain {Z, =
(Xus Y, Py wn),n > 0}. A statistical application is to prove the asymptotic
normality of the score function (suitably normalized) and to obtain an ex-
plicit expression for the asymptotic covariance matrix, i.e., for the Fisher
information matrix.

2. Exponential Forgetting for the Prediction Filter

Let || - || denote the Li-norm, i.e., for any u = (u') in R",
leel] =Y el
ieS

and for any N x N matrix M = (M),

= sup R — a5 g
0#ueRY ” Jjes ieS

By definition, the N x N stochastic matrix Q = (¢"/) is primitive if there exists
an integer r such that the matrix Q" is positive, and the smallest such integer is
called the index of primitivity of Q. Using the notation min* to denote the mini-
mum over positive elements, we define

max b'(y)

— lj _ 1€

&= ,n]né% g’ >0 and J(y) = 7mi§1bi(y)<oo’
Le

for any y € RY.

Theorem 2.1. If the stochastic matrix Q is primitive, with index of primitivity r,
then for any p, p’ € P, any integers n,m such that n > m + r — 1, and any sequence

ym,...,yne]Rd,
||f[yn7 R ym7p] _f[ym s ’ym’p/]H
< ai'ﬂé(ym) o '(S(meﬁrfl)

X H (1 - gr[é(ynﬁ(lcfl))%l) e 5(yn1+}cr71)}71)”p - p/H

=1
and
Hf[yna .. .7ymap] - f[ym RN ymap/]H

< 2 H 1 —& ym+ (k— 1))+1) 5(ym+}<r—l)}_l)a

where [n,m] = |(n — m+ 1)/r] is the maximum number of disjoint blocks of length
rin the set {m,...,n}.
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This is an immediate application of Theorem 3.5 in the companion paper
[LM4].
For any p, p’ € 2, and any infinite sequence {y,,n > m} such that

lim sup - / Z 10g 1 —¢& [5(y111+(1<—])r+1) o '5(ym+fcr—1)]_]) <0,

/— o0 —1

the difference ||f[y,s---y Vo> 2] — Vs -« > Vs P']|| gOeS to zero at exponential
rate

. 1
llmsup Elog”f[yna .. _7ymap] - f[ym RN ymvp/]H

n— o0

[n,m]

< lim sup — Z IOg(l - 8r[5(ym+(k'—l)r+l) o '5(ym+Kr—l)}_l)

n—oo N k=1

71111’1 sup-~ Z 10g [5(y)11+(x—l)r+l) o '5(ym+xr—l)]_l) <0.

{— 0

To obtain an estimate of the almost sure exponential rate of forgetting, we
define

Ay =min| 5 IR

Notice that 0 < A_; < 1, hence for any sequence iy, ...,i, € S,

0sj,~}[u—awwg~ﬁ<n Bt (3) b (3, i) - A
R¢ R¢

_1_8HJ (DAldy) <1 —e'A'=1-R< 1, (5)

with R = e’Afll > 0. Notice that when the matrix Q is positive, i.e., when r = 1,
then R =e.

Theorem 2.2. [If the stochastic matrix Q is primitive, with index of primitivity r,
and if Assumption A holds, then for any p, p' € 2, and any integer m,

lim sup —log||f[ oo s Yo Dl = f1 Yy Y, Pl < —log(l —R), P,-a.s.,

n— o0

where R = e"Afll.

Proof. If Assumption A holds, then the Markov chain {(X,, Y,),n > 0} is geo-
metrically ergodic under the true probability measure P,, with a unique invariant
probability distribution v, = (v}) on S x R?, and for any i € S,

vi(dy) = ulbi(y)A(dy).
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Therefore, P,-a.s,
1 . 4
/ILHJCZ; log(1 — &"[6( Yy (e-1yr41)  0(Ymprr—1)] )
. -1
= 3 |ttt = errn) o7
. ]Rd IRd

Xl gl gl b (py) - b (p,)A(dyy) - Adyy)
<log(l —R) <0,

using the Jensen inequality, and estimate (5) above. |

3. Geometric Ergodicity of the Markov Chain {X,, Y,,p,}

Under the probability measure P, corresponding to the frue transition probability
matrix Q, and the frue vector b, of observation conditional densities, the extended
Markov chain {Z, = (X, Y,, p,),n > 0} with values in E = S x R? x 2, has the
following transition probability matrix/kernel:

Y (y, p,dy',dp') = Pu X1 = j, Y1 €Ay, pyyy €dp’ | Xy = i, Y, = p, p, = p]
= DIy VA" r(, ()

For any real-valued function ¢ defined on E = S x R x 2, which is equivalently
defined as a collection g = (g') of real-valued functions defined on IRY x 2, we have

(Tg)'(y, p) = E.[g(Xn+1, Yorts Pust) | Xo = iy Yo = v, p = p]

_ZE n+17pn+1)1[Xn+l :]]|Xn:len:yapn:p]
jes

= ZJ T S, P bl(y")Mdy")

jes

= J]R’ OOy p. ' dp),
jes TR

for any i € S, any y € RY, and any p € 2. More generally, for any integer n > 2
we have

(I1"9) (3, p) = Eulg(Xn, Yo, p,) | Xo = i, Yo = p, po = Pl

> Eulg" (Yo p)V[x, — )| Xo =i, Yo =y, po = 1]
i,eS

JIRd"'J]Rdgin(ynvf[ynfla"~7y1ayap])

il,“.7l‘,, es

Xyt b (p) b (9,)A(dyr) - Adyn),
for any i € S, any y € R?, and any p € 2.
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Recall that the set of bounded and Lipschitz continuous functions g = (g°)
defined on E = S x RY x 2, is a Banach space for the norm || - ||p; defined by

i lg' (v, p) —g'(y', p")|
llgllgy =max  sup |g'(y, p)| + max sup - =,
€S (yp)eRixz "€ (np)#(yp) eRIxZ y=yI+lp =2l

and the set Z(E) of probability distributions on E is a Banach space for the dual
norm || - |5, defined by

=l = sup [<u,g) — <, 97,
9llp=1
which defines the same topology as the topology associated with the weak con-
vergence of probability distributions, see [D1] and [D2]. This framework is some-
how too strong for our purpose, and we consider instead the following set of test
functions.

