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Abstract. Reactive transport models are very useful for groundwater studies
such as water quality, safety analysis of waste disposal, remediation, and so
on. The MoMaS group defined a benchmark with several test cases. We present
results obtained with a global method and show through these results the effi-
ciency of our numerical model.

1 Introduction

It is quite challenging to develop a numerical model for deep storage of nu-
clear waste. The time interval is very large (several thousands years), models
are coupled and simulations must be accurate enough to be used for risk assess-
ment. In most cases, chemistry must be included in models of deep geological
storage. In addition to radioactive decay, chemical phenomna are numerous
and include aqueous reactions, oxydo-reduction reactions, precipitation and
dissolution reactions, ions exchanges, surface exchanges. These reactions can
be either kinetic or at equilibrium.

Models must handle species which are in groundwater systems and take
into account the mobile property of these species. It is thus necessary to consi-
der a coupled model, where chemistry equations and radioactive decay are
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combined with transport of contaminants. These models are partial differen-
tial equations (for transport, one equation for each species), and algebraic or
differential equations (for chemistry, a system at each grid point).

The MoMaS benchmark was designed as a set of academic examples, in
order to run experiments with several methods and software [3], [4]. Several
authors participated in the exercise [1], [7], [12],[13], [14]. A synthetic compa-
rison of their results indicate that, for this benchmark, the fastest results were
obtained with global approaches [2].

In this paper, we show original results obtained with a global approach for
the so-called 2D easy test case of the MoMaS benchmark. The model propo-
sed in MoMaS is based on the introduction of total analytical concentrations,
thanks to the linearity of the transport equation. It is a set of Partial Algebraic
Differential Equations. We use the method developed in [6, 8] and improved
in [9, 17]. In this method, we first discretize in space, using a Finite Difference
scheme, then we discretize in time, using an implicit BDF scheme. Thus at
each time step, we have to solve nonlinear equations which we keep coupled.

Compared with [8], we bring three improvements in [9, 17]. First, we use a
substitution technique, similar do global DSA methods, which allows reducing
the size of nonlinear systems. We still keep the differential variables in the
semi-discrete system, in order to use adaptive time steps and adaptive Jacobian
updates. Logarithmic variables are very convenient to ensure the positivity of
the concentrations and to compute the derivatives, but they can lead to severely
ill-conditioned Jacobian matrices [17]. Thus, our second improvement consists
in using non logarithmic variables, at the price of ensuring positivity during
nonlinear iterations. In the benchmark, the first component is inert, so our third
improvement is to remove this component from the coupled equations.

The paper is organized as follows. In section 2, we describe the mathema-
tical model of the MoMaS test case studied and provide our simulation results
for flow and transport of the five main species. The numerical method is defi-
ned in section 3, as well as three versions of our software GRT3D [17]. Finally,
we analyse in section 4 the efficiency of the improvements brought to the ori-
ginal global method. We discuss these results and outline future work in the
concluding section 5.

2 MoMaS benchmark

The MoMaS group studies mathematical models and numerical simulations
for nuclear waste disposal. A set of test cases were defined for transport reac-
tive problems [4]. Here, we make experiments with the so-called easy test case,
in 2D. The computational domain is a rectangle with two porous media, see Fi-



GLOBAL REACTIVE TRANSPORT FOR MOMAS BENCHMARK 3

gure 1. All dimensions are normalized, with length unit L and time unit T .

FIGURE 1: Computational domain for MoMaS Benchmark (dimensions are in
the unit length L).

2.1 Flow simulations

The benchmark considers a steady saturated one-phase flow, with no source
term. Flow is governed by Darcy’s law and mass conservation, giving mathe-
matical equations (1) where the pressure h and the Darcy’s velocity q are the
unknowns and K is the hydraulic conductivity.

{
q = −K∇h,
∇q = 0.

(1)

Darcy’s velocity is related to the porosity ε and to the pore velocity v by
q = εv.

Medium A has a high conductivity and a low porosity, whereas medium B
has a low conductivity and a high porosity, see Table1.

Boundary conditions must be prescribed to complete the PDE system. At
outflow, the pressure is given by h = 1L. At both inflows, the flow velocity is
given by q = 2.25×10−2L.T−1, whereas no flow condition is applied at other
boundaries.
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Medium A Medium B
Porosity ε 0.25 0.5

Conductivity K (L.T−1) 10−2 10−5

TABLE 1: Flow conditions for MoMaS benchmark.

