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PARALLELISM AND ROBUSTNESS IN GMRES WITH A NEWTON BASIS AND
DEFLATED RESTARTING *

DESIRE NUENTSA WAKAM AND JOCELYNE ERHEL

Abstract. The GMRES iterative method is widely used as a Krylov subspecknique for solving sparse
linear systems when the coefficient matrix is nonsymmetric adefinite. The Newton basis implementation has
been proposed on distributed memory computers as an altertative classical approach with the Arnoldi process.
The aim of our work here is to introduce a modification based @ffation techniques. This approach builds an
augmented subspace in an adaptive way to accelerate thegenee of the restarted formulation. In our numerical
experiments, we show the benefits of using this implementatidmhwbrid direct/iterative methods to solve large
linear systems.
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1. Introduction. In this paper, we are interested in solving large systemisieét alge-
braic equations

(1.1) Az = b,

whereA is ann x n real nonsingular matrix antlandz aren-dimensional real vectors. In
practical algorithms, the original problerh. () is transformed into the following one

(1.2) M;'AMp's = M; ', &= Mpga,

WhereML_1 andM}g1 are the action of a preconditioning of the system from thig leff, = I),
from the right (M, = I), or both. On parallel computers, we assume that these dézm-
ers are derived from some algebraic decomposition of thetinfatrix. However, they can
be any approximation of the inverse of the matfixand we refer the reader to the survey on
preconditioning technique®]. These preconditioners are generally combined with Krylo
subspace methods as accelerators. The GMRES mettibi jwidely used in this context.
From this method, many improvements have been proposedhtnea its robustness and
parallel efficiency; see, for instance, [L0, 12, 19, 20, 22, 24, 31, 37, 42]. In this work,
we propose a new formulation of this method which combinesrhain approaches, namely
the Newton basis GMRES] and the augmented basis for the restarted GMRES [Our
approach benefits from the enhanced parallelism of the foame the robustness of the lat-
ter. For the sake of clarity, we give here the formulationhef GMRES algorithm as first
proposed by Saad and Schult4].

We consider the right preconditioned matéix= AM ! in this paper. The proposed
algorithms can be derived with little effort for the left panditioned matrix. Flexible pre-
conditioning, which allows for an iterative preconditiorfd89], can be combined with defla-
tion [23]. In this work, we focus on a fixed preconditioning for the s@i simplicity.

Given an initial guess,, the GMRES method finds theth approximate solutior; of
the form

T € xo+ M_lle(B,’f’()),
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wherery = b — Ax is the initial residual vector ankl; (B, 1) is thej-th Krylov subspace
defined as

K;(B,ry) = span{rg, Bro, . . . ,Bj_lro}.

The goal behind GMRES is to minimize at each step the Euclideam of the residual, i.e.,

1.3 b— Az;|| = i b— Aul|.
(13) o= Azl = - min b= A
An orthonormal basi¥; 1 = [vo, ..., v;]* of K;11(B, o) is generated such that
To

(1.4) v = B=lrol, BV; =Vjs1Hji1; = V;Hj + hij1 3v5e; -

Ea
It can be shown4(Q] that (1.3) reduces to

(1.5) |Ber — Hjt1,5y;]l = min [|Ber — Hjy1 5yl
yeRI

and the approximate solutiary can be written as
l’j = X0 =+ Mﬁlvvjyj.