Definition 3.1. Let L denote the set of functions g = (¢y’) defined on E = S x
RY x 2, such that for any i € S and any y € RY the partial mapping p — ¢'(y, p)
is Lipschitz continuous, hence bounded since Z is compact, i.e., there exist con-
stants K(g', y) and Lip(g’, ») such that

K(g',») =sup|g'(y, p)| < o0,
PEP

i i /
Lip(g', y) = sup 4 22P) g,(y,p)|<00,

p#p'e? ||[7—]7 ”
and such that

Lip(g) = max | Lip(g',y)bi(3)2(dy) < .

K(g) = max Jw K(g', y)ba(y)A(dy) < 0.

Remark 3.2. The set L of test functions is sufficiently large to contain some
functions related to the identification of HMMs, see Example 3.3 below, and to
contain also any bounded and Lipschitz continuous function g defined on E, since

Lip(g) +K(g) < ll9llpL -

Example 3.3 (Log-Likelihood Function). If A is finite, see Definition 4.1 below,
and if

max | log 50| 4()c) < =
ieS Jrd| jeS

then the function g defined by
9(y, p) =logb™(y)pl,

for any y € R? and any p € 2, i.c., constant over S, belongs to the set L. Indeed,
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for any y € R? and any p € 2,

min 5/(y) < b*(y)p < max b/(y),
JjeS jes

hence

[log[b" () pl| = log™[b"(»)p] +log"[6"(»)p]
<log" [rjneasx b (y )} +log™ |:I]1’él§1 b (y )}

< max log" [b/(y)] + max log™ [b/(y)] < 2 max |[logh’(y)|,
jes jes jes

whereas using the refined estimate of Lemma A.3 in the companion paper [LM4]
yields, for any y € R? and any p, p’ € 2,

loglb* (»)p] — loglb" [

hence
llog[b*(y)p] — log[b*(y)p']l <36(y) — 1 llp = P'|l-

Let p.x = max(p,,p,), where p, = (1 — R) I/ and where the constants p, and
R= e"Ai’ll are defined in Remark 1.2 and in Theorem 2.2, respectively.

Remark 3.4. For any integers n,m such thatn > m+r — 1,

n—m+1
rlnym) =r — >n—m+1-—r,
hence
(1= R)™" < pimir, (6)

It follows from the estimate

p.=(1-R<1-—

1 _ max( 1 1 ) < max re" 1 e’
1_'pmax 1__p*7]__po B Af}l’l——p' Aijl,

for ¢ > 0 small enough. Finally, another useful estimate is

1
- < 7}‘:—.
P <P = TR (7)

that

Theorem 3.5. If the stochastic matrix Q is primitive, with index of primitivity r,
and if Assumption A holds, then there exists a constant C > 0 such that, for any
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z,z' € E and for any function g in L,
M"g(z) — T"g(2")| < CILip(g) + K(9)]npjran 8)

where the product C(1 — R) depends only on K,.

The following corollary holds, which is similar to Proposition 2 in Chapter 2,
Part 11, of [BMP].

Corollary 3.6. With the assumptions of Theorem 3.5:

(1) For any z € E, and for any function g in L, there exists a constant J(g) inde-
pendent of z, such that

n n—1
IM"g(2) — A(g)] < C[Lip(g) + K(g)] —Lmax 9)
(l - pmax)

and there exists a (not necessarily unique) solution V = (V') defined on E of
the Poisson equation

[ -1V (z) = g(z) — A(9)-

(i) The Markov chain {Z, = (X,, Yn, p,),n = 0} has, under the true probability
measure P,, a unique invariant probability distribution u = (u') on E, and the
constant A(g) is defined as

Mmzjg@mwy

E
Proof. For any function g in L, and any z € E,

H”Wﬂ—WMA=LHwMﬁWJﬂ—Hw@

=J;H%@U—HMQMHzﬂ%

and it follows from estimate (8) that
1" g(z) — M"g(z)| < C[Lip(g) + K(9)mppa. (10)

Therefore {I1"g(z),n > 0} is a Cauchy sequence, hence converges to a limit A(g)
which is independent of z € E by estimate (8). The other points of (i) can be
checked along the same lines as in the proof of Proposition 2 in Chapter 2, Part
11, of [BMP).

To show the existence and uniqueness of the invariant probability distribution,
let u, denote the probability distribution of Z, on E, with initial probability dis-
tribution . For any function g in L,

<mww—0%w=Lm“Wd—WMM%W%
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hence it follows from estimate (10) and Remark 3.2 that

It = tallbe = sup [<ttyi1,9> — <ty 9| < Crplls.

llgllpL=1
Therefore {u,,n > 0} is a Cauchy sequence in the Banach space (2(E), || - |lzL),
hence converges weakly to a probability distribution 4 on E, which is invariant
with respect to {I1"”,n > 0}. To see that the limit does not depend on the initial
distribution g, let 1, denote the probability distribution of Z, on E, with initial
distribution . For any function g in L,

i 9> — ot g> = J T17g(z) [t (dz) — gt (d2)]

= | m06z) = oinotas) ~ i)

hence it follows from estimate (9) and Remark 3.2 that

) NP
ity = tyllgr = sup [ty 9> = <ty 901 < Cllg — pgllry 55 -
llgllsL=1 (1 - pmax)
This finishes the proof of (ii). |

The proof of Theorem 3.5 is given in Appendix A, and is based on the next
result.