We simulate the flow equations with the software MODFLOW [10]. Fi-
gures 2 et 3 show the velocity and the pressure computed with a mesh of 40×84
cells [6], [17].

FIGURE 2: Velocity field with a mesh of 40× 84 cells.

2.2 Transport simulations

Transport of mass in groundwater is governed by advection and dispersion.
There is no source term in the benchmark test. The concentration c of an inert
solute is the solution of the PDE (2) expressing a mass conservation law.

ε
∂c

∂t
= ∇.(D ∇c)−∇.(q c), (2)

where the dispersion tensor D is given by

D = εdmI + αT ‖q‖I + (αL − αT )
qqT

‖q‖ .

We consider the advective test case of the MoMaS benchmark, without mole-
cular diffusion, see Table 2.

Initial conditions at time t = 0T are applied to the geochemistry system,
see Table 5. The final time is t = 6000T .
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FIGURE 3: Pressure head with a mesh of 40× 84 cells.

Medium A Medium B
Molecular diffusion dm (L2T−1) 0 0
Longitudinal Dispersion αL(L) 10−2 6× 10−2

Transverse Dispersion αT (L) 10−3 6× 10−3

TABLE 2: Transport conditions for benchmark MoMaS.

At impermeable boundaries, a no total flux condition is imposed. At ouflow,
a zero concentration gradient is imposed. At both inflows, concentration is
prescribed, with values given in Table 6. Injection occurs during a first period
of time until t = 5000T , followed by a leaching period until the end.

The first chemical component is a spectator ion, which behaves like a inert
solute. For this component, we can simulate the transport equations with the
software MT3D [18]. Figure 4 represents the concentration at various times,
obtained with a fine mesh of 80 × 168 cells.
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(a) Time t = 1T

(b) Time t = 4000T

(c) Time t = 5010T

(d) Time t = 5800T

FIGURE 4: Concentrations of the inert solute c1 at different times (with dif-
ferent scales).
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2.3 Geochemistry simulations

In the MoMaS test case, the geochemical system has Nc = 4 aqueous
components cj and Ns = 1 fixed component sj . They react with Nα = 5
aqueous secondary species αi and Nβ = 2 fixed secondary species βi. There
is no precipitation dissolution. All the activities are equal to 1 and the variables
cj , sj, αi, βi are the concentrations of the species.

Stoichiometric coefficients and equilibrium constants are given in Table3.
In the original benchmark, the constant Kc5 is equal to 10+35 but we replace
it by 10+6. Indeed, with such a very large constant, the chemical nonlinear
system is highly ill-conditioned and numerical simulations can suffer from
strong inaccuracies.

c1 c2 c3 c4 s K
α1 0 -1 0 0 0 10−12

α2 0 1 1 0 0 1
α3 0 -1 0 1 0 1
α4 0 -4 1 3 0 0.1
α5 0 4 3 1 0 10+6

β1 0 3 1 0 1 10+6

β2 0 -3 0 1 2 10−1

TABLE 3: Stoichiometric coefficients and equilibrium constants for MoMaS
benchmark (with Kc5 modified).

Table 3 is summarized in Table 4 by using algebraic notations, with the
matrices S,A,B and the vectors c, s, α, β,Kc,Ks.

c s K
α S 0 Kc

β A B Ks

TABLE 4: Algebraic representation of Table 3.

Secondary species can be computed thanks to the mass action laws (3) des-
cribing the chemical reactions. Moreover, the concentrations of the compo-
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nents must be positive.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi(c) = Kci
∏Nc

j=1 c
Sij

j , i = 1, . . . Nα,

βi(c, s) = Ksi
∏Nc

j=1 c
Aij

j

∏Ns
j=1 s

Bij

j , i = 1, . . . Nβ,

cj ≥ 0, j = 1, . . . Nc,
sj ≥ 0, j = 1, . . . Ns.

(3)

Then the model applies the mass conservation law to the chemical system.{
c+ STα(c) +ATβ(c, s) = T,
s+BTβ(c, s) = W,

(4)

where T and W are respectively the total analytical concentrations for mobile
and fixed components. In a closed system, these quantities are known, but they
vary in time and space when the species are transported by water.

2.4 Reactive transport

Transport is now governed not only by advection and dispersion, but also by
reaction. A mass conservation equation can be written for each component and
each secondary species, where the reaction terms are unknowns in the context
of reactions at equilibrium. However, because the dispersion tensor is the same
for all the species, the transport terms are linear and it is possible to compute
a linear combination of all the equations. This ends up to mass conservation
equations (5) applied to the total analytical concentrations T , where the reac-
tion terms cancel and disappear. Moreover, the total analytical concentrations
W remain constant and given.