Our work combines two improvements of this method. In GMREJ(the method
restarts at some step to reduce storage and computational requirements as ttatidte
proceeds. The deflated and augmented approaéhés,[22, 27, 31] keep some useful in-
formation at the time of the restart to enhance robustnessbn&fly review these methods
in Section2. The second improvement builds the orthonormal basis wiparallel algo-
rithm that reduces the number of exchanged MPI messagesuitbdied-memory comput-
ers. Indeed, the time to exchange a MPI message ofrsi@erds is given byy + ¢ - n,
where~ is the network latency (in seconds) afiés the inverse bandwidth (in seconds per
word). Hence, reducing the number of MPI messages is eguiv& minimizing the over-
head due to this latency. From the original formulation of BB, the basid is built
and orthogonalized by the modified Gram-Schmidt implententg MGS) of the Arnoldi
process ¥ is referred to asArnoldi basig. This process induces a high communication
overhead due to the numerous inner products: for instanG&RES cycle ofm iterations
requires approximatelﬁ'(m2 + 3m) global communications for the inner products. On high
latency networks, the start-up time due to these collectvamunication can easily domi-
nate. Moreover, the kernel operations in MGS have very loanglarity, such that they do
not fully utilize the computer architecture. In the clagsiGram-Schmidt implementation
(CGS) of the Arnoldi process, the communication time candaeiced by accumulating and
broadcasting multiple inner products together. Howeves, low granularity of the kernel
operations in the orthogonalization procedure remainaumee of the sequential form of the
Arnoldi process. Moreover, CGS is more sensitive to rougdirrors than MGSZ5]. Al-
ternative implementations$5] 15, 19, 20, 24, 26, 37, 42] have been proposed. They divide
the process into two main phases: first, a nonorthogonat loagie Krylov subspace is gen-
erated and then orthogonalized as a group of vectors in tendeghase. As first proposed
by Bai, Hu, and Reicheld], the a priori basis is built with the aid of Newton polynomials.
We will refer to this as théewton-basis GMRE%ater on, the orthogonalization is done by
replacing the vector-vector operations of the MGS methothbytask of computing a dense

IThroughout this paper, we use a zero-based numbering férealldctors in the basis.



ETNA

Kent State University
http://etna.math.kent.edu

PARALLELISM AND ROBUSTNESS IN GMRES 383

QR factorization. De Sturlerl[5] analyzed the parallel implementation of the second phase
and suggested a distributed MGS factorization to overlapnaonication with computation.
Sidje and Philippe43], Erhel [19], and Sidje #2] used a different orthogonalization strat-
egy called RODDEC, which combines Householder factogzratiith Givens rotations and
requires only point-to-point communication. Demmel et [dl6] proposed a differen@ R
factorization calledall SkinnyQR (TSQR), which reorganizes the computation to reduce the
memory access and exploit the data locality.

Our proposal in this work is to combine the Newton-basis GMR#th augmented and
deflated GMRES. The new approach is simple and can be useti¢ogéth any of the pre-
vious orthogonalization strategies once the augmenteabd pasis is built. The motivation
for our work is two-fold: previous studie8T] have shown that when the size of the Newton
basis grows, the vectors become increasingly dependeratrésult, the method may experi-
ence a slow convergence rate. With the new approach, the isdspt small and augmented
with some useful approximate eigenvectors. The secondatimn is related to GMRES()
preconditioned by domain decomposition methods. Indeétth Schwarz-based precondi-
tioners, when the number of subdomains increases, therpigicmer becomes less and less
robust and the method requires more iterations to convdrgthis situation, the basis size
is usually increased to prevent stagnation. In the propappdoach, we show that by adap-
tively adding more approximate eigenvectors, the convageaate is improved. Recently,
Mohiyuddin et al. BO] and Hoemmen44] suggested a new formulation in th&iommu-
nication avoidingGMRES, which does not require the Krylov basis size to be lefguthe
number of vectors generated a priori. Their formulatiordsithe Krylov basis with several
steps of the Arnoldi process where each step builds a settdngewith the Newton polyno-
mials. Our proposed approach can be used as well with themuiation for problems that
are very sensitive to the restarting procedure in GMRES2éddwe show in Sectiohhow
the augmented basis can be formulated in their approachrefn@ining part of this paper is
organized as follows: in Sectidh we briefly review how the deflation of eigenvalues is used
in the restarted GMRES. In Secti@nhwe derive the new approach combining deflation of the
Newton basis with GMRES, and we discuss parallel implentemaSectiond is focused on
numerical experiments to show the benefits of our approach.