Proposition 3.7. If the stochastic matrix Q is primitive, with index of primitivity r,
then for any p, p' € 2, for any integers n,m such that n > m+r — 1, and for any
Sfunction g = (g') in L,

max J}Rd e J}Rd 19" Wits S s -3 Yo PD) = 9" Dusts S s -5 Y 2]

ipyeey Ing 1 €S

X bim(ym) U biwl (ynJrl)}“(dym) o /l(dynJrl)
< ) Lip(g)pn—nﬁ-l—r7

*

where p, = (1 — R)'/".
Proof. For any sequence iy, ..., i1 €S,
J d ; J d |gin+l<yn+l7f[yn7 s 7ymap]) - gi'lH(ynJrl’f[yW o ym’p/])‘
R R
X bi’”(ym) N bi’”’l (y}’H*l)i(dym) e j~t(d_yn<‘r1)
< J IJ lLip(gin+l7yn+l)Hf[ynv"~7ym7p] _f[yn7"'7ym’p/]||
R R
X b0 (P) 00 (Vs )A(dym) -+ Adyuin)
SLlp(g)J- J ”f[ym7yn1ap]_f[yn7aym7p,”|
RY RY

X b (y) b2 (y,)A(dym) - Aldyn).
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Recall from Theorem 2.1 that

||f[yna .. _7ymap] _f[ym' "aymvp/]H
[n,m]

<2 H (1 - ‘9"[5(y;11+()<71)r+1) o '5(ym+m~71)}71)1

rx=1

hence integration is straightforward, and the upper bound (6) yields

JR!i'.'JRzI Hf[yna---vynﬂp] _f[yn’""ym’p,]”

x bim(ym) T bin(yn))»(dym) cee l(dyn)
<2(1- R)[n.,m] < 2p;1—m+l—r,

for any sequence iy, ..., i, € S. |

4. Exponential Forgetting for the Linear Tangent Prediction Filter

Recall that {p,,n = 0} and {w,,n > 0} satisfy (3) and (4) respectively, i.e.,

_ Q*B( Yn)pn _ _
pn-H - b*(Yn)pn - f[anpn] - f[Yny e vYWHpm]
and
s — o1 BORT] B
e b (Y)p, | b*(Y)p, P

:F[Ynupmwn] :F[Y}17~"7Ymapm7n}m]7

for any integers n, m such that n > m.

In addition to the Assumption A on the frue transition probability matrix Q.,
we shall need the following integrability assumption on the vectors b, and b of
observation conditional densities:

A= maxJ S()bL(»)A(dy) < 0.
ieS Jrd

More generally, we introduce the following definition.
Definition 4.1. For any s > 0, let
ieS

A= max | SR

Notice that A} = A, and that the mapping s — A, is nondecreasing on [0, c0),
since () > 1 for any y e R%.

Example 4.2. If the observation conditional densities are Gaussian for both the
true and the assumed models, i.e., in particular

bi(y) = 2m) " exp{~4ly = 1|’}



Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models 77

for any i€ S and any y e RY, then A, is finite for any s > 0. Indeed, for any
i,je Sandany yeR?

bi ‘ A o e
e = expl =y = WPy = WP} = exp{y* (h /) = X0+ /)" = 1),

hence

o(0) = exp{ max ' #1)11-+ ma |}
ije ie

Assumption B. For any y € R?, the partial mapping p — u[y, p] with values in £
is Lipschitz continuous, hence bounded since # is compact, i.e., there exist con-
stants K(u, y) and Lip(u, y) such that

K(u, y) = sup [luly, p]|| < oo,
pPeEP

_ !
Lip(uy) — sup NP =alv

p#p'e? Hp_le

Definition 4.3. Under Assumption B, let

ieS

Lip(u) = max | Lip(ue, )8L(3)2(ch),

K = max [ K )bl aas).

Example 4.4. The function u defined by

00" B(y)p
b

vl = “Wp

b

for any y € R? and any p € 2, satisfies Assumption B, and if A is finite, then
Lip(u) and K(u) are finite. Indeed, for any y € R? and any p € 2,

H%H <007,

whereas it follows from the Lipschitz estimate of Lemma A.l in the companion
paper [LM4] that for any y € R? and any p, p’ € 2,

H 0B 90°BL)p'

5 ja) * _ /! .
b*(»)p b (»)p’ <oeQ*(lllp - p'll

Theorem 4.5. If the stochastic matrix Q is primitive, with index of primitivity r,
and if Assumption B holds, then for any p, p' € P, any w,w' € X, any integers n,m
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such that n > m +r — 1, and any sequence y,,,...,y, € RY,

HF[ym"'aymvpaW] 7F[yna--.7ymap/7wl]”

<3(e70m) - 6 Pmer))* + 1)

X H (1 - Er[(S(ym+(K71)r+l) o .(S(ym+l('l’7l)]7l)

r=1

< [Iw =w'll+[lp = p Il + 1w D] + &770(pn) - - O(Prsr—1)

n—1
x [Lipw, 3+ S e 0(011) < O minorm) Lib (e, )

I=m

~1
%Z yl+1 5(ymin(1+r,n))]2 - 1)K(u, y;)
I=m

[n,m]

X (1 - 81‘)71 H(l - 6"[5(ym+(lcfl)r+l) o '5(ym+)(r71)]71)‘|p - p/”

r=1

This is an immediate application of Theorem 5.7 in the companion paper
[LM4].