ε
∂Tj

∂t
= ∇.(D ∇Cj(c))−∇.(q Cj(c)), j = 1, . . . Nc, (5)

where C(c) = c+ STα(c) is the total mobile concentration.
Equations (5) are coupled with the mass action laws (3) and the mass

conservation laws (4) written at each point of the computational domain.
Initial conditions for the 5 components are given in Table5. It can be noted

that T3 = 0 implies that c3 = α2 = α4 = α5 = β1 = 0, because all
the associated stoichiometric coefficients are strictly positive. Therefore, the
equilibrium constants Kc2,Kc4,Kc5,Ks1 have to mathematical effect on the
initial equilibrium. However, they may have a numerical effect.

Boundary conditions at both inflows are given in Table 6 for the injection
and leaching periods. Again, it can be noted that T3 = 0 during the leaching
period, and T4 = 0 during the injection period. Since the stoichiometric co-
efficients associated to c4 are also strictly positive, c4 = α3 = α4 = α5 =
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β2 = 0 during the injection period. Thus, at inflow, the equilibrium constants
Kc4,Kc5,Ks2 have to mathematical effect on the equilibrium.

T1 T2 T3 T4 W

Medium A 0 -2 0 2 1
Medium B 0 -2 0 2 10

TABLE 5: Initial conditions for MoMaS benchmark.

T1 T2 T3 T4 W

Injection t ∈ [0, 5000] 0.3 0.3 0.3 0 0
Leaching t ∈ [5000, 6000] 0 -2 0 2 0

TABLE 6: Inflow conditions for MoMaS benchmark.

Figures 5 to 10 show the concentrations of the aqueous components c2, c3, c4
and the fixed component s at various times. They cannot be compared exactly
to the results of the literature [3, 12, 13, 14], because we changed the constant
Kc5, but they are very close.
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 5: Concentrations of the four reactive components at time t = 10T .
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 6: Concentrations of the four reactive components at time t = 2000T .
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 7: Concentrations of the four reactive components at time t = 4000T .
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 8: Concentrations of the four reactive components at time t = 5010T .
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 9: Concentrations of the four reactive components at time t = 5200T .
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(a) Component c2

(b) Component c3

(c) Component c4

(d) Component s

FIGURE 10: Concentrations of the four reactive components at time t =
5800T .
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3 Numerical method

Equations (3),(4),(5) form a PDAE system composed of algebraic and PDE
equations. We assume that it is well-posed.

Following a method of lines, we first discretize in space, using a finite dif-
ference scheme implemented in the software MT3D. We define a regular mesh
of the domain with a rectangle of Nx ×Ny cells. We get a DAE semi-discrete
system, where the algebraic chemistry equations are written at each point of
the mesh [6, 8].

Because the system is stiff, we use an implicit scheme, involving a global
nonlinear system at each time step, coupling transport and chemistry equations.
We use a BDF scheme implemented in the software SUNDIALS [11]. At each
time step, the nonlinear system is solved with a Newton’s method. We provide
the function of the DAE equation and its derivative, whereas the module IDA
of SUNDIALS provides the implicit scheme.

Time discretization comes with an adaptive time step, which controls both
the accuracy of the approximation and the convergence of Newton’s iterations.
It allows choosing large time steps when possible and saves CPU time.

We solve the linearized equations with a sparse direct solver, implemented
in the software library UMFPACK [5], which we have interfaced with SUN-
DIALS. We thus factorize the Jacobian matrix and use the triangular factors to
solve the linearized equations. The software keeps the Jacobian of linearized
Newton’s iterations frozen while convergence is fast enough, saving updates
and factorizations thus CPU time.

We implemented three versions of our method in the software suite GRT3D
[9, 17]. Mass action laws can be linearized by introducing logarithmic va-
riables, if they are strictly positive. In a first version, called GRT3D, we used as
primary variables the total T , the total mobile C and the components concen-
trations log(c), log(s). In a second version, called GRT3DRL, we reduced
the size of linearized systems by using a substitution approach, keeping only
the variables log(c), log(s) in the linear systems to be solved. This technique
saves CPU time by factorizing a smaller matrix. In a third version, called
GRT3DRSL, we used the same algorithms, but with the non logarithmic va-
riables c, s.

4 Performance analysis

In this section, we analyze the computational time of our simulations. All
experiments are done in sequential, on a Intel Xeon computer, with 24 MB of
RAM and with 12 MB of cache memory.

