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PARALLELISM AND ROBUSTNESS IN GMRES WITH A NEWTON BASIS AND
DEFLATED RESTARTING ∗
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Abstract. The GMRES iterative method is widely used as a Krylov subspacetechnique for solving sparse
linear systems when the coefficient matrix is nonsymmetric and indefinite. The Newton basis implementation has
been proposed on distributed memory computers as an alternative to the classical approach with the Arnoldi process.
The aim of our work here is to introduce a modification based on deflation techniques. This approach builds an
augmented subspace in an adaptive way to accelerate the convergence of the restarted formulation. In our numerical
experiments, we show the benefits of using this implementation with hybrid direct/iterative methods to solve large
linear systems.
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1. Introduction. In this paper, we are interested in solving large systems of linear alge-
braic equations

(1.1) Ax = b,

whereA is ann × n real nonsingular matrix andb andx aren-dimensional real vectors. In
practical algorithms, the original problem (1.1) is transformed into the following one

(1.2) M−1
L AM−1

R x̃ = M−1
L b, x̃ = MRx,

whereM−1
L andM−1

R are the action of a preconditioning of the system from the left (MR=I),
from the right (ML = I), or both. On parallel computers, we assume that these precondition-
ers are derived from some algebraic decomposition of the input matrix. However, they can
be any approximation of the inverse of the matrixA, and we refer the reader to the survey on
preconditioning techniques [9]. These preconditioners are generally combined with Krylov
subspace methods as accelerators. The GMRES method [41] is widely used in this context.
From this method, many improvements have been proposed to enhance its robustness and
parallel efficiency; see, for instance, [6, 10, 12, 19, 20, 22, 24, 31, 37, 42]. In this work,
we propose a new formulation of this method which combines two main approaches, namely
the Newton basis GMRES [6] and the augmented basis for the restarted GMRES [31]. Our
approach benefits from the enhanced parallelism of the former and the robustness of the lat-
ter. For the sake of clarity, we give here the formulation of the GMRES algorithm as first
proposed by Saad and Schultz [41].

We consider the right preconditioned matrixB ≡ AM−1 in this paper. The proposed
algorithms can be derived with little effort for the left preconditioned matrix. Flexible pre-
conditioning, which allows for an iterative preconditioner [39], can be combined with defla-
tion [23]. In this work, we focus on a fixed preconditioning for the sake of simplicity.

Given an initial guessx0, the GMRES method finds thej-th approximate solutionxj of
the form

xj ∈ x0 +M−1Kj(B, r0),
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wherer0 = b − Ax0 is the initial residual vector andKj(B, r0) is thej-th Krylov subspace
defined as

Kj(B, r0) = span{r0, Br0, . . . , B
j−1r0}.

The goal behind GMRES is to minimize at each step the Euclidean norm of the residual, i.e.,

(1.3) ‖b−Axj‖ = min
u∈x0+M−1Kj(B,r0)

‖b−Au‖.

An orthonormal basisVj+1 = [v0, . . . , vj ]
1 of Kj+1(B, r0) is generated such that

(1.4) v0 =
r0
β
, β = ‖r0‖, BVj = Vj+1Hj+1,j = VjHj + h{j+1,j}vje

T
j .

It can be shown [40] that (1.3) reduces to

(1.5) ‖βe1 −Hj+1,jyj‖ = min
y∈Rj

‖βe1 −Hj+1,jy‖,

and the approximate solutionxj can be written as

xj = x0 +M−1Vjyj .

Our work combines two improvements of this method. In GMRES(m), the method
restarts at some stepm to reduce storage and computational requirements as the iteration
proceeds. The deflated and augmented approaches [5, 10, 22, 27, 31] keep some useful in-
formation at the time of the restart to enhance robustness. We briefly review these methods
in Section2. The second improvement builds the orthonormal basis with aparallel algo-
rithm that reduces the number of exchanged MPI messages on distributed-memory comput-
ers. Indeed, the time to exchange a MPI message of sizen words is given byγ + δ · n,
whereγ is the network latency (in seconds) andδ is the inverse bandwidth (in seconds per
word). Hence, reducing the number of MPI messages is equivalent to minimizing the over-
head due to this latency. From the original formulation of GMRES, the basisV is built
and orthogonalized by the modified Gram-Schmidt implementation (MGS) of the Arnoldi
process (V is referred to asArnoldi basis). This process induces a high communication
overhead due to the numerous inner products: for instance, aGMRES cycle ofm iterations
requires approximately12 (m

2 + 3m) global communications for the inner products. On high
latency networks, the start-up time due to these collectivecommunication can easily domi-
nate. Moreover, the kernel operations in MGS have very low granularity, such that they do
not fully utilize the computer architecture. In the classical Gram-Schmidt implementation
(CGS) of the Arnoldi process, the communication time can be reduced by accumulating and
broadcasting multiple inner products together. However, the low granularity of the kernel
operations in the orthogonalization procedure remains because of the sequential form of the
Arnoldi process. Moreover, CGS is more sensitive to rounding errors than MGS [25]. Al-
ternative implementations [6, 15, 19, 20, 24, 26, 37, 42] have been proposed. They divide
the process into two main phases: first, a nonorthogonal basis of the Krylov subspace is gen-
erated and then orthogonalized as a group of vectors in the second phase. As first proposed
by Bai, Hu, and Reichel [6], the a priori basis is built with the aid of Newton polynomials.
We will refer to this as theNewton-basis GMRES. Later on, the orthogonalization is done by
replacing the vector-vector operations of the MGS method bythe task of computing a dense

1Throughout this paper, we use a zero-based numbering for all the vectors in the basis.
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QR factorization. De Sturler [15] analyzed the parallel implementation of the second phase
and suggested a distributed MGS factorization to overlap communication with computation.
Sidje and Philippe [43], Erhel [19], and Sidje [42] used a different orthogonalization strat-
egy called RODDEC, which combines Householder factorization with Givens rotations and
requires only point-to-point communication. Demmel et al.[16] proposed a differentQR
factorization calledTall SkinnyQR (TSQR), which reorganizes the computation to reduce the
memory access and exploit the data locality.

Our proposal in this work is to combine the Newton-basis GMRES with augmented and
deflated GMRES. The new approach is simple and can be used together with any of the pre-
vious orthogonalization strategies once the augmented a priori basis is built. The motivation
for our work is two-fold: previous studies [37] have shown that when the size of the Newton
basis grows, the vectors become increasingly dependent. Asa result, the method may experi-
ence a slow convergence rate. With the new approach, the basis is kept small and augmented
with some useful approximate eigenvectors. The second motivation is related to GMRES(m)
preconditioned by domain decomposition methods. Indeed, with Schwarz-based precondi-
tioners, when the number of subdomains increases, the preconditioner becomes less and less
robust and the method requires more iterations to converge.In this situation, the basis size
is usually increased to prevent stagnation. In the proposedapproach, we show that by adap-
tively adding more approximate eigenvectors, the convergence rate is improved. Recently,
Mohiyuddin et al. [30] and Hoemmen [24] suggested a new formulation in theircommu-
nication avoidingGMRES, which does not require the Krylov basis size to be equal to the
number of vectors generated a priori. Their formulation builds the Krylov basis with several
steps of the Arnoldi process where each step builds a set of vectors with the Newton polyno-
mials. Our proposed approach can be used as well with their formulation for problems that
are very sensitive to the restarting procedure in GMRES. Indeed, we show in Section3 how
the augmented basis can be formulated in their approach. Theremaining part of this paper is
organized as follows: in Section2, we briefly review how the deflation of eigenvalues is used
in the restarted GMRES. In Section3, we derive the new approach combining deflation of the
Newton basis with GMRES, and we discuss parallel implementation. Section4 is focused on
numerical experiments to show the benefits of our approach.

2. Restarted GMRES accelerated by deflation.A practical implementation of GM-
RES is based on restarting a minimum residual iteration whenthe correction space reaches a
given dimensionm. At the time of restart, information from the previous Krylov subspace is
discarded and the orthogonality between successive Krylovsubspaces is not preserved. The
worst case is when successively generated Krylov subspacesare very close. As a result, there
is no significant reduction in the residual norm and the iterative process stagnates. Deflation
techniques are a class of acceleration strategies that collect useful information at the time of
restart mainly to avoid stagnation and for improving the rate of convergence. The main idea
behind these methods is to remove the smallest eigencomponents from the residual vector as
they are known to slow down the convergence of GMRES [48]. For a general analysis of
acceleration strategies for minimal residual methods, we refer the reader to Eiermann, Ernst,
and Schneider [17]. For general Krylov subspace methods, the recent reviews in [21, 45] are
also of great interest.