For any p,p’ € 2, any w,w’ € X, and any infinite sequence {y,,n > m} such
that

. 1 & .
lim sup— 25(y1+1) <+ +0(ype,) Lip(u, yy) < 00

= I=m

lim sup— Z S(yi) -0y = D K(u, yy) < o0

n
=0 I=m

and

lim sup - Zlog 1 —¢& [5(yl71+<K—l)l‘+l) o '5(ym+1cr—l)]_1) < 07

/— 0

the difference ||[F[p,, - Vs PsW] — FlVys -+ Vi, P'sW']|| goes to zero at expo-
nential rate

hmsup logHF[yn?-..)ym?va}] _F[ynw"?ymap/vw/]”

n— o0

1 _
< -lim sup—~ Zlog 1 —é [5(ym+(1c71)r+1) o ’5(ym+xr71)} 1) <0.

/— 0

Theorem 4.6. If the stochastic matrix Q is primitive, with index of primitivity r, if
Assumptions A and B hold, and if A,, Lip(u), and K(u) are finite, then for any
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p,p' € P, any w,w' € E, and any integer m,

) 1
limsup=1og||F[Yy,...,Ym, p,w] — F[Yu,.... Y0, 0", ']
n

n— oo
1
< ;log(l —R), P.-a.s.,
where R = S’ASI.

Proof. It has already been proved in Theorem 2.2 that P,-a.s.

/— 0

i , _
fim Z;IOg(l —&"[o( Ym-&-(K—l)r+1) w0 Yongwr—1)] 1) <log(l - R).

Following the same lines as in the proof of Theorem 2.2, if A,, Lip(u), and K(u)
are finite, then P,-a.s.

1 n
li _Z Y1) - -6(Yis,) Lip(u, Y,
nlngonl_ 5( 1+1) é( /+) lp( /)

= > JW . de 5(yy) - --6(y,) Lip(u, v,)

i(),...,i,-GS
X gl g b (vo) -+ b (v)Adyo) -+ Adyy)
< A" Lip(u) < oo,
and similarly

n

lim 1S (0 ¥i) -0 Yie)] — 1)K, ¥)

I=m
= > JIJ (e773() - 8(r))* = D K(w, o)
i ies IR R
X plglm gt b (yo) - bl (p,)A(dyo) - - - Adyy)
< (A, —1)K(u) < . u

Remark 4.7. This bound for the exponential rate of forgetting is exactly the
same as the bound obtained in Theorem 2.2.

5. Geometric Ergodicity of the Markov Chain {X,,, Y,,p,,w,}

Under the probability measure P, corresponding to the frue transition probability
matrix Q. and the true vector b, of observation conditional densities, the extended
Markov chain {Z! = (X,, Yy, pyWa),n = 0} with values in E' =S x RY x
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2 x %, has the following transition probability matrix/kernel:
0% (p, pyw,dy’ dp',dw') = Po[ X1 = j, Yos1 €dy', p,yy €dp’, wapr € dw' |
X,=1,Y,=y,p,=p,wy, =W
= DI (YY) 1y, p (D], ().

For any real-valued function ¢ defined on E' = S x R? x 2 x %, which is equiv-
alently defined as a collection g = (g) of real-valued functions defined on R? x
2 x X, we have

(Tg)" (y, p,w) = Ea[g(Xus1, Yurts Puts Wirt) | Xo = i, Yo = ¥, py = p,wy = W]

= > Eulg/ Yt 2 ey, — |
jes

Xn:ia Yn:yal’n:I%WnZM

Zj 5 S, Pl Fly, pow))gibd (5 i)
esS

= ZJ Lp! WY (y, pow,dy’ dp’, dw'),
=5 JRIx J]xZ

for any i€ S, any ye R?, any p € 2, and any w € . More generally, for any
integer n > 2 we have

(I"g)"(y, p,w)
= E'[g(Xm Ynapipwn) ‘ XO = i7 YO =), Po =P, Wo = ‘/V]

Il
17

9" (Yo, Dy wallpy, — 11 Xo =i, Yo = »,po = p,wo = ]

= Z JRd"'J]Rdgi"(ynvf[yn—la---7y17y7p]aF[yn—17'-~aylayap7WD

Xyt g (v) b (9,) Adyr) -+ Adyn),

foranyie S, any ye RY, any p € 2, and any w € X.
For any p € 2, any w € £, and any y € RY, let

f®F[yapaW] = (f[y,p],F[y,p,W])-

More generally, for any p € 2, any w € X, and any sequence y,,,..., y, € RY, let

f®F[yn7"'aym7p7M)] :(f[yrn"'7ym7p]’F[yn7'"7ymap7M)D'

With this definition, we can write the transition probability matrix/kernel equiv-
alently as

I (y, pyw,dy'dp',dw') = g b{()AdY)0 £ @ F . p, (P’ dw"),
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and

(Hng)i(y>p>w) = Z J]Rd"'J\Rdgin(yn’f@F[yn—l?'">ylayapaw})

X g g b (1) b (y,)Adyr) - Adyn),

forany i€ S, any y € R, any p € 2, and any w € 2.
By analogy with Definition 3.1, we introduce the following set of test functions.