2. Restarted GMRES accelerated by deflation A practical implementation of GM-
RES is based on restarting a minimum residual iteration whemrorrection space reaches a
given dimensionn. At the time of restart, information from the previous Krylsubspace is
discarded and the orthogonality between successive Kgubgpaces is not preserved. The
worst case is when successively generated Krylov subspaee®ry close. As a result, there
is no significant reduction in the residual norm and the fteegorocess stagnates. Deflation
techniques are a class of acceleration strategies thactokeful information at the time of
restart mainly to avoid stagnation and for improving the i@tconvergence. The main idea
behind these methods is to remove the smallest eigencomisdinem the residual vector as
they are known to slow down the convergence of GMRES.[ For a general analysis of
acceleration strategies for minimal residual methods,efer ithe reader to Eiermann, Ernst,
and Schneider][7]. For general Krylov subspace methods, the recent reviey&li 45| are
also of great interest.

In deflation techniques, the Krylov subspaces are enrichiesdime approximation of in-
variant subspaces associated to a selected group of eigesgenerally the smallest ones).
Two strategies are often used, namely by preconditioniaditiear system1[0, 19, 27] or by
augmenting the Krylov subspac®l] 32].

Let A1, Ao, ..., A\, be the eigenvalues adB. Consider an exact invariant subspace of
dimensionr corresponding to the smallest eigenvalues,;, Ao, ..., A, and an orthonormal
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basis of this subspace, writtendsn matrix form. Using the preconditionéd —! defined as
(2.1) M =1, +U(\|T' = 1)U, T=U"BU,

the eigenvalues oBM ! are \,y1,..., A\, |A\n| With multiplicity at leastr [22]. Then,
GMRES(n) applied toBM ~! converges faster since the smallest eigencomponentddhat s
down the convergence are deflated. In practi¢es replaced by a basis of an approximate
invariant subspace.

The actual implementation ir2P] and the improvements inL] rely on the approxi-
mation of U which is updated at each restart by computing the Ritz vdhoes the Arnoldi
relation in equation(.4) to yield a more accurate basis. B},[U is computed by the Implicit-
Restarted Arnoldi (IRA) process and the result is used tmfarleft preconditioner. The
adaptive preconditioner by Kharchenko and Yerenain |s built such that the Ritz values
which approximate the largest eigenvaluesadire translated to a cluster around one.

Complexity overhead is similar in the preconditioning ahd augmented subspace ap-
proaches. In both cases, computing a new basis at eacht iastdves a small eigenvalue
problem. Also, it is easy to update the preconditioning matith a new basig€/ [10]. How-
ever, applying the preconditiondf —* in (2.1) may induce an overhead for a large number of
processors because of global MPI reduction operationsh®ather hand, in the augmented
approach presented belo®1] 37, the communication is reduced since there is no global
reduction operation.

The augmented approaches form the new approximation witlojaghion onto a sub-
space& = K,,,(B,r9)+W, whereW = span{uy, ..., u,—1 }. Minimal changes are required
to the existing kernel operations as the vectors are dyradilled to the existing Krylov basis.
Moreover, when the vectors, ..., u,._; are the harmonic Ritz vectors, Morga®?] has
shown that the augmented subspégds itself a Krylov subspace and writes

C= ]Cm(B,’/‘o) +W = ’CrrL+T'(Ba Qm(B)TO)’

whereg,, (B) is a polynomial of degree at most.

3. Deflated GMRES in the Newton basis.In this section, we derive the new imple-
mentation of the GMRES algorithm where the Krylov subspacspianned by the Newton
polynomials and augmented with eigenvectors. Compareaetptevious Newton basis im-
plementations €, 19, 24, 47], the main difference is that the new approach uses deflation
strategies to recover the information that is lost at thetohrestart. Hence for the problems
that are sensitive to the restarting procedure, our imph¢atien should converge faster than
the previous approaches for the same basis size. Compa@EIRES-E by Morgan 31],
our approach communicates less and should produce kenatlsre better suited for parallel
computations. Compared to GMRESDR of Morg&d][ however, we have not investigated
whether the proposed augmented basis is itself a Krylowsbasd we leave it to future work.