In deflation techniques, the Krylov subspaces are enriched by some approximation of in-
variant subspaces associated to a selected group of eigenvalues (generally the smallest ones).
Two strategies are often used, namely by preconditioning the linear system [10, 19, 27] or by
augmenting the Krylov subspace [31, 32].

Let λ1, λ2, . . . , λn be the eigenvalues ofB. Consider an exact invariant subspace of
dimensionr corresponding to ther smallest eigenvaluesλ1, λ2, . . . , λr and an orthonormal
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basis of this subspace, written asU in matrix form. Using the preconditioner̄M−1 defined as

(2.1) M̄−1 = In + U(|λn|T
−1 − Ir)U

T , T = UTBU,

the eigenvalues ofBM̄−1 areλr+1, . . . , λn, |λn| with multiplicity at leastr [22]. Then,
GMRES(m) applied toBM̄−1 converges faster since the smallest eigencomponents that slow
down the convergence are deflated. In practice,U is replaced by a basis of an approximate
invariant subspace.

The actual implementation in [22] and the improvements in [10] rely on the approxi-
mation ofU which is updated at each restart by computing the Ritz valuesfrom the Arnoldi
relation in equation (1.4) to yield a more accurate basis. In [5], U is computed by the Implicit-
Restarted Arnoldi (IRA) process and the result is used to form a left preconditioner. The
adaptive preconditioner by Kharchenko and Yeremin [27] is built such that the Ritz values
which approximate the largest eigenvalues ofB are translated to a cluster around one.

Complexity overhead is similar in the preconditioning and the augmented subspace ap-
proaches. In both cases, computing a new basis at each restart involves a small eigenvalue
problem. Also, it is easy to update the preconditioning matrix with a new basisU [10]. How-
ever, applying the preconditioner̄M−1 in (2.1) may induce an overhead for a large number of
processors because of global MPI reduction operations. On the other hand, in the augmented
approach presented below [31, 32], the communication is reduced since there is no global
reduction operation.

The augmented approaches form the new approximation with a projection onto a sub-
spaceC = Km(B, r0)+W, whereW = span{u0, . . . , ur−1}. Minimal changes are required
to the existing kernel operations as the vectors are directly added to the existing Krylov basis.
Moreover, when the vectorsu0, . . . , ur−1 are the harmonic Ritz vectors, Morgan [32] has
shown that the augmented subspaceC is itself a Krylov subspace and writes

C = Km(B, r0) +W = Km+r(B, qm(B)r0),

whereqm(B) is a polynomial of degree at mostm.

3. Deflated GMRES in the Newton basis.In this section, we derive the new imple-
mentation of the GMRES algorithm where the Krylov subspace is spanned by the Newton
polynomials and augmented with eigenvectors. Compared to the previous Newton basis im-
plementations [6, 19, 24, 42], the main difference is that the new approach uses deflation
strategies to recover the information that is lost at the time of restart. Hence for the problems
that are sensitive to the restarting procedure, our implementation should converge faster than
the previous approaches for the same basis size. Compared toGMRES-E by Morgan [31],
our approach communicates less and should produce kernels that are better suited for parallel
computations. Compared to GMRESDR of Morgan [32], however, we have not investigated
whether the proposed augmented basis is itself a Krylov basis, and we leave it to future work.

3.1. Augmenting the Newton basis.We now derive the proposed approach. Our mo-
tivation is to get an Arnoldi-like relation for the augmented basis when the eigenvectors are
added at the end of the Newton basis. LetB be the preconditioned matrix,x0 an initial
guess, andr0 the initial residual vector. Anm-dimensional Krylov subspace is spanned by
the Newton polynomials applied tor0 of the form

Pj+1(B) := σj+1(B − λj+1I)Pj(B), j = 0, 1, 2, . . . ,

whereP0(B) := r0, σj andλj ∈ R; see [6, 37]. We will discuss the choice of these scalars
later.
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Let W = span{u0, u1, . . . , ur−1} be a coarse subspace of dimensionr. We discuss
the computation of these vectors in Section3.2.5. Let s = m + r andCs be the augmented
subspace defined by

Cs = Km(B, r0) +W

as before. We write the basis ofW in matrix form as

Ur =
[
u0 . . . ur−1

]
.

We also define the augmented subspaceĈs+1 by

Ĉs+1 = Km+1(B, r0) +BW.

PROPOSITION3.1. Suppose thatdim(Ĉs+1) = s + 1. Then there exists an orthonor-
mal basisVs+1 =

[

Vm+1 V̂r

]
∈ R

n×(s+1) of the subspacêCs+1 such thatVm+1 is an
orthonormal basis ofKm+1(B, r0) and

Ws =
[
Vm Ur

]

is a basis ofCs. These bases are related by an Arnoldi-like relation

(3.1) BWs = Vs+1H̄s = VsHs + hs+1,svs+1e
T
s ,

whereH̄s ∈ R
(s+1)×s is an upper Hessenberg matrix. Moreover, the vectorxs ∈ R

n given
by

xs = x0 +M−1Wsys,

whereys ∈ R
n solves the least-squares problemJs(y) defined by

Js(y) = ‖βe1 − H̄sy‖2, β = ‖r0‖2,

minimizes the residual norm‖b−Axs‖ overx0 +M−1Cs.
Proof. Fromk0 = r0/‖r0‖2, a set of vectorskj can be generated such that

(3.2) σj+1kj+1 =

{

(B − λj+1I)kj if 0 ≤ j ≤ m− 1

Buj−m if m ≤ j ≤ s− 1,

whereλj andσj , j = 1, 2, . . . , are user-specified real scalars. We discuss in Sections3.2.1
and3.2.2their optimal choice. In matrix form, relation (3.2) writes

BKm = Km+1T̄m

BUr = K̂rDr,
(3.3)

with Km+1 =
[
k0 k1 . . . km

]
, K̂r =

[
km+1 . . . ks

]
,

T̄m =














λ1

σ1 λ2

σ2 λ3

.. .
.. .

λm−1

σm−1 λm

σm














∈ R
(m+1)×m,
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andDr = diag{σm+1, . . . , σs} ∈ R
r×r. A QR factorization of

[

Km+1 K̂r

]
yields

(3.4)
[

Km+1 K̂r

]
= Vs+1Rs+1 =

[

Vm+1 V̂r

]
[
Rm+1 Rm+1,r

0 Rr

]

.

Using equations (3.3) and (3.4), we get

BVm = BKmR−1
m = Vm+1Rm+1T̄mR−1

m ,

BUr = K̂rDr = (Vm+1Rm+1,r + V̂rRr)Dr.

It is rewritten as

BWs = Vs+1H̄s,

where

(3.5) H̄s = Rs+1

[
T̄m 0
0 Dr

] [
R−1

m 0
0 Ir

]

=

[
Hs

hs+1,se
T
s

]

.

The first part (3.1) is thus proved.
The second part of the proposition is similar to the optimality property of the augmented

GMRES [12, Algorithm 2.1]. Withxs = x0 + M−1Wsy in the affine spacex0 + M−1Cs,
the corresponding residual vector is expressed as

b−Axs = b−A(x0 +M−1Wsy) = r0 − Vs+1H̄sy = βk0 − Vs+1H̄sy

= Vs+1(βe1 − H̄sy),
(3.6)

whereβ = ‖r0‖ ande1 = [1, 0, . . . , 0]T . Introduce the function

Js(y) = ‖b−A(x0 +M−1Wsy)‖2.

It follows from equation (3.6) and the fact thatVs+1 is orthogonal that

Js(y) = ‖βe1 − H̄sy‖2.

Thus by taking the vectorys ∈ R
m which minimizes the functionJs(y), the approximate

solutionxs = x0 +M−1Wsys will have the smallest residual inx0 +M−1Cs.
We refer to the matrixWs as theaugmented Newton basisof the subspaceCs, and to the

matrixVs+1 as theaugmented orthonormal basisof the subspacêCs+1. The induced GMRES
is theaugmented Newton basis GMRES, which we denote by AGMRES.