Definition 5.1. Let L’ denote the set of functions g = (¢g) defined on E’' =
S x R? x 2 x X, such that for any i€ S and any y e R? the partial mapping
(p,w) — g'(y, p,w) is locally Lipschitz continuous, with linear growth, i.e., there
exist constants K(g’, y) and Lip(g’, y) such that

; lg' (v, p.w)|
K(g',y)= sup —————
@)= s T vl

o lg' (v, p.w) —g'(y, p’, W)
Lip(¢', y) = sup < o0,
(w2 (prwnezxz W = w [+ |lp = p/ |1+ [Iwl| + [[w'])

and such that

Lip(g) = maxj Lip(g', y)bi (1) 2(dy) < o,
ieS JRd

K(g) = max | K(o' 3)bi0)ildy) < co.

Remark 5.2. The set L’ of test functions is sufficiently large to contain some
functions related to identification of HMMs, see Example 5.3 below, and to con-
tain also any bounded and Lipschitz continuous function g defined on E’, with

Lip(g) +K(g) < llgllgr-

Example 5.3 (Score Function). If A, is finite, then the function g defined by

b*(y)w
b*(y)p

for any y € RY, any p € 2, and any w € £, i.e., constant over S, belongs to the set
L’'. Indeed, using the refined estimate of Lemma A.3 in the companion paper
[LM4] yields for any y € RY, any p € 2, and any w € X,

‘b*(y)w
b*(y)p

whereas for any y € R, any p, p’ € 2, and any w,w' € X,

b*(y)w b (y)w" b (y)(w—w") b (y)(p—p") b*(y)w’

b

g(y,p,w) =

< 30() = 1w,

b(»)p b (»)p' b (»)p b*(y)p b (»)p"’
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hence using the refined estimate of Lemma A.3 in the companion paper [ LM4]
yields

- <36(y) = Ulw = w'l +56(») = 2 Ip = p'll ']

< 182 = Ullw = w'll+ 12 = AWl + 1w,
since max (1[0 — 1],1[0 — 1]*) < 1[0* — 1] for any 6 > 1.

Theorem 5.4. If the stochastic matrix Q is primitive, with index of primitivity r, if
Assumptions A and B hold, and if A,, Lip(u), and K (u) are finite, then there exists
a constant C > 0 such that, for any z,z' € E' and for any function g in L',

I"g(z) — "g(z")| < Ce A [Lip(g) + K(g)]

< [L+ I F Ly, powlll + IFD, p'w'ln(n = Dppes,

where the product C(1 — R)* depends only on K., Lip(u), and K (u).

Notice that

S IFL P I, vl ') < ALy, powl + K ),
jes

for any i € S, any y € R?, any p € 2, and any w € X, hence the following corol-
lary holds, which is similar to Proposition 2 in Chapter 2, Part II, of [BMP] and
whose proof follows the same lines as the proof of Corollary 3.6.

Corollary 5.5. With the assumptions of Theorem 5.4:

(1) For any z€ E', and for any function g in L', there exists a constant A(g)
independent of z, such that

n(n— Dppay

(1 - pmax)3 ’

and there exists a (not necessarily unique) solution V = (V') defined on E' of
the Poisson equation

III"g(z) — A(g)| < CeAy*[Lip(g) + K()][1 + | F[y, p.wl]

[ —T]V(z) = g(z) — Alg)-

(i) The Markov chain {Z) = (X,, Yu, p,, Wn),n = 0} has, under the true proba-
bility measure P,, a unique invariant probability distribution = (u') on E’,
and the constant A(g) is defined as

o) = | o)
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The proof of Theorem 5.4 is given in Appendix C, and is based on the next two
results.

Proposition 5.6. If the stochastic matrix Q is primitive, with index of primitivity r,
if Assumption B holds, and if A,, Lip(u), and K(u) are finite, then there exists a
constant C > 0 such that, for any p, p' € 2, for any w,w' € Z, for any integers n,m
such that n > m + 3r — 1, and for any function g = (g9') in L',

 max J J 19 (3 e1s S ® s s yys 2o 0])
]Rd ]Rt/

- gi”“ (yn+17f ® F[yna ey yma p/7 W/])|
X b () b2 () Adym) -+ Aldynsr)
< Ce Ay Lip(g)[wll + [w'll + (n —m + 1)]pl "7,
where p, = (1 — R) VY and where the constant C depends only on Lip(u) and K (u).
The proof of Proposition 5.6 is given in Appendix B.

Proposition 5.7.  If the stochastic matrix Q is primitive, with index of primitivity r,
if Assumption B holds, and if A and K(u) are finite, then there exists a constant
C > 0 such that, for any p e P, for any weX, for any integers n,m such that
n > m, and for any function g = (g') in L',

max J J |gin+l(yn+17f®F[ym""ynﬂpvw])'
R RY

i,;,,.4.,i,,+|€S
X b (y,) -+ DI (Y1) A(dym) - - Adynir)
< Ce"A'K(g)[||w]| + (n —m + 1)],

where the constant C depends only on K(u).