3.1. Augmenting the Newton basisWe now derive the proposed approach. Our mo-
tivation is to get an Arnoldi-like relation for the augmedhtieasis when the eigenvectors are
added at the end of the Newton basis. [Etbe the preconditioned matrix;, an initial
guess, andy the initial residual vector. Amn-dimensional Krylov subspace is spanned by
the Newton polynomials applied tg of the form

Pj+l(B) = Uj+1(B - /\J+1I)7DJ(B)7 j =0,1,2,...,

wherePy(B) := ro, 0; and\; € R; see B, 37]. We will discuss the choice of these scalars
later.
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Let W = span{ug,us,...,u,—1} be a coarse subspace of dimensionWe discuss
the computation of these vectors in Sect®bA.5 Lets = m + r andC, be the augmented
subspace defined by

Cs = Kn(B,mo) + W
as before. We write the basis W in matrix form as
UT = [UO ce Ur—l] .

We also define the augmented subspagce by

Cst1 = Kmi1(B,r0) + BW.

PrOPOSITIONS.1. Suppose thatim(Cs+1) = s + 1. Thgn there exists an orthonor-
mal basisV,y1 = [Vipn Vi € R™ 6+ of the subspacé€, i such thatV,,.; is an
orthonormal basis oK, 11 (B, ) and

Ws - [‘/m, Ur}
is a basis o’,. These bases are related by an Arnoldi-like relation
(3.1) BW, =V 1Hy = ViHy + hoy1 svsi1el

whereH, € R+ is an upper Hessenberg matrix. Moreover, the veatoe R” given
by

Ts =To + Mﬁleyaw
wherey; € R™ solves the least-squares problefy(y) defined by
Js(y) = [1Ber — Hyylla, B = [roll2,

minimizes the residual nortfb — Az, overzo + M ~1C,.
Proof. Fromky = ro/||r0||2, @ set of vectorg; can be generated such that

3.2 ir1kit1 =
(3.2) Oj+1K5+1 {Buj_m it m<j<s—1,
where); ando;, j = 1,2,..., are user-specified real scalars. We discuss in Seclian$

and3.2.2their optimal choice. In matrix form, relatio () writes

BK,, = m+1Tm

(3.3) )
BU’I' = K’I'DT')
With Koney = [ko k1 oo k), Ko = [k oo ks,
_>\1 -
g1 A2
g9 )\5
Tm _ c R(m+1)><m7
>\m71
Om—1 )\m
L Om |
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andD, = diag{oy41,...,0,} € R"™*". A QR factorization of[K,,,,, K] yields

(3.4) [Km+1 f(r] =Vst1Rs1 = [Vm«l»l ‘77“} [R%ﬂ Rﬂ;{-:l,r:| .

Using equations3.3) and @.4), we get

BV, = BKy R, = Vi1 R T Ry
BU, = [A(TDT" = (‘/m+1Rm+1,r + ‘A/'IR'I)DT‘

It is rewritten as
BWS - Vs+1ﬁsa

where

. T O0][R, 0] _[ Hs
(3.5) Hs—Rs+1[o DJ[O Ir]_{hsﬂ,sef]'

The first part 8.1) is thus proved.

The second part of the proposition is similar to the optitggdroperty of the augmented
GMRES [L2, Algorithm 2.1]. Withz, = zq + M ~'W,y in the affine space, + M ~'C,
the corresponding residual vector is expressed as

b— Az, =b— Alxg + M~ 'W,y) = ro — Vag1 Hey = Bko — Vey1 Hyy
(3.6) -
= s+1(561 - Hsy),

wheres = ||ro|| ande; = [1,0,...,0]T. Introduce the function
Is(y) = IlIb— A(zo + M~ Wy)|l2.
It follows from equation 8.6) and the fact that. ; is orthogonal that

Jo(y) = ||Ber — Hyylls.