It is also possible to choose
[
Km Ur

]
as a basis ofCs, avoiding the computation

of R−1
m . However, the vectorsUr are computed at each restart by using a Rayleigh-Ritz proce-

dure (see Section3.2.5), which requires the storage ofVs+1 and the computation ofV T
s+1Ws.

Thus, it saves memory and computation to selectWs =
[
Vm Ur

]
.

This proof assumes that the basis vectorskj , j = 0, . . . , s, are generated through one
pass in the kernel computation of (3.2). There are some situations wherem is too large
to guarantee robustness (well-conditioned basis) or good performance (best value for data
locality in multicore nodes). In recent work, Hoemmen [24] uses theµ-step Arnoldi method
of Kim and Chronopoulos [28]2 in hisArnoldi(µ, t) to build the basis vectors through multiple

2The original method is referred to ass-step Arnoldi instead ofµ-step Arnoldi but we chooseµ here to differ-
entiate with the sizes of our augmented basis.
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passes of the kernel computation in (3.2). Hence, the process of computings basis vectors is
divided intot steps where each step generatesµ basis vectors with the Newton polynomials.
The restart length is thuss = µ · t. We show in the following that Proposition3.1holds in the
case of aµ-step basis. We explain the basic idea witht = 2.

Let k0 be the starting vector ands = µ · t+ r = m+ r. As in the first part of (3.2), we
generate the sequence of vectors

σj+1kj+1 = (B − λj+1I)kj , 0 ≤ j ≤ µ− 1.

It follows that

BK(0)
µ = K

(0)
µ+1T̄

(0)
µ ,

whereK(0)
µ+1 =

[
k0 k1 . . . kµ

]
∈ R

n×(µ+1) and T̄
(0)
µ ∈ R

(µ+1)×µ is a bidiagonal

matrix. AQR factorization ofK(0)
µ+1 gives

K
(0)
µ+1 = V

(0)
µ+1R

(0)
µ+1

and thus

(3.7) BK(0)
µ = V

(0)
µ+1H̄

(0)
µ = V (0)

µ H(0)
µ + hµ+1,µV

(0)
µ+1eµe

T
µ ,

whereH̄(0)
µ = R

(0)
µ+1T̄

(0)
µ andeµ is theµ-th unit vector. This first step is just the derivation

of the Arnoldi-like relation for the (non-augmented) Newton basis. Note that we do not
have a mathematically equivalent Arnoldi relation as in equation (1.4). H̄(0)

µ+1 is not equal in
exact arithmetic to the Hessenberg matrixH̄ of that equation as we avoid dealing with the
term(R

(0)
µ+1)

−1. However, the columns ofV (0)
µ+1 form an orthogonal basis of aµ-dimensional

Krylov basis. Using the last column as a starting vector, we can thus build the secondµ-step
basis. At this step, we add the eigenvectors in the subspace by augmenting theµ-step basis.

Let kµ = V
(0)
µ+1eµ be aµ-step augmented basis generated as follows

σj+1kj+1 =

{

(B − λµ−j+1I)kj if µ ≤ j ≤ m− 1

Buj−m if m ≤ j ≤ s− 1.

In matrix form we get

(3.8) B
[

K
(1)
µ Ur

]

= K
(1)
µ+r+1

[

T̄
(1)
µ 0
0 Dr

]

.

The matricesT̄ (1)
µ andDr are analogous to the matrices in equation (3.1). At this point,

to avoid loss of orthogonality, the vectorsK(1)
µ+r+1 =

[
kµ kµ+1 . . . kµ+m+r

]
should be

orthogonalized against the previous vectorsV
(0)
µ . This can be done by a block Gram-Schmidt

method which is equivalent to writing3

(3.9) K̂
(1)
µ+r+1 =

(

I − V (0)
µ (V (0)

µ )T
)

K
(1)
µ+r+1.

Note that the same stability problems may arise just as in theclassical Gram-Schmidt process.
We discuss this issue at the end of this subsection. So far, the vectorsK̂(1)

µ+r are orthogonal to

3Note that the first vectorkµ is already orthogonal toV (0)
µ , but we choose to orthogonalize it again.
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the basis vectors, but it remains to orthogonalize them between each other. This can be done
by a denseQR factorization to produce

(3.10) K̂
(1)
µ+r+1 = V

(1)
µ+r+1R

(1)
µ+r+1.

From equations (3.7) and (3.8) we get

(3.11) B
[

K
(0)
µ K

(1)
µ Ur

]

=
[

V
(0)
µ K

(1)
µ+r+1

] [

H
(0)
µ 0

hµ+1,µe1e
T
µ C̄µ+r

]

,

where

C̄µ+r =

[

T̄
(1)
µ 0
0 Dr

]

.

Knowing that aQR factorization update has been performed onK
(1)
µ+r+1, we get from equa-

tions (3.9) and (3.10) that,

(3.12)
[

V
(0)
µ K

(1)
µ+r+1

]

=
[

V
(0)
µ V

(1)
µ+r+1

]
[

I (V
(0)
µ )TK

(1)
µ+r+1

0 R
(1)
µ+r+1

]

.

Substituting (3.12) in (3.11), we find

BWs = Vs+1H̄s,

whereWs =
[

K
(0)
µ K

(1)
µ Ur

]

, Vs+1 =
[

V
(0)
µ V

(1)
µ+r

]

, and

H̄s =

[

Iµ,µ (V
(0)
µ )TK

(1)
µ+r+1

0 R
(1)
µ+r+1

] [

H
(0)
µ 0

hµ+1,µe1e
T
µ C̄µ+r

]

.

From the fact thatK(1)
µ+r+1e1 is orthogonal toV (0)

µ and thatR(1)
µ+r+1e1 = e1, we obtain

H̄s =

[

H
(0)
µ (V

(0)
µ )TK

(1)
µ+r+1C̄µ+r

hµ+1,µe1e
T
µ R

(1)
µ+r+1C̄µ+r

]

,

which is a Hessenberg matrix. The first part of Proposition3.1 is thus proved and the second
part is similar to the previous proof.

In GMRES with theµ-step Newton basis, it is useful to control the conditioningof the
basis generated with the Newton polynomials by choosing a suitable value ofµ. On multicore
nodes, a well-chosen value ofµ will also improve the data locality during the computation of
the kernel computations (generation of the basis and orthogonalization) [16, 24]. The draw-
back of this formulation is that when the new set of basis vectors is orthogonalized against
all the previous vectors already computed, it is important to perform aQR factorization up-
date. Sometimes when a block Gram-Schmidt process is used, areorthogonalization strategy
should be performed to avoid a loss of orthogonality; see, for instance, [25]. This process
induces more computational cost as the number of stepst increases. As for the scalar for-
mulation, the augmented basis will thus help to reduce this cost by reducing the number of
stepst. We do not further investigate reorthogonalization, and wefocus in this paper on the
basic implementation of a(µ+ r)-step augmented Newton basis.
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Algorithm 1 AGMRES(m, r): Augmented Newton-basis GMRES.
Require: x0,m, itmax, ǫ, r, l, rmax, smv, bgv;

1: Perform one cycle of GMRES(m) [41, Algorithm 4] to find a new approxima-
tion xm, the residualrm, and the matricesHm and Vm satisfying equation (1.4).
if (‖rm‖ < ǫ) return

2: Setx0 ← xm andr0 ← rm; β = ‖r0‖;
3: Compute m Ritz values{λj}

j=m
j=1 of AM−1 from Hm and order them with the Leja

ordering [6].
4: If (r > 0) extractr Ritz vectorsUr for the augmented basis.
5: while (‖r0‖ > ǫ) do
6: Compute the basis vectors of equation (3.2) [19, 42] to getKm+1 andT̄m.
7: Compute K̂r andDr using the second part of equation (3.2).
8: Compute theQR factorization

[

Km+1 K̂r

]
= Vs+1Rs+1.

9: DeriveWs =
[
Vm Ur

]
.