Proof. For any sequence iy, ..., i1 €S,

J J |gin+1(yn+17f®F[yn7,,,,ym,p,vvbl
R R
X b:'m(ym) e b?“ (ynJrl);“(dym) o l(dy”""l)
< | | R )0 1l
]Rd ]Rd
X b (y,) - by )Adym) - - Adynir)
SK(Q)J J (1+||F[yn77ym7pvw]||)
R? R

X bim(ym) cee bi”(yn)l(dym) o i(dyn)

It follows immediately from the rough estimate of Theorem 5.5 in the companion
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paper [LM4] that

HF[ym - Vo Dy WH' = 8_"5()/”,) o '6<ymin(m+r71,n))HW” + K(ua yn)

n—1
+ Z K(ua yl)giré(yl-q—l) o '(S(ymin(l—o—r.,n))'

I=m

Integration is straightforward in this case, and yields

oo | I poslBi () b)) - )
R¢ R¢
<& "A"||\w|]| + K(u) + K(u)e "A"(n — m)
< e ATl + K (w)(n — m + 1), (1)

for any sequence i, ...,i, € S. |

Acknowledgments. The authors gratefully acknowledge Jan van Schuppen for
bringing the paper [AM] to their attention, Ofer Zeitouni for providing a preprint
of the paper [AZ] prior to publication, and Christiane Cocozza for her very careful
reading of the manuscript, and especially of the proof of Theorems 3.5 and 5.4.

Appendix A. Proof of Theorem 3.5

Recall that
g) (v = Jw--~deg""(yn,f[yn71,-~,y1,y,p])

X gy g b () b (va)Adyr) - Ady),
for any i € S, any y € RY, and any p € 2. The following decomposition holds:

(I1"g) (v, p) — (I"g)" (', p")

= (I1"g)" (y,p) — (I"g)" (', p') + (11"9) (3, p) — ("g)" (3, p),

and we estimate separately the two terms in the right-hand side.
To estimate the first term, we use the exponential forgetting of the prediction
filter. Using Proposition 3.7 and estimate (7) yields

((I"g)" (v, p) — (I"g)" (', ")
< E;ESJ]RJ R J]Rd ‘g’n (yn,f[yn,l, e Vs y,p])

- gi”(yn’f[yn717 sy yl:yl7p/D‘
X gy gl b (py) - b2 () Adyn) -+ Aldyn)
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= Ziesjlkd ”.J]Rd ‘gin(yn’f[y”*h""yl’f[yap]])

= 9" D S Wnts - 20, 1 P

X gl gl b () b () A(dyy) - A(dy)

2
< 2Lip(g)p! " < 15 Lip(9) Pt

To estimate the second term, we use the geometric convergence of the true
transition probabilities of the chain {X,,n > 0}, which is a consequence of As-
sumption A, and we use again the exponential forgetting of the prediction filter.
Recall that

(I1"g)"(y, p) — (I1"g)" (3, p)

= Z JIR‘[”.J]R gl”(ymf[ynfl’"'7y17p1])[ o q: ll]
ineS

X gl gl b (yy) b (y,)A(dyr) - Adyn),

where the notation p; = f|y, p] is used. Notice that, for any integer m such that
m < n— 1, and for any sequence zi, . .., z, € R?,

gin(ynaf[yn—l""7y17pl])

m
§ i
” yn? ynflv"',ykvzk*lv"'azlapl])

gl”(ynuf[ynflw"7yk+1>zk7"-7217p1])]
+g1n(yn7f[yn—l7"'7ym+l7Zm»'"azl7pl])'

Therefore

(IT"g)"(y, p) — (I1"g)" (3, p)

I
NG
v

"de[giyl(yn)f[yn—l7"'aykazk—1a~--7zlapl])

_g[”(ymf[ynfl?'"7yk+17zk>-”azlap1])]

X gl — gl Mgt gl B (yy) - b (9,) Adyr) - Aldyn)
+ J J gin(ynﬂf[ynflw";ym+laZm""7217pl])
il,AZi,,:eS R’ R

— gl Mgl gl Bl () b () A(dyr) < A(dyn)
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X LRd[gi”(ynvf[ynfla ceey yk+l7f[y/c7zk—17' . ‘3zlﬂle)

- gin(ymf[ynfl? RN yk+17f[zk7zk717 s azlapl]])}
X i — gl Mgleier oo g ib i (ye) - bl (9,)A(dye) - Adyn)

"JR([gin(yn7f[yn71a"'7ym+172m7'-'azlapl])

Limt1 1 -,’m+1] Im+15 Im+2 In—1,1n
X [qo,m+1 q-,m+1 de 9o

X bi’”H (merl) e bin(yn);{(dyqu) U i(dy”)

This holds for any integer m such that m <n — 1. Taking now m=n—r — 1,
using Proposition 3.7 and estimate (1) yields

[(I1"g) (v, p) — (I1"g)" (3, p)|

X JR“ |gi’l(ynaf[ynfla"'ayk+laf[ykazk—17~~'7211]71”)

_gi’l(y11,f[yn71a"-7yk+lvf[zkazk717"~»Zlap1H)|

iLik

X gt — gl gl it o g ib (ye) - bl (3,)Adye) - - Adyn)

" Z J}Rd”.LRd |g[l1(y”’f[y’1*1""7yM+l’Zma'~~vZIaP1])|

b1y in €S

Lilmyl U5 lmtd | Im+15 Im+2 In—151n
X |qo‘m+l q.,erl q' q'

X b (pi1) - B (1) Adymir) - - - A(dy)
<2Lip(g) Y pl T [2Kupl] + K(g)2Kupl ™),
k=1

hence, using m = n — r — 1 and estimate (7) yields

((I1"g) (y, p) — (I1"g)" (¥, p)| < 4Ku Lip(g)(n — r — D)pliat™" + 2K K(g)plar
< 25 Lip(g) + K(g))n — 1. m

“1-R
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Appendix B. Proof of Proposition 5.6

