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Abstract

In this paper, we consider the problem of solving a large sparse linear system; after
a brief introduction on existing direct, semi-iterative and iterative methods, the paper
is focused on Krylov projection methods. It presents a unified framework of these
methods and derives some properties from the projection condition. Then it expands
these properties for the most well-known methods. Some numerical experiments il-
lustrate convergence behavior. Finally, some practical issues such as numerical errors,
preconditioning, and parallel processing are discussed.
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1 Introduction

Solving a linear system is at the heart of many scientific and engineering applications.
Generally, this operations is the most time and memory consuming part of the simu-
lation. In this paper, we thus consider the following problem: solve the linear system

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix and b ∈ Rn the right-hand side. Let x∗ be
the solution.
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In computational science and engineering, the system size n is quite large, rang-
ing from 103 to 109 and more, thus requiring petascale and soon exascale computing
resources. The matrix of the system is sparse, in other words, many coefficients are
zero; several adapted sparse storage schemes exist and algorithms must deal with these
specific ways of storing only nonzero elements. Algorithms also depend on the type
of the matrix. Indeed, the matrix can be symmetric positive definite (SPD), if it arises
for example from an elliptic or parabolic problem (diffusion, flow in porous media,
etc). It can also be symmetric but indefinite if it arises for example from a saddle point
problem. Otherwise, it is nonsymmetric, for example when the underlying problem is
hyperbolic (advection, etc).

Several methods and solvers exist for these linear systems. They can be divided into
three classes: direct, iterative or semi-iterative. Direct methods are highly robust and
efficient but require a large memory space [16]. Moreover, the complexity increases
rapidly with the size of the system. Software like SuiteSparse for sequential computers
(used in Matlab) [15, 14], SuperLU [17, 34] and Mumps [1, 31] for sequential or par-
allel computers, are widely used in computational science and engineering. Iterative
methods of multigrid type are often efficient and scalable [58]; software like HYPRE
[26], implementing geometric and algebraic multigrid, is also widely used; multigrid
methods are competitive compared to direct methods, especially for elliptic problems
[22]. Semi-iterative methods such as subdomain methods are hybrid direct/iterative
methods which can be good tradeoffs [54].

This paper focuses on some properties of Krylov iterative methods. Iterative meth-
ods of Krylov type require less memory than direct methods, but the number of itera-
tions increases rapidly with the size of the system. The convergence rate and the accu-
racy of the results depend on the condition number which can blow up at large scale.
Therefore, it is essential to combine these methods with a preconditioner; the idea is
to solve with M−1A or with AM−1 instead of A, where M is close to A but where
solving a linear system withM is fast; also, on parallel computers, it must be scalable.
In Krylov iterative methods, the matrix is not transformed but the kernel operation is
the matrix-vector product y = Ax; thus it is possible to use matrix-free versions with-
out storing the matrix. However, preconditioning will sometimes require the matrix.
Krylov methods are described in many books, such as [46],[36]; they are unified as
a minimization problem in [7]; Krylov methods are thoroughly described, with many
references, in the survey [50]; in [48], parallel features are discussed, whereas a survey
of preconditioners is given in [6]. Software like HYPRE, pARMS [35] and PETSc [3]
implement Krylov methods and various preconditioners.

Here, we follow the lines developed in [12]. Polynomial methods are defined in
section 2, Krylov projection methods and their properties are given in section 3. Then,
we study specific methods for the three different types of matrices: the case of SPD
matrices is analyzed in section 4, followed by the case of symmetric indefinite matri-
ces in section 5. The general case of nonsymmetric matrices is studied in section 6.
Finally, some practical issues, preconditioning and parallelism are discussed in section
7.
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Throughout the paper, we note xk the approximation at iteration k, we define the
residual rk = b− Axk and the error ek = x∗ − xk so that rk = Aek.

2 Polynomial methods

The use of polynomial methods is motivated by the following result:

Proposition 2.1 There exists a polynomial p of degree at most (n−1) such thatA−1 =
p(A).

Proof. By the Cayley-Hamilton theorem, the characteristic polynomial q of A, de-
fined by q(x) = det(A − xI), is of degree n and verifies q(A) = 0, q(0) = det(A),
where det(A) is the determinant of A. Let q(X) = det(A) +Xq1(X) then Aq1(A) =
−det(A)I . SinceA is nonsingular, det(A) 6= 0 and− 1

det(A)
Aq1(A) = I . Let p defined

by p(X) = − 1
det(A)

q1(X), then A−1 = p(A). �

Let x0 an initial approximation and r0 = b − Ax0. Then the solution x∗ satis-
fies x∗ = x0 + A−1r0 = x0 + p(A)r0. The objective of polynomial methods is to
approximate this polynomial p(X). Two different types of methods can be defined :

• in the first approach, the polynomials are explicitely defined. For example, the
method CHEBY can be used for SPD matrices [4].

• in the second approach, the polynomials are defined implicitely, through their
application to the matrix. Thus the coefficients are not computed. Most of
polynomial methods follow this line.

Throughout the paper, the space of polynomials of degree at most k is denoted by Pk
and the set of residual polynomials is defined by

P0
k = {q ∈ Pk with q(0) = 1}.

Definition 2.1 The Krylov subspace associated with A and r0 is defined by

Kk(A, r0) = eng{r0, Ar0, . . . , Ak−1r0} = {sk−1(A)r0, where sk−1 ∈ Pk−1}.

Definition 2.2 A polynomial iterative method satisfies the subspace condition xk =
x0 + sk−1(A)r0, with sk−1 ∈ Pk−1. Equivalently, the condition can be written

xk ∈ x0 +Kk(A, r0), or xk+1 ∈ xk +Kk+1(A, r0). (2)

Proposition 2.2 In a polynomial method, the residual rk and the error ek satisfy

rk = qk(A)r0, ek = qk(A)e0, (3)

where qk(X) = 1−Xsk−1(X) ∈ P0
k .
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Proof. rk = b− A(x0 + sk−1(A)r0) = r0 − Ask−1(A)r0 = qk(A)r0 where qk(X) =
1−Xsk−1(X).
ek = A−1rk = A−1qk(A)r0 = qk(A)A−1r0 = qk(A)e0. �

Since the problem is in finite dimension, polynomial methods compute the exact
solution in a finite number of iterations. Thus they are indeed direct methods but they
are used as iterative methods, in the sense that the approximate solution is accurate
enough before achieving the exact solution.