We compare the three versions of our software : GRT3D uses logarithms
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and no substitution, GRT3DRL still uses logarithms but eliminates unknowns
T and C in the linearized systems, GRT3DRSL does not use logarithms and
applies substitution. Also, we can remove the first component c1 since it is
inert so we can further reduce the system size.

Simulations are done with three different meshes, a coarse mesh with Nm =
20× 42 cells, an intermediate mesh with Nm = 40× 84, and a fine mesh with
Nm = 80× 168 cells.

4.1 CPU time

Mesh GRT3D GRT3DRL
20x42 10920 4200
40x84 43680 16800

80x168 174720 67200

TABLE 7: System size using GRT3D and GRT3DRL with the first inert com-
ponent.

Mesh GRT3D GRT3DRL
20x42 8400 3360
40x84 33600 13440

80x168 134400 53760

TABLE 8: System size using GRT3D and GRT3DRL without the first inert
component.

The reduction of the system size is given in Tables7 and 8, respectively with
the first inert component and without it. With the inert component, the system
size is reduced from (3Nc +Ns) ×Nm = 13Nm in GRT3D to (Nc +Ns)×
Nm = 5Nm in GRT3DRL and GRT3DRSL. Without the inert component,
reduction is from 10Nm to 4Nm.

Clearly, reducing the system size has a direct impact on the CPU time. The
total CPU time for the three versions is given in Table9 for computations with
the first inert component and in Table 10 without it.

CPU time decreases also when variables are not logarithmic. In order to
analyze these effects, we use the measures taken at each external timestep of
the software SUNDIALS. In Figure 11, we plot the CPU time versus the simu-
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Mesh GRT3D GRT3DRL GRT3DRSL
20x42 52 m 52 s 27 m 16 s 19 m 6 s
40x84 9 h 52 m 24 s 4 h 44 m 40 s 3 h 9 m 8 s

80x168 5 j 15 h 12 m 15 s 3 j 11 h 24 m 23 s 2 j 2 h 12 m 5 s

TABLE 9: CPU time of the three versions with the first inert component.

Mesh GRT3D GRT3DRL GRT3DRSL
20x42 40 m 20 s 19 m 1 s 13 m 49 s
40x84 7 h 20 m 22 s 4 h 4 m 1 s 2 h 12 m 45 s

80x168 2 j 18 h 22 m 46 s 2 j 6 h 56 m 42 s 1 j 8 h 20 m 46 s

TABLE 10: CPU time of the three versions without the first inert component.
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(b) Fine mesh

FIGURE 11: CPU time during the simulation for the six variants.

lated time, for the six simulations (three versions of software, with and without
the first component), and for two grids (intermediate mesh and fine mesh). Du-
ring all the simulated time interval, the substitution approach, as well as the
elimination of the first component, reduce the CPU time. Also, the use of non
logarithmic variables is much more efficient.

For all the simulations, the CPU time increases rapidly until about t =
1800T for the intermediate mesh and t = 1000T for the fine mesh. Then it
levels off until time t = 5000T and increases again rapidly when the inflow
boundary conditions change. We analyse the outputs of the software IDA in
order to explain this behavior.
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4.2 Effect of adaptive time step
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(a) Intermediate mesh
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(b) Fine mesh

FIGURE 12: Number of time steps during the simulation (different scales).

The IDA solver in the software SUNDIALS adjusts automatically the time
step, in order to control both the accuracy of time discretization and the conver-
gence of Newton’s iterations. In Figure 12, we plot the number of time steps
taken during the whole simulation. Here, we show only results without the first
component, since results with this component are very similar.

As expected, the CPU time is strongly correlated with the number of time
steps. The initial and boundary conditions are difficult to handle and require
small time steps during a period of time until larger time steps can be taken. It
takes more time with the intermediate mesh than with the fine mesh, probably
because the sharp fronts of concentrations are better captured with the fine
mesh. Anyway, these results demonstrate the efficiency of adaptive time step.

4.3 Effect of modified Newton’s iterations

The number of time steps has a direct impact on the number of Newton’s
iterations which can be measured by the number of linear system solvings. It is
also correlated to the number of updates of the Jacobian matrix, which can be
measured by the number of matrix factorizations. Indeed, in our simulations,
we use a direct sparse linear solver implemented in the software UMFPACK.
Thus each time the Jacobian is updated, it has to be factorized in order to solve
the linear systems associated to this new Jacobian.