For any sequence iy, ..., i € S,

J]Rd C.. J]Rd ‘giﬂﬂ (yn+l7f ® F[ym s Y Ps W])
- ginﬂ (yn-Haf@F[ym sty ym’p,’w/])|
% bi'm(ym) e b:wl (V1) AMdym) - - A(dynygr)
< J]er o J]R‘I Lip(gin+17yn+l)||F[yn7 ceey ym7p7 W} _F[yrﬂ MR ym’pl’ Wl]”

X b (y) - b (1) A dym) - - A(dynsn)
+J J Lip(gin+l7yn+l)||f[yn,...,y,mp}_f[yna~..7yn17p/]||
IRd ]Rd

X (L NE s o3 Yo DI NE s o Yo 2151
X b£m<ym) U bfx“ (yn+1)/1(dym) T ;“(dynJrl)

< Lip(g)J J ||F[yn7"'7ymﬂpvw] _F[yn7"‘ﬂym7plvwlm
R? R?
X b (y,,) -+ bl (3,)A(dyp) - - A(dy,)
1ip) [ [ WDl D
R R

X (L NE sy Yo P A+ IF (o5 Vs 27 w111
X b (V) - b ()2 dym) - -~ Adyn).

To estimate the first term, we use the estimate in Theorem 5.9 in the companion
paper [LM4], and we notice that each term in the sum is a product of factors
which span disjoint index sets, hence integration is straightforward, and yields for
any sequence i, ..., i, € S,

J J ||F[ynu"'7ym7p7‘/v]_F[yn7"'7yn17p/uw/]”
]Rd ]Rd
X bi’”(ym) o ~b£”(yn))b(dym) <o+ A(dyn)

<5 As+ (1= Rl '] + 2 Lip(u) (1 = R)"

n—1
+ 2Lip(u)8_rAr Z(l _ R)[n,l+1]+[lfl,m]71
I=m

=

FR@u) (A, = 1) (1 = Ry
I

1l
3
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Using the upper bound (6) yields
L«f e de 1E s s Vs oW = F oo iy 2 ']
X b0 (V) - b2 ()2 dym) -+ (dyn)
<3 AL+ D2 (w4 [lw'l]) + 2 Lip(u)e "A(n = m 4 1)pl "
+ K(u)(e A5 — 1) (n — m)p—m=¥.

To estimate the second term, we use the estimate of Proposition 5.6 in the
companion paper [LM4], and we notice that each term in the sum is a product of
factors which span disjoint index sets, hence integration is straightforward, and
yields for any sequence i,,,...,i, € S,

IS N pe sy ) PR et

X bin(y, )by, ) Adym) - - Adyn)
<26 AT (1 — RYP ] + 2K (u)(1 — R)P

+2K —rA Z nl+1 [I-1,m]—

I=m

Using the upper bound (6) yields

oo [ 1Dl = S 3 WU D3]

X b () - b2 (v,)2(dym) - - (dyn)
<2 A p || 42K (u) e AT (n — m 4 1)pm

Combining the above estimates yields
J J ||F[yn7"‘aym7p7”}]_F[yn7"'7ymap/7w/]”
]Rd ]Rd
X bi”’(ym) e 'bi"(yn))“(dynl) A
]| W bl = Pl
R R
X (LHNF s Y W+ F s -5 s 251D
X 00 (V) 02 (yu)(dym) -+ Adyn)
< 3(eFA + 2 ((w] + ')
+ 2 Lip(u)e A" (n — m + 1)p" =¥
+K(u)(872’A£ o 1)(]’1— )pf m— 3r+2pn m+1—r
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+ 267"Ar/)f7m72r‘|w|| +2 K(u)efrAr(n —m+ 1)pnfmf3r

*

+ 287"Arpfim72r‘|wl|| +2 K(u)ef"Ar(n —m+ l)pn7mf3r

*

< 46X AL+ 1+ 46T (] + ) + 20

+2 Lip(u)sirAr(n —m+ 1)/):!771173;‘
=+ K(u) (872’.A£ —1 + 487"A") (n —m+ l)pi’tfmf,?r. m

Appendix C. Proof of Theorem 5.4

The proof follows the same lines as the proof of Theorem 3.5. Recall that

(1"g)'(y, p,w) = Z de e J]Rd G Vs f @ F[Vyis--vs V1,0, Dy W])

Xt qu b (3) by (v,)Adyn) - Ady),

for any i € S, any y € R?, any p € 2, and any w € X. The following decomposi-
tion holds:

(I1"g) (v, p,w) — (T1"g)" (', p', W)
= (I1"g)" (v, p,w) — (II"g)" (', p', ')
+ (") (v, p,w) — (I1"9)" (v, p,w),

and we estimate separately the two terms in the right-hand side.
To estimate the first term, we use the exponential forgetting of the prediction
filter and its gradient. Using Proposition 5.6 yields

(I1"g)" (v, p,w) — (I1"g)" (", p'. "))

IA

Z JRd...JRd |gi”(yn7f‘®F[yn—l7"'aylvyvpvw])
i,eS

_gin(ynaf®F[ynfla~~'vy17y/vplvw’])|

X gl g bR (py) B (v, Aldyr) - Ady)

.I/\
M

J]R"'”J]Rd ‘gi"(ymf@F[yn—]v'-'7ylaf®F[y7p7WH)

= 9" S QFyyts-- v, SO FY, p',w']])
X gl gl bR (py) B (3,)Aldyr) - Ady)