Proposition 2.3 The series of Krylov subspaces Kk(A, r0) is increasing, thus is sta-
tionary from number p ≤ n ; for k ≤ p, the dimension of Kk(A, r0) is equal to k and
the system {r0, Ar0, . . . , Ak−1r0} is a basis of Kk(A, r0). The subspace Kp(A, r0) is
an invariant subspace of A; the solution of Ay = r0 is in this subspace.

Proof. The first part is evident since a Krylov subspace is of dimension at most n.
Let p such that the series becomes stationary. Then Kp+1(A, r0) = Kp(A, r0) and

AKp(A, r0) ⊂ Kp+1(A, r0) = Kp(A, r0),

which proves the invariance of the subspace. Thus the restriction ofA to this subpsace
is a bijection and the vector r0 ∈ Kp(A, r0) has an antecedent in this subspace. �

In practice, iterations are stopped when the residual (ideally, the error) becomes
small enough. Convergence rate can be related to spectral decomposition.

Theorem 2.1 If A is diagonalisable, let A = UΣU−1, where the columns of U are a
basis of eigenvectors and where Σ = diag(λ1, . . . , λn); let κ(U) = ‖U‖2‖U−1‖2 the
condition number of U .

Krylov iterations satisfy

‖rk‖2 ≤ ‖r0‖2 κ(U) max
i=1,...,n

|qk(λi)|, (4)

where qk is defined by (3).

Proof. We have qk(A) = Uqk(Σ)U−1 ; let r0 = Uµ, then qk(A)r0 = Uqk(Σ)µ.
Thus ‖qk(A)r0‖2 ≤ ‖U‖2‖qk(Σ)‖2‖µ‖2.
But µ = U−1r0 hence ‖µ‖2 ≤ ‖U−1‖2‖r0‖2.
Also ‖qk(Σ)‖2 = maxλi |qk(λi)|, giving inequality (4). �

2.1 Preconditioned polynomial methods

For large systems, iterations will be stopped before finding the exact solution. The
convergence rate depends on properties of the matrix A. An efficient way to speed-up
convergence is to transform the problem (1) into an equivalent problem by precondi-
tioning the system with a given matrix.
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Definition 2.3 A preconditioner is defined by a nonsingular matrix C ∈ Rn,n. A left
preconditioned system is given by CAx = Cb, whereas a right preconditioned system
is given by AC(C−1x) = b.

In a left preconditioned system, the matrix is thus CA, and the matrix-vector prod-
uct v = Au is replaced by two matrix-vector products w = Au, v = Cw. In general,
the matrix C is the inverse of a given matrix, so that the operation v = Cw amounts
to solving a linear system.If C = A−1, then CA = I and the preconditioned system
is trivial. The matrix C is chosen in order to approximate A−1. Also, the matrix C is
chosen so that solving v = Cw is cheaper than solving Ax = b. If computations are
done on parallel or distributed architectures, the preconditioner must also be parallel
and scalable. To find an efficient preconditioner is a big issue; a recent survey can be
found in [6]; parallel aspects are discussed in [48].

Proposition 2.4 A left preconditioned polynomial method is characterized by xk ∈
x0 + Kk(CA,Cr0), and a right preconditioned polynomial method is characterized
by xk ∈ x0 + CKk(AC, r0).

Proof. Let us consider the system CAx = Cb. Let x0 the initial approximation, then
the residual s0 satisfies s0 = Cb − CAx0 = C(b − Ax0) = Cr0 and the polynomial
pk is applied to CA. The proof is similar for right preconditioning. �

3 Krylov projection methods

The objective of Krylov methods is to minimize the error ek, for a given scalar product.
This is not always possible, therefore a more general orthogonality condition is also
defined.

Definition 3.1 A Krylov projection method is a polynomial method defined by a ma-
trix B and two conditions: the subspace condition (2) and the Petrov-Galerkin condi-
tion:

(Bek)
Tu = 0, ∀u ∈ Kk(A, r0). (5)

The choice of the matrix B defines the method. The Galerkin condition must be
computable, since the error ek is of course unknown.

3.1 Properties of Krylov projection methods

A first question is the existence and uniqueness of the iterate xk. Then a second
question is the convergence of the method.

Definition 3.2 For x0 given, a Krylov projection method fails at iteration k if the
Galerkin condition (5) has no unique solution.
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The method stagnates if xk+1 = xk, or equivalently rk+1 = rk.
The method finishes if xk = x∗, or equivalently rk = 0.

Theorem 3.1 Let Vk an orthonormal basis of the Krylov subspace Kk(A, r0) and let
Ck = V T

k BVk. The Krylov projection method does not fail at iteration k if and only if
the matrix Ck is nonsingular. If the method does not fail, then

ek = Pke0 where Pk = I − VkC−1k V T
k B

is the projection matrix onto (BTKk(A, r0))⊥ parallel to Kk(A, r0).
The iterate xk is defined by xk = x0 + Vky where y is solution of the linear system

Cky = V T
k Be0. (6)

If the method did not fail until iteration k and if Kk+1(A, r0) = Kk(A, r0), then the
method has finished, thus rk = ek = 0.

As long as the method does not fail and does not finish, then dim(Kk(A, r0)) = k.
If the method does not fail, then it converges in at most n iterations.

Proof. The subspace condition is written xk = x0 + Vky and the Galerkin condition
is written V T

k Bek = 0, or V T
k Be0−Cky = 0. This linear system has a unique solution

if and only if Ck is nonsingular.
If Ck is nonsingular then

y = C−1k V T
k Be0,

ek = e0 − Vky = (I − VkC−1k V T
k B)e0 = Pke0.

If Kk+1(A, r0) = Kk(A, r0), then A−1r0 ∈ Kk(A, r0), thus x∗ = x0 + A−1r0 is
solution of the Galerkin condition. If the method did not fail, this solution is unique
and xk = x∗.

When the series of Krylov subspaces is stationary, the method finishes. �

Theorem 3.2 If the matrixB is definite, the associated Krylov projection method does
not fail for any x0. If B is not definite, there exists x0 such that the associated Krylov
projection method fails.

