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Abstract. This paper presents a comparative study of some distributed solvers on a
set of linear systems arising from Navier-Stokes equations and provided by an in-
dustrial software. Solvers under consideration implement direct, iterative or domain
decomposition methods and most of them are freely available packages. Numeri-
cal tests with various parameters are made easier by developing a unified toolbox
that links with interface functions provided by these libraries. The intensive numer-
ical tests performed on various sets of processors reveal the good performance re-
sults achieved by the recently proposed parallel preconditioner for Krylov methods
based on an explicit formulation of multiplicative Schwarz [1].
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1. Problem Definition

In this paper, we are interested in finding a good solver for a class of large linear systems

Ax = b (1)

where A ∈ R
n×n is a real and unsymmetric sparse matrix, x, b ∈ R

n are respectively
solution and right hand side vectors. The matrix A corresponds to the global jacobian
matrix resulting from the partial first-order derivatives of the Reynolds-averaged Navier-
Stokes equations. The derivatives are done with respect to the conservative fluid vari-
ables. There are various linear solvers libraries freely available and a task of finding a
good one among them (for our set of linear systems) is not easy by itself. Although a
theoretical analysis of the problem can suggest a class of solver, it is necessary to con-
sider numerical comparisons on the problem being solved. These comparisons include,
but are not limited to, memory usage, reliability, parallel efficiency, CPU time and ac-
curacy in the final solution. So in this work, we present a comparative study of some
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distributed linear solvers on the above-mentioned set of linear systems. We do not have
the pretension to consider all existing distributed solvers in this short study neither all as-
pects in the solvers as in [2,3]. At least, we expect this numerical study to suggest which
method is appropriate for this problem. This study is also motivated by the performance
achieved on these systems using the parallel preconditioned GMRES with the explicit
formulation of multiplicative Schwarz [4]. As this kind of study needs many tests with
various parameters, we have found useful to design a unified interface that helps us to
link uniformly to the interfaces provided by the solvers. However, we should stress on
the fact that our main goal in this work is not to offer a generic framework such as Trili-
nos [5] or Numerical Platon [6] but to test and compare each method suitable for our set
of linear problems; so the toolbox is designed primarily to switch between all the solvers
under study in some easy and uniform way. The paper is organized as follows. In the
next section, the distributed solvers we used in this study are listed. The third part gives
an overview of the toolbox. The section 4 is the major part of this work: it is devoted to
the experimental comparisons. Concluding remarks are given at the end.

2. Distributed Linear Solvers

Traditionally speaking, the solvers suitable for the system (1) are based either on sparse
direct or iterative methods. But with the actual state-of-art, the separation between these
two classes is tight. Presently, techniques from the first class are used as preconditioners
into the second class. Even in the second class, there are a variety of techniques based
on Krylov subspace methods or multilevel methods (Multigrid, Domain decomposition).
We first consider the solution with two distributed direct solvers, namely SuperLU_DIST
[9] and MUMPS [10]. They are representative of two widely-used techniques in this
class. Almost all aspects in both packages have been thoroughly compared [2] using a
collection of matrices of reasonable size. Our guess is that the need of memory will be-
come a bottleneck with our present collection of matrices. In fact, this memory usage
can be reduced significantly when direct methods are used in incomplete form as pre-
conditioner for iterative methods. So, in this work, we consider EUCLID [11], the rec-
ommended ILU preconditioner in HYPRE [12] library. Secondly, we focus on domain
decomposition methods. Acting as preconditioners for the Krylov subspace methods (es-
sentially GMRES method), they make use of previous methods to solve (more or less)
the local problems induced by the decomposition.

When using Domain Decomposition methods to solve PDE equations, a classical
scheme is to consider the splitting from the computational domain. Here, we consider
rather a load balancing partitioning based on the adjacency graph of the matrix. Schur
complement approaches use a partitioning without overlap while Schwarz methods are
applied to partitions that are allowed to overlap. First, we consider the pARMS [8] pack-
age based on the first group. In the second group, we use the additive Schwarz precondi-
tioner in the PETSc package.

The convergence of the Schwarz methods is better with a successive correction of
the residual vector over the subdomains. This is the case in the Multiplicative Schwarz.
However, it leads to an inefficient preconditioner in parallel environment due to the high
dependencies of data between the subdomains. In a recent work [1], the authors pro-
posed an explicit formulation of this preconditioner in order to dissociate the computa-



tion of the residual vector from the preconditioner application. This explicit form is used
in conjunction with the parallel version of GMRES proposed in [13]. Hence, the precon-
ditioned Newton-basis is first constructed in a pipeline over all processors [4]; then, a
parallel version of QR factorization [14] is called to get an orthogonal basis. In this study,
we use the result of that work which is expressed in the PETSc format and available in a
library named as GPREMS (Gmres PREconditioned by Multiplicative Schwarz)2.