Thus by taking the vectoys; € R™ which minimizes the functiow/;(y), the approximate
solutionz, = xo + M ~'W,y, will have the smallest residual ity + M ~'C,. 0

We refer to the matriXx¥V, as theaugmented Newton basi$the subspacé,, and to the
matrix V, ; as theaugmented orthonormal bagi$the subspacé,_ ;. The induced GMRES
is theaugmented Newton basis GMRESich we denote by AGMRES.

It is also possible to choos@(m UT] as a basis of’;, avoiding the computation
of R,!. However, the vector§,. are computed at each restart by using a Rayleigh-Ritz proce-
dure (see SectioB.2.5, which requires the storage &f,; and the computation df, , W.
Thus, it saves memory and computation to se¥egt= [V,, U, |.

This proof assumes that the basis vectorsj = 0,..., s, are generated through one
pass in the kernel computation &3.9). There are some situations whereis too large
to guarantee robustness (well-conditioned basis) or gasfbpnance (best value for data
locality in multicore nodes). In recent work, Hoemmed][uses theu-step Arnoldi method
of Kim and ChronopoulosZ8]? in his Arnoldi(y, t) to build the basis vectors through multiple

2The original method is referred to asstep Arnoldi instead ofi-step Arnoldi but we choosg here to differ-
entiate with the size of our augmented basis.
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passes of the kernel computation #13). Hence, the process of computindpasis vectors is
divided intot steps where each step generatdsasis vectors with the Newton polynomials.
The restart length is thus= p - t. We show in the following that Propositiéhl1 holds in the
case of qu-step basis. We explain the basic idea with 2.

Let kg be the starting vector and= 1 - t + » = m + r. As in the first part of§.2), we
generate the sequence of vectors

Ojp1kjr1 = (B—NjpDk;, 0<j<p—1.
It follows that

BK( ) — g0 T(O)

w1
where K, = [ko ki ... k] € R+ andT” e RU+D# is a bidiagonal
matrix. A QR factorization ofoﬁzl gives
0) _ 1/(0) p(0)
K, 1=V, R,
and thus
(3.7) BK” =V QO = VOHD + by V. e el

whereH,So) = Rﬂlfﬁo)ande# is the u-th unit vector. This first step is just the derivation
of the Arnoldi-like relation for the (non-augmented) Newtbasis. Note that we do not

have a mathematically equivalent Arnoldi relation as inagigun (1.4). H,(le is not equal in

exact arithmetic to the Hessenberg matkixof that equation as we avoid dealing with the
term(Rffﬂ)r )~!. However, the columns df( form an orthogonal basis ofiadimensional
Krylov basis. Using the last column as a startlng vector, aretbus build the second-step
basis. At this step, we add the eigenvectors in the subspeaedmenting the:-step basis.

Letk, = V(+1€u be au-step augmented basis generated as follows

(B=Xu—jprl)ky ifp<j<m-—1
ojr1kjp = _ ,
Buj_pm, ifm<j<s—1.
In matrix form we get
(1) o [TV o
(3.8) B [Kﬂ Ur:| =K o

The matricesf(1 and D,. are analogous to the matrices in equati8rl), At this point,
to avoid loss of orthogonality, the vectd@,ﬁr+1 (kw kut1 ... kutmsr] should be

orthogonalized against the previous vecfvziﬁg . This can be done by a block Gram-Schmidt
method which is equivalent to writifg

1 1
(39) K(erJrl - (I - VH(O)(VM(O))T> KISJZT+1'

Note that the same stability problems may arise just as inl#ssical Gram-Schmidt process.

We discuss this issue at the end of this subsection. So &avad:torsl(ﬂjr are orthogonal to

3Note that the first vectak,, is already orthogonal W;O), but we choose to orthogonalize it again.
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the basis vectors, but it remains to orthogonalize them éetveach other. This can be done
by a densé&) R factorization to produce

(1) _y® )
(310) Ku+r+1 - [L+T+1R/,L+’I‘+1'

From equations3.7) and @3.8) we get

0
(3.11) Bl &P ul=[o &Y H Y o]
© © T 13 p+r+1 hu+1,u€1€g Cﬂ+r
where
S(1)
I L A
C“”{ 0 DJ'