In Figure 13, we plot the number of linear solvings and matrix factoriza-
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(a) Intermediate mesh
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(b) Fine mesh

FIGURE 13: Number of linear solvings and matrix factorizations during the
simulation (logarithmic scale).

tions, for the three versions and for two meshes. Theses numbers are in loga-
rithmic scale. Here, the first component is not considered, similar results are
obtained when including it.

Again, we observe a sharp increase of these numbers at the beginning of
the simulation and a small jump after leaching. At time t = 0, the number
of solvings as well as the number of factorizations are slightly smaller when
reducing the system size, from GRT3D to GRT3DRL. They are clearly smaller
when using non logarithmic variables. This result is probably due to a better
condition number of the Jacobian matrix at time t = 0.

For the three versions, the number of matrix factorizations is much smaller
than the number of linear system solvings. This result demonstrates the effi-
ciency of adaptive modified Newton’s iterations. Indeed, the Jacobian is kept
frozen during several time steps and during nonlinear iterations, so that facto-
rization does not occur as often as solving.

4.4 Algorithmic complexity of Newton’s iterations

It is well-known that the algorithmic complexity of sparse matrix factori-
zation is much higher than the complexity of sparse system solving, which
involves sparse triangular matrices. Thus, in order to fully measure the effi-
ciency of the adaptive update of the Jacobian matrix, we have to analyze the
CPU time of the Newton’s iterations.

In Figure 14, we plot the CPU time (in logarithmic scale) of the linear
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(b) Fine mesh

FIGURE 14: CPU time during the simulation of the linear system solvings and
the matrix factorizations.
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FIGURE 15: Percentage of CPU time in linear solvings (red,cc3) and factoriza-
tions (blue, cc2) versus the mesh size using GRT3DRSL. Solid line : with the
first component ; dotted line : without the first component.

solvings and matrix factorizations, for the three versions and for two meshes.
We see again the effect of the numerical difficulties at time t = 0 and the
differences between the three versions.

Whereas the number of factorizations is smaller than the number of sol-
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vings, the CPU time does not behave in the same way. For the intermediate
mesh, facotrization time is smaller than solving time but it becomes larger
than solving time for the fine mesh. Because the algorithmic complexity of the
factorization is higher, the CPU time increases much faster when the mesh is
refined.

This is also illustrated by Figure 15, where we plot the percentage of time
spent in linear steps in function of the mesh size, measured by the number
of cells. These percentages are computed versus the total CPU time, at the
end of the simulations. Computations are done here with the version without
logarithms (GRT3DRSL), with and without the first component.

Factorization time becomes relatively more important as the mesh size in-
creases and eventually the lines intersect roughly at the size of the fine mesh. It
can also be noted that the addition of both percentages increases with the mesh
size. For the fine mesh, more than 90% of CPU time is spent in the Newton’s
iterations. Therefore, it is really important to reduce the number of iterations
and their computational cost.

5 Concluding remarks

In this paper, we have proposed a global approach for simulating reactive
transport equations, where transport is coupled with geochemistry. The global
method is based on a DAE formulation of the semi-discrete system obtained
after space discretization. An implicit time scheme ensures stability and pro-
vides an adaptive time step with an adaptive update of the Jacobian matrix.
This feature is very efficient as illustrated in our numerical results with the
MoMaS benchmark. In order to use this adaptive time scheme, we keep the dif-
ferential variables, but we eliminate them at the linear level, in order to reduce
the system size. This is also very efficient as demonstrated in our results. We
could also apply the substitution at the nonlinear level [9, 17]. In the MoMaS
benchmark, some concentrations are set to 0 at the intial time and at inflow
boundaries. When using logarithmic variables and very small initial concen-
trations instead of 0, this leads to ill-conditioned systems. It appears that it is
more efficient to use nonlogarithmic variables, at least for the test case studied
here.

We use a sparse direct solver which first factorizes the Jacobian matrix,
then solves two triangular systems. This second step has a much smaller com-
plexity than the first one. Thanks to the adaptive update of the Jacobian, the
computational cost of the factorization remains low for the meshes considered
here. However, it is clear that this cost will eventually dominate for larger sys-
tems. Therefore, we investigate parallel iterative solvers in order to tackle 3D
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problems [16].
The test case considered here defines chemistry at equilibrium, without pre-

cipitation or dissolution. These reactions are very challenging because mine-
rals can appear and disappear. We study some mathematical issues of this pro-
blem [15]. We also plan to include kinetic reactions.
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