3. Environment of Tests

Our main goal here is to build a ready-to-use interface toolbox such that we can uni-
formly test any method presented above. The PETSc installer tool is used to build com-
patible libraries of some of the solvers under study. Figure 1 gives a simplified overview
of this architecture. The routines for sparse matrix format are provided to read data of
systems from files (matrices and right hand side). These data can be in compressed Har-
well Boeing format, in Coordinate Matrix Market format, or in compressed block sparse
row. The parameter routines define classes that are used to select options for solvers as
well as other parameters either from XML files or PETSc-style database options. At the
top level, the test routines define interface functions to all solvers under consideration.
So, we need only to choose a solver, edit or generate parameter file and give it to the
test routine along with matrix and right hand side file. At the end of execution, the main
statistics are returned in html (XML) or text file via the statistics routines. As our toolkit
has a capability to switch between solvers transparently, it can be used to select automat-
ically a particular solver given some properties of the linear system being solved such as
the size of the matrix or its structural symmetry. However, as we shall see shortly with
the results, this decision making is not easy.

Figure 1. Architecture of our toolbox

2This library will be soon available for public use



4. Experimental Comparisons

Tests are carried out using the Grid’5000 experimental testbed, on paradent cluster in the
Rennes site. Each compute node is a dual-cpu and each cpu is a quadricore Carri System
CS-5393B (Intel Xeon L5420 at 2.5GHz) with a 32 GB shared memory. In the following,
only one cpu is working in each node as no shared-memory programming paradigm was
used. All nodes are connected through a Gigabyte Ethernet switch.

4.1. Test Matrices

All the matrices presented here are freely available upon request at [15]. In table 1, we
list the characteristics of some of them. Integers n and nnz are respectively the size and

Table 1. Matrices of test

Idx Matrix n nnz origin

1 CASE_05 161,070 5,066,996 2D linear cascade turbine

2 CASE_07 233,786 11,762,405 2D linear cascade compressor

3 CASE_10 261,465 26,872,530 3D hydraulic gate case

4 CASE_17 381,689 37,464,962 3D jet engine compressor

the number of the nonzeros of the matrix.

4.2. Numerical Behavior, Parallel Efficiency and Fill-in with Direct Solvers

We consider the minimum degree (MD) and the nested dissection (ND) ordering. As the
two direct packages (MUMPS and SuperLU_DIST) accept any pivotal sequence, any
ordering method can be used. So we have used METIS as nested dissection ordering in
both solvers. With approximate minimum degree (AMD) in SuperLU_DIST, we have
observed that the fill-in producedwas less than that in multiple minimumdegree (MMD);
however the factorization time is larger. So we have preferred to use the default ordering
provided, i.e.MMD in SuperLU and AMD in Mumps.

First, the accuracy in the computed solution is considered. In table 2, we give the
relative residual norm in the solution, i.e. ||b − Ax||/||b||. Tests are done on 4 proces-
sors but the results are roughly the same on 8 or 16 processors. We have observed that
in some cases, depending on the use of HSL-MC64 routine to permute large elements
on diagonal, the computed solution could be wrong. With CASE_05 for instance, when
MC64 is used after a nested dissection ordering, both methods do not achieve a good
accuracy. With CASE_07, the situation is more complicated. Either with minimum de-
gree or nested dissection ordering, the solution produced with SuperLU_DIST is not ac-
curate. On the other side, without MC64 permutation, all systems are solved somehow
accurately with both methods.

After the accuracy, we look at the increasing of memory needed during the factor-
ization. So in table 3, the ratio of fill-in in factored matrices is given with respect to the
nonzeros in the initial matrix i.e fill = nnz(L + U − I)/nnz(A). The fill-in is larger
when the permutation is performed to obtain large diagonal elements, particularly with
the nested dissection ordering. As a result, it takes much more time to factorize the ma-
trix, particularly for the largest case. In table 4, this preordering effect is shown for the



Table 2. Numerical behavior : Relative residual norm (4 processors)