Knowing that aQ) R factorization update has been performedlqﬂjr 41, we get from equa-
tions 3.9 and @.10 that,

0 1 0 1 +r
(3.12) v K QM} = [VJ) V,fﬁrﬂ} 0 RO prr
pu+r+1

I (V;L(O))TK(U ‘|

Substituting 8.12) in (3.11), we find

BW, = ‘/;+1]_{s;
whereW, = [K,SO) K Ur}, Vst = [V,fo) V,Sr)r} ,and
0 1
. — Ly (Vu( ))TKEHZrH H;(LO) 0
s 1) h T co |
0 Ryt pt1u€1€y Cutr
From the fact thaKffJZrHel is orthogonal td//,(,o) and thatRf}]H,Hel = e1, we obtain
0 0 1 ~
g | m beLﬁch
( hu+1,u6165 thlr+1cu+7’

which is a Hessenberg matrix. The first part of Proposifidris thus proved and the second
part is similar to the previous proof.

In GMRES with theu-step Newton basis, it is useful to control the conditionafighe
basis generated with the Newton polynomials by choosingtalda value of.. On multicore
nodes, a well-chosen value piwill also improve the data locality during the computatidn o
the kernel computations (generation of the basis and oothalgzation) [L6, 24]. The draw-
back of this formulation is that when the new set of basisamscis orthogonalized against
all the previous vectors already computed, it is importarerform a@) R factorization up-
date. Sometimes when a block Gram-Schmidt process is usedsthogonalization strategy
should be performed to avoid a loss of orthogonality; seejrfstance, 25]. This process
induces more computational cost as the number of stépsreases. As for the scalar for-
mulation, the augmented basis will thus help to reduce thés$ by reducing the number of
stepst. We do not further investigate reorthogonalization, andeegls in this paper on the
basic implementation of g + r)-step augmented Newton basis.
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Algorithm 1~ AGMRES(mn, r): Augmented Newton-basis GMRES.

Require: zg, m,itmax,e,r, 1, rmax, smuv, bgv;,
1. Perform one cycle of GMRES{) [41, Algorithm 4] to find a new approxima-
tion x,,, the residual-,,, and the matricedd,, andV,, satisfying equation1(4).
if (||| <€) return

. Setzg < x,, @ndrg < 1y, B = ||7ol|;

: Compute m Ritz values{)\; ;j{” of AM~! from H,, and order them with the Leja
ordering p].

: If (r > 0) extractr Ritz vectorsU,. for the augmented basis.

: while (||ro| > €) do

Compute the basis vectors of equatiod.?) [19, 42] to getK,, ., andT,,.

Compute K, and D, using the second part of equatidh?).

Computethe QR factorization|K,, 1 K] = Vit1Rst1.

Derive W = [V, Uy].

10. Computethe(s + 1) x s Hessenberg matrikl, from equation 3.5).

11:  Solveys = min ||Be; — Hyyl|o-

12 Computez, = 2o + M~ 'W,y,, rs = b — Az, it — it + s.

13:  if(||rs|| < eor it > itmaz) return

14: Setxg < x5 andrg < rg;

15:  if r > 0 then

o dter = slog (e ) s (i)

N

w

© © N9 gk

17 if (Iter > smo * (itmax — it)) then

18: if (({ter > bgv * (itmax — it)) and (r < rmaz) and (I > 0)) then

19: r < r + [ [*Increase the number of eigenvalues to deflate*/

20: end if

21: Replacethe r approximate eigenvectongy, u1,...,u.—1 by r harmonic Ritz
vectors ofB = AM L.

22: end if

23:  endif

24: end while

3.2. AGMRES: Augmented Newton-basis GMRES.In this section we discuss the
parallel implementation of the GMRES method where the Navstasis is augmented with a
few approximate eigenvectors. The main steps are outlimédgorithm 1.