Proof. If B is definite then ∀z 6= 0, Vkz 6= 0, (Vkz)TB(Vkz) 6= 0 and zTCkz 6= 0
thus Ckz 6= 0 and Ck is nonsingular.

If B is not definite, let z 6= 0 such that zTBz = 0, r0 = z and V1 = {r0/‖r0‖}.
ThenC1 = 0 and system (6) has no unique solution (it can have an infinity of solutions
if rT0 BAr0 = 0). �

When the matrix B defines a scalar product, the Petrov-Galerkin condition can be
written as a minimization problem and convergence can be characterized.
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Proposition 3.1 If B is SPD, then for xk satisfying (2), the condition (5) is equivalent
to minimize the error:

‖ek‖B = min
y∈Kk(A,r0)

‖e0 − y‖B, (7)

Also, convergence is monotoneous: ‖ek‖B ≤ ‖ek−1‖B.
If, moreover, BA−1 is definite, then convergence is strictly monotoneous: there

exists ε > 0, such that for any k,

‖ek‖B ≤ (1− ε)‖ek−1‖B.

Proof. Let xk = x0 + y with y ∈ Kk(A, r0). The condition (5) means that ek =
x∗ − xk = x∗ − (x0 + y) = e0 − y must belong to the B-orthogonal of the subspace
Kk(A, r0). Since ek ∈ e0+Kk(A, r0), it follows that ek is theB-orthogonal projection
of e0 onto (Kk(A, r0))⊥B . The vector y, solution of the least-squares problem (7) is
thus the B-orthogonal projection of e0 onto Kk(A, r0).

The minimization condition can be written

‖ek‖B = min
x∈x0+Kk(A,r0)

‖x− x∗‖B.

It is easy to apply this condition to xk−1 to get monotoneous convergence.
The proof of strictly monotoneous convergence is done for example in [33]. �

3.2 Computing the orthonormal basis Vk
For using theorem 3.1, each iteration of the method requires computing a basis Vk of
the Krylov subspace Kk(A, r0), as long as this Krylov subspace is of dimension k.
When the matrix is symmetric, the Lanczos process does the job; when the matrix is
nonsymmetric, both bi-Lanczos process and Arnoldi process compute this basis.

Proposition 3.2 Let us assume that A is symmetric. Let v1 = r0/‖r0‖2. The Lanczos
process builds the orthonormal Vk which satisfies

AVk = VkTk + δkvk+1u
T
k = Vk+1T k, (8)

where Tk ∈ Rk,k is a tridiagonal symmetric matrix, uTk = (0 . . . 0 1) ∈ Rk and

T k =

(
Tk
δku

T
k

)
.

Thus V T
k AVk = Tk.

Proposition 3.3 Now, let us assume that A is nonsymmetric. Let v1 = r0/‖r0‖2 and
w1 = µr̃0 such that vT1 w1 = 1. The nonsymmetric Lanczos process or bi-Lanczos
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process builds two basis Vk = (v1, . . . , vk) and Wk = (w1, . . . , wk) of the Krylov
subspaces Kk(A, r0) and Kk(AT , r̃0) which satisfy

AVk = VkTk + δkvk+1u
T
k ,

ATWk = WkT
T
k + γkwk+1u

T
k ,

V T
k Wk = I,

(9)

where Tk ∈ Rk×k is a tridiagonal matrix and uTk = (0 . . . 0 1) ∈ Rk.

Proposition 3.4 Let us still assume that A is nonsymmetric. Arnoldi process builds
the orthonormal Vk which satisfies

AVk = VkHk + hk+1,kvk+1u
T
k = Vk+1Hk (10)

where Hk ∈ Rk×k is a Hessenberg matrix, Hk ∈ Rk+1×k is defined by

Hk =

(
Hk

hk+1,ku
T
k

)
and uTk = (0 . . . 0 1) ∈ Rk. Thus V T

k AVk = Hk.

3.3 Descent directions

Theorem 3.1 gives a first way of computing the iterates, provided that it is possible
to evaluate Be0, since e0 is unknown. Each iteration of the method can solve the
projected system (6), which depends on the choice of B. Another possibility is to use
descent directions.

Theorem 3.3 Let us assume that rT0 Br0 6= 0 and let p0 = r0. Let us also assume that
the method does not fail until iteration k + 1, and that xk is not the solution (rk 6= 0).

The method stagnates if and only if rTkBek = 0.
If the method does not stagnate, then the method is equivalent to

xk+1 = xk + αkpk,

where pk ∈ Kk+1(A, r0) is given by

pk = rk +
k−1∑
j=0

βjpj,

and satisfies pTkBpk 6= 0 with pTj Bpk = 0, j ≤ k − 1; the scalar αk ∈ R∗ is defined

by αk =
rTk Bek
pTkBpk

.
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Proof. If xk+1 = xk, then ek+1 = ek and rTkBek = 0 by applying (5) at iteration
k + 1 with u = rk. Converserly, if rTkBek = 0, then ek satisfies (5) at iteration k + 1
and, by unicity of the solution, xk+1 = xk.

If the method does not stagnate, then the subspace condition can be written xk+1 =
xk + αkpk, with αk 6= 0 and pk ∈ Kk+1(A, r0).

The proof of orthogonality is by recurrence. By assumption, the system {p0, . . . , pk−1}
is a basis of Kk(A, r0); thus the Galerkin condition (5) at iteration k + 1 is equivalent
to pTj Bek+1 = 0, j ≤ k, thus to pTj Bek − αkp

T
j Bpk = 0. By assumption, for

j ≤ k − 1, pTj Bek = 0, yielding pTj Bpk = 0, since αk 6= 0. Now, for j = k, since

there is a unique solution, pTkBpk 6= 0 and αk =
pTkBek
pTkBpk

.

Since {p0, . . . , pk−1, rk} is a basis of Kk+1(A, r0), we can write pk = βkrk +∑k−1
j=0 βjpj; thus pTkBek = βkr

T
kBek and βk 6= 0; we can choose βk = 1, yielding

pTkBek = rTkBek and the result for αk. �

For some particular methods, it is possible to compute the descent directions with
a short recurrence. In [24, 25], these methods are fully characterized. Here, we give a
sufficient condition.