10: Compute the(s+ 1)× s Hessenberg matrix̄Hs from equation (3.5).
11: Solveys = min ‖βe1 − H̄sy‖2.
12: Computexs = x0 +M−1Wsys, rs = b−Axs, it← it+ s.
13: if (‖rs‖ < ǫ or it > itmax) return
14: Setx0 ← xs andr0 ← rs;
15: if r > 0 then
16: Iter = s ∗ log

(
ǫ

‖rs‖

)

/log
(

‖rs‖
‖r0‖

)

17: if (Iter > smv ∗ (itmax− it)) then
18: if ((Iter > bgv ∗ (itmax− it)) and (r < rmax) and (l > 0)) then
19: r ← r + l /*Increase the number of eigenvalues to deflate*/
20: end if
21: Replace the r approximate eigenvectorsu0, u1, . . . , ur−1 by r harmonic Ritz

vectors ofB ≡ AM−1.
22: end if
23: end if
24: end while

3.2. AGMRES: Augmented Newton-basis GMRES.In this section we discuss the
parallel implementation of the GMRES method where the Newton basis is augmented with a
few approximate eigenvectors. The main steps are outlined in Algorithm1.

If we compare AGMRES with the related implementations of theGMRES method, we
can make the following observations.

• Compared to the standard GMRES method, AGMRES produces kernels that are bet-
ter suited for parallel computations during the generationof the orthogonal Krylov
basis in steps6 and8. However, in addition to the basisVm+1, it keeps2r vec-
torsUr andV̂r. It is thus worth mentioning that AGMRES(m, r) requires as much
memory as GMRES(m + 2r). Nevertheless, our numerical experiments indicate
that, on most test cases, AGMRES(m, r) produces a better convergence acceleration
than GMRES(m+ 2r) and even GMRES(2m).

• The GMRES-E of Morgan [31] keeps a second basis as well. However its imple-
mentation is based on the Arnoldi process. It will thus communicate more for the
same convergence behavior. Our implementation includes anadaptive strategy that
allows us to increase the number of extracted eigenvectors if necessary.
• Compared to CA-GMRES of Hoemmen [24], our implementation is limited to oneµ-

step Newton basis. However, in the previous section we have shown how an aug-
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mented basis can be defined for more than oneµ-step basis. For the same restart
length, CA-GMRES(µ, t) and GMRES(µ · t) produce the same convergence behav-
ior. AGMRES(µ · t, r) is more likely to produce a faster convergence than these two
approaches when the convergence rate is affected by the restarting procedure.

So far, the algorithm starts with an initial approximation of the solution vectorx0 (in
practice, we use a zero vector), the sizem of the Krylov basis, the maximum number of
iterationsitmax allowed, and the desired accuracyǫ. The remaining input values are used
for the augmented basis: the number of eigenvectorsr that are added at each step and the
parametersl, rmax, smv, and bgv for the adaptive strategy; see Section3.2.6. The main
steps of the algorithm are the computation of the shifts (steps 1 and3), the generation of
the augmented Newton basis at step6, and its orthogonalization at step8. The approximate
solution is updated at step12. At step21, the Ritz vectors are recomputed in order to add
them to the Newton basis. The adaptive strategy is implemented in steps15–23. All these
steps are explained in the next sections.

3.2.1. Computation of the shifts.The generation of the Krylov subspace with the New-
ton polynomials uses the scalarsλj , j = 1, . . . ,m to produce a stable basis. Bai et al. [6]
have shown that a good choice would be to use the eigenvalues of B numbered according to
the following modifiedLeja order(see [38])

|λ1| = max
j=1,...,m

|λj |

j
∏

k=1

|λj+1 − λk| = max
l=1,...,m

j
∏

k=1

|λl − λk|, j = 1, . . . ,m− 1.

In practice, the spectrum ofB is not available and very expensive to compute. In this situa-
tion, the Ritz values ofB, which are the eigenvalues of the Hessenberg matrixHm in equa-
tion (1.4), are used. This implies thatm steps of the Arnoldi process should be performed
to find these values. At step1, we perform one cycle of the Arnoldi-GMRES method. From
this we get an approximation of the solutionxm and the associated residualrm. This vector
is used as the initial search direction for the Newton-basisGMRES in step5. At step3, each
process computes the eigenvalues of its own copy of the Hessenberg matrixHm and orders
them with the Leja ordering. This step so far uses the parallelism inside the matrix-vector
product and the preconditioning operation. But it requiresglobal communication as pointed
out in Section1. Note that whenm gets large, it may be expensive to perform this Arnoldi-
GMRES step . The cost here is comparable to one step of the Newton basis GMRES mainly in
terms of granularity and the volume of MPI messages. In practice, we use a small value ofm
to show the benefits of augmenting the basis. Nevertheless, if a large basis is used, a solution
could be to employ aµ-step basis as explained in the previous section. Another solution, as
advised by Philippe and Reichel [37], is to perform one cycle of an Arnoldi-GMRES with a
smaller basis to get a subset of these values. From this subset, a convex hull is defined and
continuously updated with new values collected during the Newton-basis GMRES iterations.

3.2.2. Computation of the Newton basis with scaling factors. The firstm+1 vectors
of Ks+1 can be generated using Algorithm 1.1 in [42]; then it is easy to generate the lastr
vectors fromUr. Note that when a particular eigenvalueλj+1 is complex and assuming
that Im(λj+1) > 0 (such a case always exists by considering the complex conjugate pairs
of eigenvalues and the modified Leja ordering), the complex arithmetic is avoided by writing
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the first part of equation (3.2) as

σj+1kj+1 = (B − Re(λj+1))Ikj

σj+2kj+2 = (B − λj+1I)(B − λ̄j+1I)kj = σj+1(B − Re(λj+1)I)kj+1 + Im(λj+1)
2kj .

In this case, the matrix̄T ∈ R
s+1×s in the equations (3.1) and (3.8) is tridiagonal. So far,

the scalarsσj , j = 1, . . . ,m in (3.1) are used to control the growth of the vectors{kj}
j=m
j=1 .

The common choice is to takeσj = ‖kj‖. The parallelism inside this step is kept by the
preconditioning and the parallel matrix-vector operations(AM−1−λI)k ≡ A(M−1k)−λk.
Whenσj = ‖kj‖, then there are(m + r) global communications, which are far fewer than
the 1

2 (m
2 + 3m) global communications in the Arnoldi process. For some particular cases,

this norm can be computed distributively. When using for instance the explicit formulation
of the multiplicative Schwarz procedure, the basis vectorsare computed in a pipeline across
all the subdomains. Each process is thus able to compute its own contribution to the norm
and the basis vectors are normalizeda posteriori[4, 33]. When the size of the basis is small
enough, the rows and columns of the matrix can be equilibrated and no scaling, thus no global
communication, is needed during the computation of the basis vectors [24].

3.2.3. Orthogonalization of the basis.After the basis vectors have been computed,
they should be orthogonalized amongst each other at step8 of Algorithm 1 to produce the or-
thogonal systemVs+1. At the end of step6, the vectorsKs+1 are distributed on all processors
as a contiguous block of rows which is equivalent to the classical 1D row-wise partitioning
for the matrix-vector products. Any algorithm for paralleldenseQR factorization can now
be used to orthogonalize the systemKs+1. In our implementation, we use the RODDEC
algorithm described in [42, Section 4.2]. This method performs first a Householder orthogo-
nalization on each block of rows. This is done in a perfect parallel phase by all the processes
having the rows. After that, Givens rotations are used to annihilate the blocks below the first
one. During this second step, the processors are placed on a ring topology and each process
sends the required data on this ring. This step requiresO(m2) point-to-point messages on a
ring topology, and the average message length is1

2 (m + 1) double precision numbers. The
approach advocated in [13] maps the processors on a binary tree to eliminate the extra trian-
gular factors of RODDEC. The TSQR algorithm of Demmel et al. [16], which gives a more
general divide-and-conquer algorithm, can be used as well at this step. It requiresO(log(P ))
MPI messages, whereP is the total number of MPI processes sharing the systemKs+1.