Matrix Ordering
SuperLU_DIST MUMPS

No MC64 MC64 No MC64 MC64

CASE_05
MD 3.6e-14 3.5e-14 1e-13 9.4e-14

ND 3.6e-14 1.3e-02 8e-14 29.9e-01

CASE_07
MD 1.8e-16 9.9e-01 4.7e-16 1.2e-13

ND 3.6e-14 7.05e-01 3.6e-16 5.1e-10

CASE_10
MD 8.1e-13 8.8e-13 1.2e-12 1.5e-12

ND 6.3e-16 8.3e-13 1.2e-12 1.4e-12

CASE_17
MD 7.3e-14 9e-12 6.3e-13 1.3e-10

ND 7.5e-14 4.4e-13 8.2e-13 2.3e-10

overall CPU time on 16 processors. Observe that it takes twice CPU time with MC64
preordering in both methods. Surprisingly with METIS, the time in SuperLU_DIST is
ten times larger when this preordering step is performed despite the fact that the fill-in is
not so large as shown in table 3. For theMUMPS solver, these results confirm the advices
that the maximum transversal should not be applied on matrices with nearly symmetry
structure[2]

Table 3. Ratio of fill-in (fill = nnz(L + U − I)/nnz(A)) : 4 processors

Matrix Ordering
SuperLU_DIST Mumps

No MC64 MC64 No MC64 MC64

CASE_05
MD 13 17 12 20

ND 10 64 10 15

CASE_07
MD 30 32 30 34

ND 22 126 21 27

CASE_10
MD 21.8 23.8 20.9 25.1

ND 17.6 95.4 17.4 21.8

CASE_17
MD 115 138 100 119

ND 61 74 58 77

Table 4. CASE_17: Effect of preprocessing on the CPU time (16 processors)

SuperLU_DIST MUMPS

Ordering No MC64 MC64 No MC64 MC64

MMD/AMD 3050 4045 4228 8229

METIS 1098 17342 1960 3605

The last aspects of interest are the overall time and the parallel efficiency. In table 5,
we consider these aspects on the matrix CASE_17. T is the time in seconds while Acc
and Eff are respectively the acceleration and the efficiency with respect to the time on 4
nodes. In this part, all tests are done without the permutation by MC64 as it leads in some
cases to huge fill-in and consequently, large CPU factorization time. Note that MUMPS
is slightly better than SuperLU_DIST on 4 processors. However, SuperLU_DIST per-
forms better when we increase the number of processors. Moreover, it scales better than
MUMPS. This result may come from the relatively slow network interconnecting the
nodes [16]. Also in SuperLU_DIST, the amount of communication is reduced during the
numerical factorization by using the static pivoting.



Table 5. Parallel efficiency with CASE_17

Ordering Solver
P=4 P=8 P=16

T T Acc Eff T Acc Eff

METIS
SuperLU_DIST 3923 2073 1.89 0.94 1098 3.57 0.89

MUMPS 3598 2969 1.21 0.6 1960 1.83 0.45

4.3. Parallel Behavior of Preconditioners

In the following, we strike to see the convergence of GMRES with the preconditioners
mentioned in section 2; namely the parallel ILU preconditioner (EUCLID) in HYPRE,
the restricted additive schwarz(ASM) available in PETSc, the Explicit Form of Multi-
plicative Schwarz(EFMS) used in GPREMS and the left Schur complement (SC) asso-
ciated with the flexible GMRES in pARMS. To solve the local systems, we have used
MUMPS in the case of ASM and EFMS while ILUK is used as approximate solver in
the case of SC. The maximum number of iterations allowed is 4000 and the relative tol-
erance for the convergence is 10−9. The size of the Krylov basis is 64 for the CASE_05
and CASE_07 cases and 128 for the largest ones.
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Figure 2. Number of iterations of GMRES

In figure 2 the number of iterations is given as a function of the computing nodes. On
small systems (CASE_05, CASE_07) with all preconditioners, this number of iterations
grows very fast with the number of processors. In many cases, the maximum number of
iterations is reached before convergence. See for instance the CASE_07 with EUCLID
on 8 nodes or more. For the largest cases, CASE_10 and CASE_17, GMRES with SC
or EUCLID does not converge, whatever the number of nodes used. Thus, only ASM



and EFMS are taken into account. On a small number of processors, with all cases but
the CASE_10, EFMS gives less number of iterations than ASM. With the CASE_10,
ASM performs better than EFMS. However, for more than 8 processors, the number of
iterations increases very fast.