Proposition 3.5 IfB andBA are symmetric, then it is possible to compute the descent
directions with a short recurrence. If the method does not fail, does not finish, does
not stagnate, then pk+1 is given by

pk+1 = rk+1 + βkpk,

with βk = − rTk+1Bpk

pTkBpk

Proof. We first remark that, since B is symmetric, pTi Bpj = 0, i 6= j. The proof is
by recurrence. For k = 0, p0 = r0. Now, assume that p0, . . . , pk are built. The next
vector pk+1 can be written pk+1 = rk+1 +

∑k
j=0 βjpj.

SinceB is symmetric, (Bpk+1)
Tpi = pTk+1(Bpi), i ≤ k. Hence rTk+1Bpi+βip

T
i Bpi =

0; for i ≤ k − 1, we have rTk+1Bpi = (Aek+1)
TBpi = (Bek+1)

TApi, by symmetry of
B and BA, thus rTk+1Bpi = 0 by the Galerkin condition. Finally, βi = 0, i ≤ k − 1.
Taking then i = k yields the result wanted. �

4 Case of SPD matrices

When the matrix A is symmetric positive definite, the unique Krylov method is the
Conjugate Gradient method, noted CG. Practically, it is preconditioned and is noted
PCG. There are many ways to describe PCG. Here, we use the framework of Krylov
projection methods.
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4.1 Conjugate Gradient method

Definition 4.1 The Conjugate Gradient method is the Krylov projection method de-
fined by B = A, when A is SPD.

The general properties of Krylov methods can be derived for CG (or PCG).

Proposition 4.1 The method CG does not fail, the subspace condition is equivalent
to

xk+1 = xk + αkpk, (11)

where αk ∈ R, pk ∈ Kk+1(A, r0) is a descent direction. The Galerkin condition is
equivalent to

‖ek‖A = ‖rk‖A−1 = min
y∈Kk

‖e0 − y‖A

and to
rk ⊥ Kk(A, r0). (12)

As long as the residuals are nonzero, the system {r0, r1, . . . , rk} is an orthogonal basis
of the subspace Kk+1(A, r0) and the system {p0, p1, . . . , pk} is a A−orthogonal basis
of this subspace. The descent directions can be defined by the short recurrence

p0 = r0, pk+1 = rk+1 + βkpk. (13)

The coefficients βk and αk exist and are unique as long as rk 6= 0; they are defined by
αk =

rTk rk
pTkApk

and βk =
rTk+1rk+1

rTk rk
. Convergence is strictly monotoneous.

Proof. It is simply an application of previous theorems with B = A. The expression
of βk is however different and must be proved.

Descent directions are conjugate and in particular, pTk+1Apk = 0. Then

rTk+1Apk =
1

αk
rTk+1(rk − rk+1) = − 1

αk
rTk+1rk+1

and

βk =
rTk+1rk+1

αkpTkApk
=
rTk+1rk+1

rTk rk
.

�

CG algorithm is described in Table 4.1.

4.2 Link with Lanczos method

The previous description of CG uses the descent directions. Another way is to use the
projected linear system. We first prove that CG builds the Lanczos orthonormal basis.
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Table 1: CG algorithm

ALGORITHM 1: CG
* Initialization ;
choose x0 ;
r0 = b− Ax0 ;
p0 = r0 ;
ρ0 = ‖r0‖2 ;
* Iterations ;
for k = 0, 1, . . . until convergence do
qk = Apk ;
αk = rhok

pTk qk
;

xk+1 = xk + αkpk ;
rk+1 = rk − αkqk ;
ρk+1 = ‖rk+1‖22 ;
βk = ρk+1

ρk
;

pk+1 = rk+1 + βkpk ;
end do

Proposition 4.2 Let vj+1 =
rj
‖rj‖ , j = 0, 1, . . . and Vk = (v1, . . . , vk). The system Vk

is an orthonormal basis of the Krylov subspace Kk(A, r0) which verifies the Lanczos
relation

AVk = VkTk + δkvk+1u
T
k (14)

where Tk ∈ Rk×k is the tridiagonal matrix given by

Tk =


γ1 δ1
δ1 γ2 δ2

. . .
δk−1 γk

 ,

and uTk = (0 . . . 0 1) ∈ Rk; the scalars are defined by

δk = −
√
βk−1

αk−1
, γk+1 = 1

αk
+ βk−1

αk−1
.

The matrix Tk is SPD.

Proof. Vectors vk are orthonormal and span the Krylov subspace. Recurrence rela-
tions yield

rk = pk − βk−1pk−1 and Apk = 1
αk

(rk − rk+1),

Ark = 1
αk

(rk − rk+1)− βk−1

αk−1
(rk−1 − rk),

Ark = − βk−1

αk−1
rk−1 + ( 1

αk
+ βk−1

αk−1
)rk − 1

αk
rk+1,
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thus we get relation (14).
Since yTTky = (Vky)TA(Vky), the matrix Tk is SPD. �

Thus, the CG method solves a tridiagonal system at each iteration.

Corollary 4.1 Each iteration of the GC method is equivalent to compute xk = x0 +
Vky where y ∈ Rk is solution of

Tky = ‖r0‖2u1, (15)

where uT1 = (1 0 . . . 0) ∈ Rk.

Proof. Using theorem 3.1, CG is equivalent to xk = x0+Vky with (V T
k AVk)y = Be0;

using proposition 4.2, V T
k AVk = Tk; furthermore, Be0 = ‖r0‖2u1. �

4.3 Convergence of CG

We know that convergence is strictly monotoneous. Here, we give explicit error
bounds, in two results; we improve the first result by using polynomial properties.
It should be noted that the A norm of the error is decreasing, thus the A−1 norm of the
residual is decreasing (but not necessarily the euclidian norm).

Let σ(A) the set of eigenvalues of A, with 0 < λ1 ≤ . . . ≤ λn. Let

κ(A) = ‖A‖2‖A−1‖2 = λn/λ1

the spectral condition number of A.