3.2.4. Updating the current approximation. At the end of theQR factorization, the
triangular matrixRs of equation (3.4) is usually available on one process. In the RODDEC
algorithm, it is available in the last process. It can be broadcasted to all other processes such
that the steps10 and11 are done by all the processes. When the number of MPI processes
gets large, it is more efficient to perform these steps on the last process and to broadcast
only the result of the least-squares problem at step11. In our implementation, we choose
to send a copy of the matrix since it is required by all processes to update the eigenvectors;
see Section3.2.5. So far, the Hessenberg matrix̄Hs is assembled fromRs and T̄s using a
modification of Algorithm 1.2 in [42]. The modification allows us to take into account the
scaling factors of the augmented vectors in the basis. AQR factorization is performed on the
output Hessenberg matrix to solve the least-squares problem in the minimization step. The
LAPACK routinedgeqrf is applied for this purpose. The output solution is used to compute
the new approximate solution at step12. Note that since we are using right preconditioning,
we can obtain an estimate of the true residual norm without explicitly computing the residual
vectorrs. Nevertheless, at the time of restart, we needrs for the new search direction.
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3.2.5. Updating the eigenvectors.When the iterative process starts at line16 of Algo-
rithm 1, the eigenpairs (uj , λj) of B ≡ AM−1 are approximated using the first GMRES(m)
cycle with a standard projection technique as follows,

V T
m (B − λjI)Vmgj = 0,

leading to the eigenvalue problem

Hmgj = λjgj .

The Ritz valuesλj , j = 0, . . . ,m− 1, are used as shifts for the Newton basis and the vectors
corresponding to ther smallest eigenvaluesuj = Vmgj , j = 0, . . . , r−1, are used to augment
the Newton basis.

Then in order to change the vectorsUr at step21, we use a Rayleigh-Ritz procedure. In-
deed, as advised by previous studies [12, 31], this procedure does better at finding eigenvalues
near zero. Using the augmented subspaceCs, each extracted approximate eigenvectoru is ex-
pressed asu = Wsgi. UsingBWs andWs, the Galerkin condition becomes

(BWs)
T (B − λjI)Wsgj = 0.

It follows from relation (3.1) that

H̄T
s H̄s

︸ ︷︷ ︸

Gs

gj = λj H̄
T
s V

T
s+1Ws

︸ ︷︷ ︸

Fs

gj .

We thus obtain a dense generalized eigenvalue problem of size s × s where(λj ,Wsgj) is a
harmonic Ritz pair ofB. Multiplying Fs andGs byH−T

s , we get

H−T
s Gs = H−T

s

[
HT

s αes
]
[
Hs

αeTm

]

= Hs + h2
s+1,sH

−T
s ese

T
s ,

H−T
s Fs =

[
Is hs+1,sH

−T
s es

]
V T
s+1Ws,

with V T
s+1Ws =

[
V T
s+1Vm V T

s+1Ur

]
andV T

s+1Vm =

[
Im
0

]

.

The overhead here is small since it induces onlyr dot products of sizen and a small
generalized eigenvalue problem.

If the basis ofCs is equal to
[
Km Ur

]
, then the overhead is larger since it involvess dot

products. Nevertheless, in most test cases the numerical experiments show that when the
convergence is accelerated by deflation, the time to update the approximate eigenvectors is
negligible compared to the total time saved without the deflation. Moreover, the adaptive
strategy proposed next sets off deflation only if the convergence is too slow.

3.2.6. Adaptive strategy.When the desired accuracy is not achieved, the method restarts
and r new approximate eigenvectors (corresponding to the eigenvalues to deflate) are ex-
tracted from thes-dimensional subspaceCs. This process may become expensive and is not
beneficial if the convergence rate is not improved enough. Wethus propose an adaptive strat-
egy which detects if the deflation process will be beneficial to speed up the convergence or to
avoid stagnation. This approach is based upon the work by Sosonkina et al. [47], which has
been used successfully in another formulation of the deflated GMRES [35]. At line 16, based
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on the convergence rate already achieved, we estimate the remaining number of steps (Iter)
needed to reach the desired accuracyǫ. We use a small multiple (smv) of the remaining
number of steps to detect some insufficient reduction in the residual norm. If it is greater
than a small multiple (smv) of the number of steps allowed (itmax), then we switch to the
deflation. We use a large multiple (bgv) of itmax to detect near-stagnation in the iterative
process. In this case, the number of eigenvectors to augmentis increased by a fixed (small)
value. Clearly with the parametersr, l, Iter, smv, bgv, the adaptive strategy can be sketched
as follows:

• If Iter ≤ smv ∗ itmax, then the convergence rate is good enough and no more
update should be done on the eigenvectors already computed.

• If smv ∗ itmax < Iter ≤ bgv ∗ itmax, then there is an insufficient reduction in the
residual norm and ther eigenvectors are updated for the next cycles of AGMRES.

• If Iter > bgv ∗ itmax, then stagnation may have occurred and we increase the
number of eigenvalues to extract/update by a fixed numberl. This can be changed
at runtime by the user. Unless stated otherwise, we usel = 1 in all our test cases.

Note that there are more sophisticated methods to ensure that for some given values ofm,
GMRES(m) (and thus AGMRES(m)) will not stagnate; see, for instance, [44, 46]. Our cur-
rent stagnation test is computeda posterioriand should be mostly used to detect a very slow
reduction in the residual norm. Although the proposed parameters are problem dependent,
they can be useful to avoid the stagnation if there is some previous knowledge about the con-
vergence behavior for the problems under study. Some numerical results are given in this
sense in the next section.

4. Numerical experiments. This section presents some numerical results to show the
parallel efficiency and the numerical robustness of the proposed approach. We first present
the template for all the numerical tests in Section4.1and the test cases in Section4.2.

4.1. Test routines and implementation notes.Implementations are done using the
PETSc routines and data structures [7, 8]. Algorithm 1 has been implemented by aKSPmod-
ule called AGMRES using a locally modified version of PETSc revision 3.1.p8. It uses rou-
tines for matrix-vector product evaluation, the application of the preconditioner, and the other
parallel linear algebra functions. Algorithm1 can be used transparently with any precondi-
tioner implemented in the package including the domain decomposition preconditioners. We
use the Restricted Additive Schwarz (RAS) method [11] applied as a right preconditioner in
all our tests. The main steps are outlined in Algorithm2.

Algorithm 2 Test routine for the parallel computation of the system (1.2) using the Restricted
Additive Schwarz method and the GMRES-based accelerator.

1: Read the matrix from a binary file and store it in a distributedCSR format. Read the
right-hand side vector and store it accordingly.

2: Perform parallel iterative row and column scaling on the matrix and the right-hand side
vector [3].

3: Partition the weighted graph of the matrix in parallel with PARMETIS.
4: Redistribute the matrix and right-hand-side according to the PARMETIS partitioning.
5: Define the overlap between the submatrices for the additive Schwarz preconditioner.
6: Set up the submatrices (ILU or LU factorization using MUMPS [2]).
7: Iteratively solve the system using either the KSP AGMRES (Algorithm1) or the PETSc

built-in KSP GMRES [41, Algorithm 4].
8: Write the solution vector to a binary file.
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Note that at step7 of our test routine, we compare AGMRES with the classical imple-
mentation of GMRES. As stated earlier, either classical Gram-Schmidt or modified Gram-
Schmidt can be used for the Arnoldi process. The main advantage of CGS over MGS is the
number of MPI messages, the amount of MPI reductions, and thegranularity in the compu-
tational kernel. However, a practical implementation of CGS includes a possible refinement
strategy to be as stable as MGS. During our numerical experiments, however, this refine-
ment was not used in CGS, and we did not notice any difference between GMRES-MGS and
GMRES-CGS. We therefore present the results of GMRES with CGS. Unless stated other-
wise, the stopping criterion of GMRES and AGMRES is‖b−Ax‖

‖b‖ < 10−10 and the maximum
number of iterations is 1000. In AGMRES, the residual norm iscomputed only at each outer
iteration. In GMRES, it is available during each inner iteration. Note that since we are using
a right preconditioner, this residual norm is obtained cheaply from the Givens rotations that
are used to transform the Hessenberg matrix in (1.5) into a triangular matrix.

In the following, since right preconditioning is used, the number of iterations is under-
stood as the total number of matrix-vectors products and preconditioning steps. Hence in
GMRES(m), it is equivalent to the counts ofA(M−1k). In AGMRES, it is equal to the size
of the augmented basis times the restart cycles. So far, AGMRES(m) refers to the Algorithm1
without the deflation (i.e.,r = 0, l = 0). In AGMRES(m, r), r vectors corresponding to the
smallest harmonic Ritz values are added to the basis and replaced at each restart. With the
adaptive strategy, whenever it is necessary,r is increased byl = 1 (unless stated otherwise).
In the numerical experiments, the basis of the augmented subspaceCs is equal to

[
Km Ur

]
.