< C'a A7 Lip(9)[(n = 1) + 1F Ly, powl |+ 1LY o' lllpt >,
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and using estimate (7) yields

o

((TT"g)" (3, pow) — (I1"g)" (', p', W)

c .
< ms TASLip(g)[1 + |Fy, p. Wil + [|IF[Y, o', w'll10pes

where the constant C’ depends only on Lip(u) and K(u).
To estimate the second term, we use the geometric convergence of the true
transition probabilities of the chain {X,,n > 0}, which is a consequence of As-

sumption A, and we use again the exponential forgetting of the prediction filter
and its gradient. Recall that

(I1"g) (v, p.w) — (I1"g)" (3, p, w)

N Z JRJ...J‘]Rdgi”(yn7f®F[yn717"'7ylaplamjl])[qi,il — g

X gt g bl (p) b (9,)A(dyr) - Adyn),
where the notation (p,,wi) = f ® F[y, p,w| = (f[y, p], Fly, p,w]) is used. As in
the proof of Theorem 3.5 above, for any integer m such that m <n — 1, and for

any sequence zi, ..., zy € RY,

(I1"9) (v, p,w) — (I1"g)" (3, p, w)

:ij 5 J}R

k=1 ix,....in€S

XJ d[gin(ynaf®F[ynfl7"‘7yk+17f®F[ykazk717'"7211p17w1”)
R

7gi”(yn7f®F[ynflv"'7yk+17f®F[Z/ﬁzkfla'"7217p17W1]D]

x [qllk — ql¥qion - gl bl () - bl (p,)A(dyi) - - Adya)

+ Z LRd"'J]Rdgin(ynvf®F[yn71a"'7ym+172m7'~'azlaplawl])

Int15eee5in €S

Lilm+l U s Imtd ] In+15 Im+2 In—151n
X [qo,nH—l qo, m+1 qo qo

X B i)+ b2 (7)) Mdymia) - M)

This holds for any integer m such that m <n — 1. Taking now m =n — 3r+ 1,
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using Propositions 5.6 and 5.7 and estimate (1) yields

(TT"g) (3, p.w) — (I1"g)" (v, p, )|

<y ¥ J}R

k=1 ij,...,in€S
XJ]R" |gin(yn7f®F[yn—la"'7yk+l?f®F[y/ﬁzk—la"-7Z]ap17M/l]])

_gin(ymf@F[ynflv'-'7yk+17f®F[Zk7Zk—la"'aZlaplvwl]]”

1, l/c

X lqulk — gl i il () - bl (3,)A(dyi) - - A(dya)

+ZJ

il yeeeyin €S

XJ d|g[”(yn7f®F[yn717"'7ym+17f®F[Zm?'"7217p1’wl]])|
R

[y i’ 1m+l| Iy 1 Iy In—1,in
|qo ,m+1 q,, ,m+1 q. qe

X bimﬂ (ym+l) s bﬁ"(y,,)i(dy,ﬁl) T )”(dyn)

< (C'e *ZVA Lip(g ZZ\q’ e _ ' ”‘

k=1ieS

X |:J [(”F[Zkgzk—l,-~~,21;P1,W1]” +||F[ykvzkfla~~~7217p17W1]H)
R(

X bk (y) idye) + (n— 1 — k)}p: 23

I —r [N i’ sl
+C' A’ K E : |qo ym+l qo m+1

lm+leS

X [(n— 1 —Wl) + ||F[Zm,~~7217171»W1H|]

< C'e¥ A} Lip(g Z{Zlqi’,’;—m”‘

k=1 LieS

o R A [ R L PP
R

< b () ildye) + (n— 1 —k)[zK.p.@ k2

+ " AK(9)2Kop  [(n = 1 = m) + [|Flz, ... 21, py, willl],

where the constant C’ depends only on Lip(u) and K(u), and the constant C”
depends only on K(u). These estimates hold for any sequence zj,...,z, € RY.
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Integrating and using estimate (11) yields, for any sequence ji, .. .,jm € S,
S gkt —alf | | R ae .zl
ixeS R R

+ HF[ykazk—h < 21 Py Wl]”)
X b (v Mdyi)bl (z1) - - bl (zm)Adz1) - - - Aldzpn)
<2C"e ATk + |[wi[][2Kepy],

and similarly

jw . j}Rd 1F s s 21 o1 w1183 21) - B2 (2n) ) -+ ()
< C"5 A+ ],

where the constant C” depends only on K (). Using these estimates yields

(I1"g) (3, p,w) — (I1"g)" (v, p, w)|

<2C'e ¥ AJK, Lip(g) [Z(n— 1—k)+2C"e" A" [k + [will] | ppar "
k=1 k=1

+2C"e A K K (g)[(n — 1 —m) + C"e A [m + [|wi |} pfyay
< 2C'e " ASK, Lip(g)[im(2n — m — 3)
+2C e A (m + 1) + [|wi [[Jmlps ™

+2C"e "AK K (g)[(n — 1 —m) + C"e " Afm + [[wi ] Jpfay!

pmax’

hence, using m = n — 3r + 1 and estimate (7) yields

[(I1"g) (3, p.w) — (I1"g)" (3, p, )]

L o=2r AT K.
<2C'¢ zAszlp( g)Bn(n—1)

+ ZCHS_rAr[%(n — 1)+ [[wi][]n }pmax

"a—T AT K’ r—
+2C"¢"A 7(1 _R)3K(g)[(3 2)

+ C"e A [(n = 3r 4 1) + [wi [[]]plta]
C///K

< —
(1-R)

where the constant C" depends only on Lip(u) and K(u). |

e A [Lip(g) + K(9)][1 + | Fly, p.wll]n(n — 1)pi2,
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