Theorem 4.1 The CG method has a strictly monotoneous convergence; more pre-
cisely

‖ek+1‖A ≤ (1− 1

κ(A)
)1/2‖ek‖A. (16)

Proof.
rk+1 = rk − αkApk,
‖ek+1‖2A = eTk+1Aek+1 = rTk+1A

−1rk+1 = rTkA
−1rk − 2αkr

T
k pk + α2

kp
T
kApk;

but pTkApk =
rTk rk
αk

and rTk pk = rTk rk, hence ‖ek+1‖2A = ‖ek‖2A − αk‖rk‖22.

We now give bounds for ‖rk‖22 and αk. We have

‖ek‖2A = rTkA
−1rk ≤ ‖A−1‖2‖rk‖22.

Also pTkApk = (rk + βk−1pk−1)
TApk = rTkApk = rTkArk + βk−1r

T
kApk−1;

but rTkApk−1 = (pk − βk−1pk−1)TApk−1 = −βk−1pTk−1Apk−1 ≤ 0,

thus pTkApk ≤ rTkArk ≤ ‖A‖2‖rk‖22 and αk =
‖rk‖22
pTkApk

≥ 1
‖A‖2 .

We deduce that

αk‖rk‖22 ≥ 1
‖A‖2‖A−1‖2‖ek‖

2
A and ‖ek+1‖2A ≤ (1− 1

κ(A)
)‖ek‖2A.

�
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The error bound depends on the condition number; if it is large, then the coefficient
is close to 1 and convergence may be slow. Now, we improve the error bound. We
first use the minimum property and the polynomial behavior.

Proposition 4.3 CG iterations satisfy

‖ek‖A = min
q∈P0

k

‖q(A)e0‖A.

Proof. The set {‖q(A)e0‖A, q ∈ P0
k} is nothing else than the set {‖b−Ay‖A−1 , y ∈

x0 + Kk(A, r0)}. The minimization property is then equivalent when using Krylov
subpsaces. �

This property can be translated in a “min-max” formulation, by using the eigen-
value decomposition.

Corollary 4.2 CG iterations satisfy

‖ek‖A ≤ ‖e0‖A min
q∈P0

k

max
z∈σ(A)

|q(z)|, (17)

Proof. The proof follows the lines of theorem 2.1. Let A = UΣU−1 the spectral
decomposition ofA, where Σ is the diagonal matrix diag(λ1, . . . , λn), and U is the or-
thogonal matrix of eigenvectors. Then κ(U) = 1 and ‖q(A)e0‖A ≤ maxi |q(λi)|‖e0‖A.
By using proposition 4.3, we get (17). �

The “min-max” property yields an error bound by using the approximation theory
with polynomials.

Corollary 4.3 CG iterations satisfy

‖ek‖A ≤ 2‖e0‖A(

√
κ(A)− 1√
κ(A) + 1

)k. (18)

Proof. The result is based on the following property, see for example [46]:

min
q∈P0

k

max
z∈[λ1,λn]

|q(z)| = 1

|Ck(λn+λ1λn−λ1 )|
,

where Ck is the Chebyshev polynomial of first kind of degree k. �

Remark 4.1 The bound (18) is better than the bound (16). Indeed,√
κ(A)− 1√
κ(A) + 1

≤
√
κ(A)− 1√
κ(A)

= (1− 1/κ(A))1/2

since
√
κ(A)− 1 ≤

√
κ(A)− 1.

13



Figure 1: Convergence of CG related to condition number.

The effect of the condition number is illustrated in Figure 1. Here, A is a diagonal
matrix of size n = 1000 with eigenvalues ranging regularly from 1 up to 10k, such
that κ(A) = 10k; clearly, the number of iterations increases with k. The figure plots
the euclidian norm of the residual (which does not decrease at each iteration, recall
that (the A−1 norm of the residual decreases).

In the Lanczos method, the Ritz values, which are the eigenvalues of the matrix Tk,
converge towards the eigenvalues of A. In the CG method, when an eigenvalue has
converged, iterations continue as if there had been a deflation in the spectrum of A
and convergence becomes faster: this is called superlinear convergence. It is possible
to observe several accelerations, each time a new Ritz value has converged. This
superlinear convergence is studied for example in [55, 51, 5]. It is observed in Figure
1 and illustrated in Figure 2. Here, A is a diagonal matrix with k small eigenvalues
regularly spaced from 0.01 and n − k eigenvalues ranging from 1 to n − k. When k
increases, the residual stagnates at the same level (with oscillations) during more and
more iterations before reaching the same convergence rate as for k = 0.

This superlinear convergence is the basis of augmented and deflation methods used
to accelerate convergence [23, 49, 40, 41]. Indeed, the idea is to use the Ritz values
and to remove the smallest eigenvalues which slow down convergence. Augmented
CG has been successfully applied to various engineering problems, see for example
[11].

4.4 Preconditioned Conjugate Gradient

Let A a SPD matrix and C a nonsingular matrix. The preconditioned systems defined
in 2.3 are not symmetric. Now, letC a SPD matrix. There are two ways of defining the

14



Figure 2: An example of superlinear convergence of CG.

PCG method with C. The first approach consists in using the Cholesky factorization
(which exists) C = LLT . Then the preconditioned system

LTAL(L−1x) = LT b,

can be written
By = c,

with B = LTAL and y = L−1x, c = LT b. The matrix B is SPD thus it is possible to
apply CG to the linear system By = c; this is called PCG.

By using a change of variable, it is easy to write PCG as in Table 4.4.
Now, since the matrix C is SPD, it defines the scalar product

< x, y >C= xTCy. (19)

Since the matrix AC is self-adjoint for this scalar product, it is possible to apply
CG with the scalar product (19) to the preconditioned system AC(C−1x) = b. It is
easy to notice that this approach amounts to the same algorithm as previously.

More general assumptions about the preconditioning matrix C are studied in [2,
12].