4.2. Test problems.The matrices of the test problems arise from industrial applications
in fluid dynamics and from convection-diffusion problems. The main characteristics are listed
in Table4.1.

The problems IM07R, VV11R, and RM07R arise from design optimization in com-
putational fluid dynamics simulations. They are provided bythe FLUOREM company, a
CFD software editor4. Table4.1 lists the coefficient matrices with their main characteristics.
The physical equations are the Reynolds-Averaged Navier-Stokes equations for compressible
flows discretized using the finite volume methods as presented in [36]. The resulting matrix
is comprised byb × b blocks, whereb is the number of fluid conservative variables (den-
sity, velocity, energy, and turbulent variables). The matrix RM07R is available online in the
University of Florida sparse matrix collection (see [14]) in the FLUOREM directory. The
matrix is structurally symmetric in the blocks. Regarding the values, the matrix is nonsym-
metric and indefinite. In [34, 36], preliminary studies have shown that hybrid solvers basedon
GMRES and Schwarz-based preconditioners offer robust approaches to solve these systems
efficiently. As pointed out in [36], we avoid the ILU factorization in the subdomain matrices
because of its unpredictable behavior. We therefore rely ona direct solver (MUMPS) within
each subdomain.

The test cases 3DCONSKY_121 and 3DCONSKY_161 correspond tothe convective
SkyScraperproblem in [1, 29]. The physical equation is given by the boundary value problem

div(a(x)u)− div(κ(x)∇u) = f in µ

u = 0 on∂µD

∂u

∂n
= 0 on∂µN ,

whereµ = [0, 1]3, ∂µN = ∂µ\∂µD. The tensorκ is isotropic and discontinuous. The
domain contains many zones of high permeability which are isolated from each other. Let[x]

4www.fluorem.com/en/softwares/optimization/turb-opty-cfd

www.fluorem.com/en/softwares/optimization/turb-opty-cfd
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TABLE 4.1
Characteristics of test matrices, N: number of rows/columns, NNZ: nonzero entries.

Matrix N NNZ geometry

IM07R 261,465 26,872,530 3D
VV11R 277,095 30,000,952 3D
RM07R 272,635 37,355,908 3D

3DCONSKY_121 1,771,561 50,178,241 3D
3DCONSKY_161 4,173,281 118,645,121 3D

denote the integer value ofx. Thenκ is given in 3D by

κ(x) =

{

103 ∗ ([10 ∗ x2] + 1) if [10 ∗ xi] = 0 mod(2), i = 1, 2, 3,

1 otherwise.

For the numerical tests, the right-hand side is set tof = x2
1 + x2

2 + x2
3 and the velocity

field to a = (1000, 1000, 1000)T . The discretization is done using P2-type finite element
methods in the Freefm++5 package. We consider a uniform grid withn × n × n nodes and
choosen = 121 and161. During our experiments, we rely on theILU(1) factorization to
approximate the solutions on the subdomains induced by the additive Schwarz method.

4.3. Platform of tests. Experiments are done on a distributed memory supercomputer
VARGAS6 which has 3584 Power6 CPUs. Each Power6 CPU is a dual-core 2-way SMT
with a peak frequency at 4.7 GHz. The computer is made of 112 nodes connected through an
Infiniband network. Each node has 32 Power6 CPUs that access 128 GB of local memory in a
non-uniform way (hardware NUMA nodes). The memory accessedby a single MPI process
is limited to 3.2 GB for the data and 0.5 GB for the stack.

4.4. Analysis of convergence for the matrix RM07R.We first consider the large test
case RM07R from the FLUOREM collection and compare AGMRES(m, r) with GMRES(m).
We first use AGMRES without deflation (r = 0). The goal is to confirm that the two methods
have the same convergence behavior for a reasonable restartlength. After that, we show the
benefits of using deflation when the restart length in AGMRES is small and when the number
of subdomains increases. We finish this section by stating the benefits of using an adaptive
strategy.

In Figure 4.1, we plot the convergence of GMRES(m) and AGMRES(m) with three
restart lengths,m = 32, 48, and64. The number of subdomains is 32 and the LU factorization
is used within the subdomains. The first remark on Figure4.1is that there is no real difference
between the residual norm obtained from the two strategies.Secondly, the convergence curve
for GMRES(m) indicates periodic stagnation in the iterative process. These ticks occur at the
time of restart and are more visible whenm is small, hence the larger number of iterations.
These ticks suggest that some information is lost at the timeof restart and that the augmented
basis could be beneficial to improve the convergence rate in these cases. The other test cases
show a similar behavior.

Now we show the impact of deflation by augmenting the basis. InFigure 4.2, we
display the convergence history of GMRES(m) and AGMRES(m, r) with m = 32, 48,
andr = 2, that is we compute two approximate eigenvectors at each restart and use a basis of
sizes = m+ 2. The number of subdomains is still 32. The adaptive strategyis not used at

5http://www.freefem.org/ff++/index.htm
6http://www.idris.fr/su/Scalaire/vargas/hw-vargas.html

http://www.freefem.org/ff++/index.htm
http://www.idris.fr/su/Scalaire/vargas/hw-vargas.html
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FIG. 4.1.RM07R: Influence of the restart length in AGMRES and GMRES, 32subdomains.
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FIG. 4.2.RM07R: Influence of the augmented basis in AGMRES over GMRES,32 subdomains.

this point. It can be clearly noticed that adding only two eigenvectors to the basis is sufficient
to speed up the convergence in AGMRES. For instance, GMRES(32) requires 886 itera-
tions while AGMRES(32,2) needs only 272 iterations. When we increase the restart length
to 48, GMRES benefits greatly and requires 355 iterations to reach the desired accuracy while
AGMRES(48,2) needs 250 iterations. The general remark hereis that AGMRES(32,2) and
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FIG. 4.3.RM07R: Influence of the number of subdomains on the convergence of GMRES. The restart length is
fixed and the benefits of the augmented basis in AGMRES is clearly visible.

TABLE 4.2
RM07R: Number of iterations with GMRES(m), AGMRES(m, 2), and AGMRES(m, 4) as a function of the

number of subdomains in the Restricted Additive Schwarz.

KSP GMRES(m) AGMRES(m, 2) AGMRES(m, 4)
❍

❍
❍
❍
❍

D
m

32 48 64 32 48 64 32 48 64

8 93 70 57 100 98 57 105 100 57
16 254 169 123 169 148 130 177 153 132
32 886 355 220 272 250 196 212 205 200
64 - 702 445 311 303 265 287 258 270

AGMRES(48,2) have almost the same convergence rate while GMRES is more sensitive to
the restart length. This is more visible when the number of subdomains vary.

The robustness of Schwarz preconditioners decreases as thenumber of subdomains in-
creases. GMRES will thus require more and more iterations, particularly if the restart length
is fixed. We show this behavior in Figure4.3, where the restart length is fixed and the num-
ber of subdomains is increased. Clearly, as expected, the number of iterations in GMRES
increases as we add more subdomains. For instance, GMRES(32) requires 886 iterations
with 32 subdomains. With 64 subdomains, we carry out 1000 iterations without reaching the
prescribed tolerance of10−10. In AGMRES(m, r), there is no such difference. As we in-
crease the number of subdomains, we observe that the convergence rates remain quite close.
Indeed, AGMRES(32,2) requires respectively 272 and 311 iterations for 32 and 64 subdo-
mains. The fact that the number of iterations increases onlyslightly when increasingD has
great impact on the scalability of AGMRES. We give timings inthe next section.

In GMRES, a better convergence rate can be obtained if the restart length is increased
as a function of the number of subdomains. We show in Table4.2 that in such a case, it is
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still beneficial to have an augmented basis in AGMRES. These results can be divided into
three parts:

1. With 8 subdomains, GMRES needs fewer iterations than AGMRES for all values of
the restart length. Note that this difference is mainly due to the fact that the stopping
test is computed only at each outer cycle in AGMRES. The accuracy achieved in
AGMRES for these cases is always better. Typically, AGMRES gives an accuracy
of 10−14 in the computed residual while it is10−11 for GMRES.