Figure 3 gives the time needed to converge to the right solution with respect to the
number of processors. For the smallest case and the largest case, we compare direct
solvers to preconditioned GMRES. METIS ordering is used in the two direct solvers
without MC64 ordering. For the CASE_05, SuperLU_DIST and MUMPS are clearly
faster than preconditioned GMRES. Also, the CPU time with ASM and EFMS tends to
increase in CASE_05 and CASE_10. For the largest case, GMRES with ASM or EFMS
performs better than direct solvers. However, ASM is better than EFMS with more than
4 processors. The main reason is that in EFMS, the residual vector is corrected in a
pipeline through the subdomains whereas this correction is done almost simultaneously
in ASM. On the other side, GPREMS do performwell regarding the number of iterations
as shown in fig. 2.
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5. Concluding Remarks

In this paper, we are interested in the numerical solution of some sparse linear systems
issued from actual industrial CFD cases. The distributed solvers we have used are based
either on direct, iterative or hybrid techniques. Usually direct solvers are robust, but we
have observed here that they could fail to solve some of these systems with some non-



obvious parameters. However, on small cases, they are markedlymore efficient than other
methods used in this study. Also, we have tested the ILU-EUCLID and the left Schur
Complement preconditioner in pARMS library but on our set of linear systems, Schwarz-
based preconditioners should be preferred. So, in this last category, the restricted addi-
tive Schwarz preconditioner performs well when it is associated with a direct solver on
subdomains. However, we still need to take a very large Krylov basis which could be
a bottleneck in the case of larger systems. Finally, one motivation in this work was to
show the significant performance achieved by the parallel GMRES when it is precondi-
tioned by one iteration of the multiplicative schwarz method. The results prove that this
preconditioner is competitive among other domain decomposition methods. However, it
still suffers from poor scalability. So we are investigating ways to improve this aspect by
using some multilevel techniques.

Acknowledgment This work was supported by ANR-RNTL under the LIBRAERO contract.
Experiments were carried out using the Grid’5000 experimental testbed (https://www.grid5000.fr).

References

[1] G.-A. Atenekeng Kahou, E. Kamgnia, B. Philippe. An explicit formulation of the multiplicative Schwarz
preconditioner. Applied Numerical Mathematics, 57:1197-1213, 2007

[2] P. Amestoy, I. S. Duff, J-Y, L’Exclellent, X. S. Li, Analysis and Comparison of Two General Sparse
Solvers for Distributed Memory Computers, ACM Trans. Mathematical Software, 27(4):388-421, 2001

[3] A. Gupta, Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear
Equations. ACM Trans. Mathematical Software, 28(3):301-324, 2002

[4] G.-A. Atenekeng-Kahou. Parallélisation de GMRES préconditionné par une itération de Schwarz mul-
tiplicatif, PhD thesis, University of Rennes 1 and University of Yaounde I, December 2008.

[5] M.A. Heroux, R.A Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long,
R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A.
Williams, K.S. Stanley, An overview of the Trilinos project, ACM Trans. Mathematical Software, 31(3),
397-423, 2005

[6] B. Secher, M. Belliard, C. Calvin Numerical Platon: A unified linear equation solver interface by CEA
for solving open foe scientific applications. Nucl. Eng. Des. (2008), doi:10.1016/j.nucengdes.2008.06.025

[7] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang,
PETSc Web page. http://www.mcs.anl.gov/petsc, 2008

[8] Z. Li, Y. Saad, M. Sosonkina. pARMS : A parallel version of the algebraic recursive multilevel solver.
Numer. Linear Algebra Appl., 10:485-509, 2003

[9] X. S. Li and J. W. Demmel. SuperLU_DIST : A Scalable Distributed-Memory Sparse Direct Solver for
Unsymmetric Linear Systems ACM Trans. Mathematical Software, 29(2):110-140, 2003

[10] P. Amestoy, I. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using dis-
tributed dynamic scheduling, SIAM J. on Matrix Analysis and Applications, 23(1):15-41, 2001

[11] D. Hysom, A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning. SIAM J. on

Scientific Computing, 27:1689-1708, 2006
[12] R. Falgout, U. Yang, HYPRE: a Library of High Performance Preconditioners. C.J.K.Tan, J.J. Dongarra,

A.G. Hoekstra (Eds.), Lectures Notes in Computer Science, 2331:632-641, Springer-Verlag, 2002
[13] J. Erhel, A parallel GMRES version for general sparse matrices. Electronic Transaction on Numerical

Analysis, 3:160-176, 1995.
[14] R.B. Sidje, Alternatives for parallel subspace basis computation. Numerical Linear Algebra with Appli-

cations, 4:305-331, 1997.
[15] FLUOREM, The Fluorem Matrix Collection, http://www.fluorem.com LIB0721 2.0 / FP-SA, 2009
[16] É. Canot, C. de Dieuleveult, J. Erhel, A parallel software for a saltwater intrusion problem. G. Joubert,

W. Nagel, F. Peters, O. Plata, P. Tirado, E. Zapata (Eds.), Parallel Computing: Current and Future

Issues of High-End Computing, 33:399-406, NIC, 2006.