Since each iteration requires more operations, the number of iterations must be
reduced in order to reduce the total CPU time. Let N the cost of the matrix-vector
product and M the cost of the product by C (which means in general solving a linear
system). If the matrix A is sparse and stored with a compressed sparse row or column
scheme, then N = 2nz(A) + O(n), with nz(A) the number of nonzero terms. Other
operations of one iteration are vector operations, of type BLAS1. Thus the cost of one
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Table 2: PCG algorithm preconditioned by C

ALGORITHM 2: PCG
* Initialization ;
choose x0 ;
r0 = b− Ax0 ;
z0 = Cr0 ;
p0 = z0 ;
ρ0 = rT0 z0 ;
* Iterations ;
for k = 0, 1, . . . until convergence do
qk = Apk ;
αk = ρk

pTk qk
;

xk+1 = xk + αkpk ;
rk+1 = rk − αkqk ;
zk+1 = Crk+1 ;
ρk+1 = rTk+1zk+1 ;
βk = ρk+1

ρk
;

pk+1 = zk+1 + βkpk ;
end do

iteration in CG is N + O(n) and it is N + M + O(n) in PCG. In general, the term
O(n) can be neglected. If M is almost equal to N , then the number of iterations must
be divided by two to get about the same amount of operations.

5 Symmetric indefinite case

When the matrixA is symmetric but indefinite, there are several methods. Two choices
have been explored: B = A2 and B = A. In both cases, Lanczos process is used to
build the orthonormal basis and there is a short recurrence. In the first case, the method
does not fail, the Galerkin condition is a minimization condition and the convergence
is monotoneous, whereas in the second case, the method can fail. Several variants
can be found in the literature, for example in [4]. Here we describe the MINRES and
SYMMLQ methods [42], and the variant CR [27].

5.1 MINRES method

Here, B = A2. Since eTkA
2y = rTkAy, the Galerkin condition can be written, accord-

ing to 3.1,
min ‖rk‖2.
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The subspace condition can be written xk = x0 + Vky thus

rk = r0 − AVky = ‖r0‖2v1 − Vk+1T ky = Vk+1(‖r0‖2u1 − T ky)

and the Galerkin condition becomes

min
y∈Rk
‖‖r0‖2u1 − T ky‖ (20)

The MINRES method solves (20) by factorizing T k with Givens rotations. This
factorization can be done with short recurrences, because Tk is symmetric. The method
is generalized by GMRES for the nonsymmetric case, as described in 6.2.

5.2 Conjugate Residual method CR

Here too, B = A2, so that the series of iterates is the same. However, the CR method
uses descent directions. Galerkin condition can be written eTk+1A

TArj = 0, j ≤ k or

rTk+1Arj = 0, j ≤ k, (21)

In other words, residuals are A−conjugate. The descent directions pk are A2 or-
thogonal thus the vectors Apk are orthogonal so that the Lanczos process is used
to build the orthonormal basis (Ap0/‖Ap0‖2, . . . , Apk−1/‖Apk−1‖2) of the Krylov
subspace AKk(A, r0). Short recurrences are used to satisfy orthogonality conditions
rTk+1Ark = 0 and (Apk+1)

TApk = 0.

5.3 SYMMLQ method

Here, B = A as for CG method. The Lanczos process builds the matrix Tk and the
basis Vk, so that the Galerkin condition is the same as for CG:

xk = x0 + Vky, Tky = ‖r0‖2u1. (22)

The SYMMLQ method solves the linear system (22) by using a LQ factorization of
Tk, in order to deal with breakdowns. Indeed, since A is indefinite, the method can
fail when the matrix Tk is singular: it is a serious breakdown. If it does not fail,
the Lanczos method stops when the method has converged: it is a happy breakdown
(theorem 3.1). Look-ahead methods are designed to avoid breakdowns [10].

6 Nonsymmetric case

The ideal case is, like in CG, to design a method with both a minimization property
and a short recurrence, and a strict decreasing series of residuals. A first approach is
to define a preconditioned SPD system, as in methods CGNR and CGNE. However,
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convergence can be slow because the condition number is squared. Thus a second
approach is to get a minimization property without short recurrences, as in GMRES
method, which generalizes MINRES and uses Arnoldi process instead of Lanczos pro-
cess. The main drawback is an increasing complexity, which is avoided by restarting,
at the cost of a possible stagnation. And a third approach is to get short recurrences
without a minimization property, as in BiCG method, which uses Bi-Lanczos process.
The main drawback is the non monotoneous convergence. Some variants close to
BiCG, such as CGS, BiCGStab and QMR are no longer Krylov projection methods.
These methods are explained for example in [2, 46, 4, 12, 36, 32]. We describe them
briefly in what follows.

6.1 Methods CGNR and CGNE

When A is nonsymmetric, the system (1) can be preconditioned to get a SPD system.
This is the idea used with normal equations.

By left preconditioning with AT , the system becomes

ATAx = AT b, (23)

on which the CG method can be applied. The iterates are defined by

xk ∈ x0 +Kk(ATA,AT r0)

with
‖rk‖2 = min

y∈x0+Kk(ATA,AT r0)
‖b− Ay‖2.

This method is called CGNR and minimizes the norm of the residual. A variant of
CGNR, also called LSQR, is very often used to solve least-squares problems [43].

By right preconditioning with AT , the system becomes

AAT (A−Tx) = b, (24)

and again the CG method can be applied. The iterates are defined by

xk ∈ x0 + ATKk(AAT , r0)

with
‖ek‖2 = min

y∈x0+ATKk(AAT ,r0)
‖x∗ − y‖2.

This method is called CGNE and minimizes the norm of the error.
Both methods CGNR and CGNE have the properties of CG: short recurrence, min-

imization, strictly monotoneous convergence. However, in the error bound (18), the
condition number is given by

κ(ATA) = κ(AAT ) = κ(A)2 = (
σn
σ1

)2,

where 0 < σ1 < . . . < σn are the singular values of A. Thus convergence can be slow
for some matrices.
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6.2 GMRES method

In the GMRES method [47], the matrix B is chosen as B = ATA, thus is SPD.

Proposition 6.1 Method GMRES is defined by

xk ∈ x0 +Kk(A, r0),
rk ⊥ AKk(A, r0),

or equivalently
‖rk‖2 = min

x∈x0+Kk(A,r0)
‖b− Ax‖2. (25)

The GMRES algorithm can also be viewed as the linear system (6). Indeed, the
GMRES method uses the Arnoldi process.

Theorem 6.1 If the method has not finished, problem (25) is equivalent to

min
y∈Rk

(‖r0‖2u1 −Hky) (26)

where Vk+1 and Hk are the basis and matrix built by Arnoldi process applied to v1 =
r0
‖r0‖2 .