2. For the same reasons, AGMRES needs more iterations than GMRES for 16 subdo-
mains and a large value ofm. However, for small values ofm, AGMRES is clearly
better than GMRES.

3. For 32 subdomains, AGMRES needs fewer iterations than GMRES for all restart
lengths. The dash in GMRES(32) for the 64 subdomains indicates that the desired
accuracy has not been reached within the 1000 iterations allowed. On the contrary,
it requires only 300 iterations for AGMRES(m, r) to converge.
Thus, the main empirical conclusion from these experimentsand others not reported
here is that AGMRES is less sensitive to the restart length and the number of subdo-
mains than GMRES. On the other hand, AGMRES is rather sensitive to the number
of extracted eigenvectors. As for the basis size, it is indeed difficult to know how
many vectors should be added to the basis to improve convergence. Ifr (the number
of eigenvectors to be added) is very large, the process of updating the eigenvec-
tors could add more overhead. Ifr is small, deflation might not be beneficial. The
proposed adaptive strategy provides a trade-off between these two bounds.

If some information about the convergence behavior has beencollected before, then it can
be used to define thesmv andbgv parameters in an adaptive strategy. Our goal is to show that
this technique can be used to speed up the convergence by adaptively adjusting the frequency
and the number of extracted eigenvalues. We take the smallest restart lengthm = 32, a large
number of subdomains, and the smallest number of harmonic Ritz vectorsr = 1. Yet, we
know fromD = 16 that GMRES(32) and thus AGMRES(32) needs roughly 254 iterations.
From the adaptive strategy, we still set the maximum number of iterationsitmax = 1000
but now we setsmv = 0.1 andbgv = 0.2. As explained in Section3.2.6, smv × itmax
defines the lower bound below which it is not beneficial to use an augmented basis, and the
productbgv × itmax defines the upper bound beyond which slow convergence rate isex-
pected and some action should be done. In this last case, we increaser by a fixed valuel.
We takel = 2 in this case. Figure4.4 displays the convergence history of AGMRES(m, 1)
with m = 24 andm = 32. It can be observed that whenr = 1 and without an adaptive
strategy, the augmented basis does not contain enough spectral information to speed up the
convergence. Whenr is adaptively increased, the basis recovers more and more spectral in-
formation and the convergence rate gets better. At convergence, for instance, we obtainr=3
and r = 5, respectively for AGMRES(24,1) and AGMRES(32,1) with the adaptive strat-
egy, whiler = 1 for the non-adaptive strategy. It should be noted, however,that the actual
limitation of the proposed adaptive strategy is the choice of the appropriate values ofsmv
andbgv. It is heuristic and problem-dependent. Nevertheless, if there is some experimental
knowledge available about the convergence of GMRES on similar problems, a good inter-
val arounditmax can be set bysmv andbgv to detect near-stagnation and to switch to the
augmented basis.

4.5. Convergence analysis for the other matrices.Table 4.3 reports the number of
iterations for the two test cases IM07R and VV11R. For AGMRES(m, r) we user = 2 and
adaptively increase it untilrmax = 5. As noted before, we observe that for a fixed value
of m, the number of iterations increases asD increases. It increases faster for GMRES than
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TABLE 4.3
VV11R & IM07R: Number of iterations with GMRES(m), AGMRES(m, r) as a function of the number of

subdomains in the Restricted Additive Schwarz;r is adaptively increased untilrmax = 5.

KSP GMRES(m) AGMRES(m, 2)
❍
❍

❍
❍
❍

D
m

24 32 48 24 32 48

VV11R
8 251 191 147 248 172 146

16 499 458 288 492 304 207
32 - 957 670 641 541 516

IM07R
8 240 235 189 249 203 195

16 695 623 521 378 370 316
24 927 913 759 492 444 408
32 - - 833 724 629 579

for AGMRES. We note here again that deflation is needed to reach a good accuracy for large
values ofD. For the IM07R test case, for instance, and for 32 subdomainsin the additive
Schwarz method, neither GMRES(24) nor GMRES(32) can produce the desired accuracy
while AGMRES(32) requires 724 iterations to converge.

We end this section by considering the two matrices arising from the convection-diffusion
problem. In Table4.4, we report on the number of iterations. Unlike the previous test cases,
here GMRES is less sensitive to the restart parameter and thevariation of subdomains. Hence
the augmented basis is not as beneficial for the convergence as it was before. Nevertheless,
AGMRES is still faster than GMRES if we consider the parallelefficiency. This is the topic
of the next sections.
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TABLE 4.4
Number of iterations with GMRES and AGMRES for the test problems 3DCONSKY_121 and 3DCONSKY_161.

Matrix 3DCONSKY_121 3DCONSKY_161
❍
❍
❍
❍
❍

D
m

GMRES(16) AGMRES(16,1) GMRES(16) AGMRES(16,1)

16 158 169 229 177
32 164 141 251 177
64 170 141 261 177

128 180 141 262 177
256 202 159 266 195

4.6. Analysis of the CPU time. To better show the benefits of using an augmented
subspace approach with the Newton basis, we analyze the timing results in this section. The
paramount goal when showing these results is that, as we increase the number of subdomains,
we should be able to get a decrease in the iterative time. In GMRES(m) and AGMRES(m),
the best way is undoubtedly to increase the restart length aswell. Even then, the time will
not decrease efficiently because of the negative effects of the restarting procedure and the
weakness of the one-level Schwarz preconditioner. In AGMRES(m, r), only a few extracted
Ritz vectors are sufficient to decrease the time and obtain a significant efficiency.

Table4.5 compares GMRES(m), AGMRES(m), and AGMRES(m, r) for the test case
RM07R by varying the number of subdomainsD, the restart lengthm, and the number of
harmonic Ritz valuesr, which increases adaptively untilrmax = 5. The number of MPI
processes is equal to the number of subdomains. The total time is the CPU time required to
perform all the steps in Algorithm2. The iterative time is the time spent in step7. The set up
time is the difference between the two times. It is independent of the method and ofm. It de-
creases whenD increases because the subdomains become smaller and theLU factorizations
are faster. Thus from now on, we focus on the iterative time. The time per iteration is the
time of one cycle divided by the number of matrix-vectors products in the cycle, which ism
orm+r. It includes the time to compute the orthonormal basis (withArnoldi GMRES orQR
factorization for AGMRES) and the time to update the eigenvectorsU for AGMRES(m, r).
The iterative time is thus the product of the time per iteration and the number of iterations.
The behavior of both GMRES(m) and AGMRES(m) is similar. Increasingm has two op-
posite effects: it decreases the number of iterations (in some cases, the number of cycles
remain the same for AGMRES) and increases the time per iteration because of the orthogo-
nalization steps. Thus in most cases, there is an optimal value ofm, which depends onD,
with a minimal solution time. IncreasingD has also two opposite effects but in the reverse
way: it increases the number of iterations and decreases thetime per iteration, thus there is in
general an optimal value ofD, which depends onm. Even though their behavior is similar,
AGMRES(m) clearly performs faster than GMRES(m) for all but one configuration. This is
mainly due to a faster time per iteration thanks to a more efficient parallel algorithm. This is
explored in the next section by analyzing the communicationvolume.

The objective of deflation in AGMRES(m, r) is two-fold: to get an algorithm that is less
sensitive tom and to increase the number of subdomains (thus the number of MPI processes).
ForD fixed, there is still an optimal value ofm but it is smaller. The iterative time decreases
from D = 8 until D = 64. Thus, our method allows us to choose a small value ofm and
to reduce the CPU time with a large number of subdomains. We get indeed a more efficient
parallelism because the number of iterations does not inflate. Clearly, AGMRES(m, r) gives
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TABLE 4.5
Timing statistics for RM07R.D: number of subdomains and number of MPI processes, Total Time: CPU

elapsed time in seconds, Iter. Time: CPU time in the iterative phase, Time/Iter: average time spent in each iteration
(matrix-vector product and preconditioning step), MSG: MPI messages and reductions. With AGMRES(m, r), r is
adaptively increased untilrmax = 5.

D Algo. Total Time Iter. Time Time/Iter MSG (×104)
8 GMRES(32) 427.3 327.33 3.52 1.74

GMRES(48) 386.1 291.64 4.166 1.41
GMRES(64) 358.1 264.58 4.64 1.03
AGMRES(32) 358.5 263.08 2.74 1.3
AGMRES(48) 369.1 271.9 2.832 1.45
AGMRES(64) 329.4 236.76 4.228 1.23
AGMRES(32,2) 347.4 257.11 2.624 1.32
AGMRES(48,2) 373.1 277.98 2.837 1.48
AGMRES(64,2) 329.4 236.76 4.228 1.23

16 GMRES(32) 379.3 349.97 1.378 13.1
GMRES(48) 333.1 302.66 1.791 9.05
GMRES(64) 286.8 257.03 2.09 6.88
AGMRES(32) 305.8 276.1 1.079 8.1
AGMRES(48) 263.0 230.5 1.201 6.78
AGMRES(64) 256.8 227.82 1.78 5.56
AGMRES(32,2) 224.1 193.39 1.316 9.84
AGMRES(48,2) 240.9 210.56 1.376 10.01
AGMRES(64,2) 231.4 201.05 1.547 5.66

32 GMRES(32) 573.4 557.13 0.629 96.25
GMRES(48) 239.5 223.54 0.63 39.74
GMRES(64) 158.4 139.2 0.633 25.38
AGMRES(32) 273.0 256.91 0.287 54.97
AGMRES(48) 167.1 150.84 0.393 25.93
AGMRES(64) 131.4 114.83 0.449 19.42
AGMRES(32,4) 91.41 75.23 0.357 31.83
AGMRES(48,4) 94.79 79.028 0.38 33.9
AGMRES(64,4) 99.45 83.148 0.406 32.24

64 GMRES(32) - - - -
GMRES(48) 214.8 204.16 0.291 227.02
GMRES(64) 165.6 156.44 0.352 145.69
AGMRES(32) - - - -
AGMRES(48) 167.0 157.72 0.219 132.42
AGMRES(64) 97.87 86.066 0.192 88.67
AGMRES(32,4) 62.39 52.839 0.202 101.53
AGMRES(48,4) 67.0 57.733 0.22 110.99
AGMRES(64,4) 63.15 53.788 0.203 116.08

the smallest CPU time. These results are confirmed with othertest cases shown in Table4.6
and Figures4.5and4.6.

It is better for GMRES(m) to choose a small number of subdomainsD and a large restart
lengthm. On the contrary, it is more efficient to choose a large numberof subdomainsD
and a small restart lengthm with our method AGMRES(m, r). Clearly, AGMRES(m, r) is
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TABLE 4.6
Timing statistics for GMRES and AGMRES for the test cases VV11R and IM07R. D: number of subdomains

and number of MPI processes, Iter. Time: time spent in the iterative phase, MSG: MPI messages and reductions.
With AGMRES(m, r), r is adaptively increased untilrmax = 5.

❍
❍
❍

❍
❍

D
m

24 32 48

Iter. Time MSG Iter. Time MSG Iter. Time MSG
GMRES(m)

V
V

11
R

8 92.84 2.05 68.95 1.69 77.7 1.47
16 101.1 12.27 89.37 11.47 63.2 7.66
32 - - 31.2 22.5 29.7 18.54

AGMRES(m, 2)
8 52.8 1.28 38.5 1.02 40.5 1.05

16 51.8 7.4 34.5 4.91 28.08 3.87
32 38.3 25.6 31.2 22.5 29.7 18.5

GMRES(m)

IM
07

R

8 76.219 2.6 73.3 2.63 63.669 2.31
16 111.74 20.06 96.246 18.25 83.583 15.76
32 - - - - 77.066 59.87

AGMRES(m, 2)
8 45.781 1.65 40.905 5.48 40.85 1.52

16 36.492 21.65 34.803 24.12 33.65 23.64
32 33.262 94.54 27.837 93.27 27.109 105.35

16 32 64 128 256
0

5

10

15

20

25

30

35

40

Subdomains

C
P
U
 
T
i
m
e

3DCONSKY_121

 

 

GMRES(16)
AGMRES(16,1)

FIG. 4.5.CPU time for the iterative phase for the 3D121×121×121 convective SkyScraper problem (matrix
size 1,771,561, nonzeros 50,178,241), 16 to 256 subdomains, ILU(1) in subdomains,m = 16, r = 1.
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FIG. 4.6. CPU time in the iterative phase of GMRES and AGMRES for the 3D161 × 161 × 161 convective
SkyScraper problem (matrix size 4,173,281, nonzeros 118,645,121), 16 to 256 subdomains, ILU(1) in subdomains,
m = 16, r = 1.
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FIG. 4.7. Amount of MPI Messages in the iterative phase of GMRES and AGMRES for the convective
SkyScraper problems on the 3D121× 121× 121 and161× 161× 161 grids.

faster than GMRES(m). In order to compare the methods with similar memory requirements,
we choosem = 24 for AGMRES andm = 48 for GMRES, since AGMRES needs to store
the two systemsWs andVs. For all but one value ofD, AGMRES(24, r) is faster than
GMRES(48) for both matrices VV11R and IM07R. This is also true for AGMRES(32, r)
compared to GMRES(64) for the matrix RM07R.

4.7. Analysis of parallelism. Another advantage of AGMRES over GMRES is the
communication volume. In Tables4.5and4.6and in Figure4.7, we have reported the num-
ber of MPI messages exchanged. The counts are done on the Send/Receive routines as well
as the collective communications (Reduce and Broadcast). We do not take into account the
MPI message lengths. It appears that the number of messages is a function of the num-
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ber of subdomains. This is generally reduced by allowing many subdomains to be assigned
to a unique CPU. In the problems under study, this is not feasible in practice as it will in-
duce more iterations as the number of subdomains increases.The communication volume is
obviously proportional to the number of iterations as well.The second observation is that
AGMRES communicates less than GMRES for the same number of subdomains and the
same basis size. As more subdomains are used, the gap betweenthe two methods increases.
For instance, in Table4.5, GMRES on 64 subdomains produces nearly a ratio of 1.5 more
messages than AGMRES. In the augmented basis, the situationis different. At each cycle,
AGMRES(m, r) communicates more than AGMRES(m) because of the computation of the
eigenvectors. However, since a substantial number of iterations is saved by using the aug-
mented basis, we actually observe a better communication inAGMRES(m, r). Now between
GMRES and AGMRES(m, r), the previous analysis holds as well but there are two cases:
when the restart length is very close to the number of subdomains, the communication for
the computation of eigenvectors may dominate if there is no substantial acceleration in the
convergence rate of AGMRES(m, r). This is observed in Table4.6 for VV11R and IM07R.
With a substantial gain in the convergence rate as in Table4.5, AGMRES(m, r) benefits from
that and the communication volume decreases proportionally to the number of iterations. The
second situation occurs when the number of subdomains is very large with respect to the basis
size. Even if there is no substantial acceleration in AGMRES(m, r), the kernel computations
of AGMRES will produce less communication volume than that of GMRES. This is observed
in Figure4.7. As the number of subdomains increases, the difference between the two meth-
ods is more and more pronounced. A fine-tuned adaptive strategy is still required to determine
whether or not to augment the basis.

5. Concluding remarks. We have proposed the AGMRES(m, r) implementation, which
combines the Newton basis GMRES implementation with an augmented subspace technique.
This approach benefits from the high level of parallelism during the kernel computation of
the Krylov basis. The proposed augmented basis reduces negative effects due to restarting
and due to a large number of subdomains.

The numerical results on the VARGAS supercomputer (IBM Power 6 processors) con-
firm that AGMRES communicates less than GMRES and produces a faster solution of large
linear systems. Moreover, for the proposed test cases, AGMRES gives a fairly good conver-
gence rate when a few Ritz vectors are added to the Krylov basis. The proposed implementa-
tion is done in the PETSc package. It thus benefits from the optimized routines for the usual
linear algebra operations on matrices and vectors. Its object-oriented interface allows us to
use transparently any parallel preconditioner implemented in the package based on algebraic
domain decomposition methods or multilevel methods. Indeed it can be used as a smoother
for algebraic multigrid methods [18].

Although the proposed augmented basis behaves well for the presented test cases, there
are some cases where it may not be useful to use. Careful analysis is still needed of the
adaptive strategy to avoid the computation of Ritz vectors.

The proposed augmented basis is combined with a fixed preconditioning matrix. We plan
to combine it with flexible GMRES in a future work.
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