GMRES method does not fail, convergence is monotoneous.

Proof. System (6) is equivalent to problem (25). The matrix Ck = V T
k BVk is equal

to (AVk)
T (AVk) = H

T

kHk since Vk+1 is orthonormal.

The right-hand side of system (6) is equal to V T
k Be0 = H

T

k V
T
k+1r0 = ‖r0‖2H

T

k u1
since v1 is orthogonal to vi, i ≥ 2.

Thus, solving system (6) is equivalent to solving system

H
T

kHky = ‖r0‖2H
T

k u1,

which is the normal equation underlying the least-squares problem (26).
Using theorem 3.2, since B is definite, GMRES does not fail and convergence is

monotoneous. �

Convergence can also be analyzed by using polynomials and the minimization
property.

Theorem 6.2 If A is diagonalisable, let A = UΣU−1, where the columns of U are a
basis of eigenvectors and where Σ = diag(λ1, . . . , λn); let κ(U) = ‖U‖2‖U−1‖2 the
condition number of U .

GMRES iterations satisfy

‖rk‖2 ≤ ‖r0‖2 κ(U) min
q∈P0

k

max
z∈σ(A)

|q(z)|. (27)

19



Proof. Minimization property is equivalent to

‖rk‖2 = min
q∈P0

k

‖q(A)r0‖2.

By applying theorem 2.1, we get inequality (27). �

However, since the matrix BA−1 = AT is not definite in general, convergence is
not always strictly monotoneous and stagnation can occur.

Proposition 6.2 If ‖rk+1‖2 = ‖rk‖2 then r∗kArk = 0.
Converserly, if r∗kArk = 0, then rk+1 = rk or rk = rk−1.

Proof. If ‖rk+1‖2 = ‖rk‖2, then rk is the unique solution of problem (25) for index
k + 1 thus rk = rk+1 and rk ⊥ AKk+1(A, r0) ; but rk ∈ Kk+1(A, r0) thus rk ⊥ Ark.

Converserly, if rk = 0, then rk+1 = rk = 0. One can assume that rk 6= 0. Then the
Krylov subspace Kk+1(A, r0) is of dimension k + 1.

We assume that r∗kArk = 0.
Since rk ∈ Kk+1(A, r0), there are two possible cases.
If rk /∈ Kk(A, r0) then eng{Kk(A, r0), rk} = Kk+1(A, r0). Since rk ⊥ AKk and

rk ⊥ Ark, it follows that rk ⊥ AKk+1 and rk is solution of problem (25) for index
k + 1 and by unicity, rk+1 = rk.

Else, rk ∈ Kk thus xk − x0 ∈ Kk, A(xk − x0) ∈ Kk and, thanks to proposition
(2.3), xk − x0 ∈ Kk−1. Hence, rk is solution of problem (25) at index k − 1 and by
unicity, rk = rk−1. �

Since BA = ATA2 is nonsymmetric, it is not possible to apply proposition 3.5 to
define a short recurrence. Arnoldi process requires storing the vectors vk; the number
of operations, apart from the matrix-vector product, has a complexity in O(nk2). In
order to reduce the storage and the CPU time, restarted GMRES is used.

The GMRES(m) method computes cycles of m iterations of GMRES, and restarts
with the last approximation xm. This confines memory and CPU requirements but the
choice of m is not easy, because convergence can stagnate if m is too small. In a cycle
of m iterations of GMRES(m), the number of operations is 2nm2 + mN + O(nm),
where N is the cost of the matrix-vector product; also, the m + 1 vectors vj must be
stored.

The GMRES(m) algorithm is described in Table 6.2. The least-squares problem
(26) is solved in general by using a QR factorization of the matrix Hk with Givens
rotations. Then it is possible to compute ‖rk‖2 without computing xk.

Examples of convergence behavior are illustrated in Figure 3 and Figure 4. In
the first example, the matrix A = V DV −1 of order n = 1000 is diagonalized, with
κ(A) = k and κ(V ) = 19. As for CG, the impact of κ(A) can be observed. In the
second example, κ(A) = 1000 and κ(V ) is variable. Here, the impact of κ(V ) can be
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Table 3: GMRES(m) algorithm.

ALGORITHM 3: GMRES(m)
* Initialization ;
choose x0 ;
r0 = b− Ax0 ;
* Iterations ;
until convergence do
v1 = r0

‖r0‖2 ;

* Arnoldi process ;
for j = 1,m
w = Avj ;
for i = 1, j
hij = vTi w ;
w = w − hijvi ;

end for ;
hj+1,j = ‖w‖2 ;
vj+1 = w/hj+1,j ;
* least-squares problem
Hj = QjRj ;
compute ‖rj‖2 ;
convergence test

end for ;
compute ym solution of miny (‖r0‖2e1 −Hmy) ;
xm = x0 + Vmym ;
rm = b− Axm ;
convergence test
x0 = xm ; r0 = rm ;

end do
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Figure 3: Effect of eigenvalues on convergence of GMRES.

Figure 4: Effect of eigenvectors on convergence of GMRES.

observed, as predicted. In both cases, superlinear convergence is achieved after some
iterations. Here, GMRES is not restarted.

As in the previous examples, superlinear convergence can be observed for some
matrices; moreover, stagnation can occur when restarting; augmented and deflation
methods have been designed in order to overcome this drawback and to accelerate
convergence [21, 13, 38, 39, 19].
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6.3 BICG methods

The BICG method solves the augmented system(
A 0
0 AT

)(
x
x̃

)
=

(
b

b̃

)
by the Krylov projection method, where the matrix B is defined by

B =

(
0 AT

A 0

)
Proposition 6.3 The BICG method is defined by the initial choice of x0 and x̃0 and
by the subspace and Galerkin conditions:

xk ∈ x0 +Kk(A, r0),
x̃k ∈ x̃0 +Kk(AT , r̃0),
rk ⊥ Kk(AT , r̃0),
r̃k ⊥ Kk(A, r0).

Proof. Let

Ã =

(
A 0
0 AT

)
.

The Krylov subspace is then (
Kk(A, r0)
Kk(AT , r̃0)

)
,

which yields the subspace condition. Moreover,

BÃ−1 =

(
0 I
I 0

)
,

which yields the Galerkin condition. �

Since the matrix B is not definite, the method may fail, by theorem 3.2; since the
matrices B and BÃ are symmetric, the method can be defined by a short recurrence,
by theorem 3.5. Also, the method is related to bi-Lanczos.

Proposition 6.4 The BICG method applies the Bi-Lanczos method to the initial vec-
tors v1 = r0/‖r0‖2 and w1 = µr̃0 such that vT1 w1 = 1. The residuals and the descent
directions satisfy the orthogonality conditions

rTk+1r̃k = 0, ApTk+1p̃k = pTk+1A
T p̃k = 0.

The method solves the linear system

Tky = ‖r0‖2u1.

It fails if Tk is singular.
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Table 4: BICG algorithm.

ALGORITHM 4: BICG
* Initialization ;
choose x0 and b̃ and x̃0 ;
r0 = b− Ax0 ; r̃0 = b̃− Ax̃0 ;
p0 = r0 ; p̃0 = r̃0 ;
* Iterations ;
for k = 0, 1, . . . until convergence do
αk =

r̃Tk rk
p̃TkApk

;
xk+1 = xk + αkpk ;
rk+1 = rk − αkApk ;
r̃k+1 = r̃k − αkAT p̃k ;

βk+1 =
r̃Tk+1rk+1

r̃Tk rk
;

pk+1 = rk+1 + βk+1pk ;
p̃k+1 = r̃k+1 + βk+1p̃k ;

end do

Proof.
The method builds the basis Vk = (r0, . . . , rk−1) and Wk = (r̃0, . . . , r̃k−1) such

that V T
k Wk = I . The method fails if

Ck =

(
0 T Tk
Tk 0

)
,

is singular, thus if the matrix Tk is singular. �

The algorithm is given in Table 6.3.
When the method has finished, it is a happy breakdown. In order to avoid serious

breakdowns, when the matrix is singular, a look-ahead version can be used [45, 29].
The algorithm involves not only a matrix-vector product with A, but also a matrix-

vector product withAT . It is possible to modify the polynomial underlying the method.
This idea is used in CGS [52] and BICGSTAB methods [56]. They are no longer pro-
jection methods, but are still polynomial methods.

Since there is no minimization property, convergence is not monotoneous. The
QMR method avoids irregular convergence. Again, this polynomial method is not
a projection Krylov method. It is still based on Bi-Lanczos and replaces Galerkin
condition by a quasi-minimization condition [30, 28]. More precisely,

xk = x0 + Vky,
rk = r0 − AVky = Vk+1(βu1 − T ky),

24



with y solution of
min
y
‖Ω−1k+1(γu1 − Ωk+1T ky)‖2 (28)

where Ωk+1 is a diagonal matrix.
Again, a look-ahead version can be used to avoid breakdowns. A Transpose-Free

variant (TFQMR) does not involve the product with AT . Convergence is not monoto-
neous but is more regular than for BICG and a result of convergence is proved.

In Figures 5 and 6, the methods BiCGStab, QMR, Full-GMRES and GMRES(m)
are compared. Matrices Sherman4 and Sherman5 come from the Harwell-Boeing
collection [18]. Full GMRES converges faster than other methods (in terms of matrix-
vector products, not necessarily CPU time). Restarting GMRES slows down conver-
gence and can create stagnation. Eventually, GMRES(m) becomes slower than other
methods when m becomes small. Convergence of QMR is more regular than con-
vergence of BICGStab but not monotoneous, whereas the residuals of GMRES(m)
decrease (or stagnate).

Figure 5: Convergence behavior of Krylov methods with matrix Sherman4.

7 Practical issues

7.1 Numerical problems

In practice, several numerical problems can arise when using Krylov methods. Krylov
projection methods are based on orthogonality conditions, which are quite often ver-
ified by recurrence relations. Also, the residual rk is computed by recurrence, not
explicitely by rk = b − Axk. Although these conditions are satisfied with exact
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Figure 6: Convergence behavior of Krylov methods with matrix Sherman5.

arithmetic operations, is is no longer true when dealing with floating-point arith-
metic and rounding errors. Three phenomena can occur, as discussed for example
in [8, 9, 57, 53, 37, 44]:

• loss of orthogonality ; for example, descent directions are no longer orthogonal;
this situation can slow down convergence. A partial or complete reorthogonal-
ization can be done to remedy to this loss.

• there is a drift between the computed residual rk and the exact residual b−Axk.
Then the stopping criterium is no longer valid. The residual can be recomputed
every so often to remedy to this drift.

• In Lanczos or bi-Lanczos methods, a breakdown can occur. Numerically, this
problem can arise when the matrix is nearly singular, this is a near-breakdown.
Thus look-ahead can be applied as soon as a numerical problem is detected.

7.2 Preconditioning

As already pointed out, preconditioning is essential in practice in order to accelerate
convergence. Incomplete factorizations can be efficient in many cases but they suf-
fer from two major drawbacks: the number of iterations still increases with the size
of the system and parallelism is sometimes poor. Multilevel preconditioners are the
most promising methods nowadays. Multigrid preconditioners can be very efficient
for some classes of problems. Other multilevel approaches are in general based on do-
main decomposition methods, studied from a PDE point of view or from an algebraic
point of view; several authors have designed methods based on Schur complement and

26



Schwarz methods. These methods can be combined with deflation or coarse grid cor-
rection. There is still a need of robust general preconditioners, which can guarantee
convergence for most scientific applications, and this is an active area of research.

7.3 Parallelism

High performance computing is an essential key for dealing with huge linear systems;
nowadays, sparse direct solvers are quite efficient and scalable. However, iterative
methods are competitive, if they are combined with an efficient and scalable precon-
dioner. The two major operations are the sparse matrix-vector product and the precon-
ditioning. Usually, the matrix is partitioned into rows or columns, in order to distribute
the operations of the matrix-vector product. Domain decomposition approaches hold
naturally parallel features. Moreover, hybrid methods, combining parallelism at var-
ious levels, are very promising. Parallel efficient preconditioning is the key for a
widespread use of Krylov iterative methods.
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