If we compare AGMRES with the related implementations of B®MRES method, we
can make the following observations.

e Compared to the standard GMRES method, AGMRES produceslkdirat are bet-
ter suited for parallel computations during the generatibthe orthogonal Krylov
basis in step$ and8. However, in addition to the basis,,; 1, it keeps2r vec-
tors U, and V. It is thus worth mentioning that AGMRES{, ) requires as much
memory as GMRES¢ + 2r). Nevertheless, our numerical experiments indicate
that, on most test cases, AGMRES(r) produces a better convergence acceleration
than GMRES{ + 2r) and even GMRES{n).

e The GMRES-E of Morgandl] keeps a second basis as well. However its imple-
mentation is based on the Arnoldi process. It will thus comitate more for the
same convergence behavior. Our implementation includeslaptive strategy that
allows us to increase the number of extracted eigenvedtnexessary.

e Compared to CA-GMRES of Hoemme?], our implementation is limited to one
step Newton basis. However, in the previous section we hiagers how an aug-
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mented basis can be defined for more than gretep basis. For the same restart
length, CA-GMRES(, t) and GMRES(; - t) produce the same convergence behav-
ior. AGMRES(: - t, ) is more likely to produce a faster convergence than these tw
approaches when the convergence rate is affected by tletmegtprocedure.

So far, the algorithm starts with an initial approximatioitiee solution vectorr, (in
practice, we use a zero vector), the simeof the Krylov basis, the maximum number of
iterationsitmax allowed, and the desired accuracyThe remaining input values are used
for the augmented basis: the number of eigenvectdtsat are added at each step and the
parameters, rmax, smv, andbgv for the adaptive strategy; see Secti®2.6 The main
steps of the algorithm are the computation of the shiftgoésteand 3), the generation of
the augmented Newton basis at séefand its orthogonalization at st& The approximate
solution is updated at stef®. At step21, the Ritz vectors are recomputed in order to add
them to the Newton basis. The adaptive strategy is impleadeint stepsl5-23. All these
steps are explained in the next sections.

3.2.1. Computation of the shifts. The generation of the Krylov subspace with the New-
ton polynomials uses the scalaxs, j = 1,...,m to produce a stable basis. Bai et &] [
have shown that a good choice would be to use the eigenvalugsiombered according to
the following modified_eja order(see Bg])

[Ar] = max |}

=1,....m

J
I}i[llkj+1—Ak| = max [T -, j=1....m—1

In practice, the spectrum d@? is not available and very expensive to compute. In this situa
tion, the Ritz values oB3, which are the eigenvalues of the Hessenberg mafixin equa-
tion (1.4), are used. This implies that steps of the Arnoldi process should be performed
to find these values. At stel) we perform one cycle of the Arnoldi-GMRES method. From
this we get an approximation of the solutiop, and the associated residug]. This vector

is used as the initial search direction for the Newton-b@HRES in stefb. At step3, each
process computes the eigenvalues of its own copy of the Hessg matrixH,,, and orders
them with the Leja ordering. This step so far uses the péisafieinside the matrix-vector
product and the preconditioning operation. But it requgkedal communication as pointed
out in Sectionl. Note that whenn gets large, it may be expensive to perform this Arnoldi-
GMRES step . The cost here is comparable to one step of theoNdasis GMRES mainly in
terms of granularity and the volume of MPI messages. In m@ctve use a small value ot

to show the benefits of augmenting the basis. Neverthefestrlige basis is used, a solution
could be to employ a-step basis as explained in the previous section. AnotHetico, as
advised by Philippe and Reichelq], is to perform one cycle of an Arnoldi-GMRES with a
smaller basis to get a subset of these values. From thistsabsenvex hull is defined and
continuously updated with new values collected during tbetén-basis GMRES iterations.

3.2.2. Computation of the Newton basis with scaling factorsThe firstm + 1 vectors
of Ky, can be generated using Algorithm 1.1 #2]; then it is easy to generate the last
vectors fromU,.. Note that when a particular eigenvalie,; is complex and assuming
thatIm(\;1) > 0 (such a case always exists by considering the complex catgugpirs
of eigenvalues and the modified Leja ordering), the compliiraetic is avoided by writing
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the first part of equatior3(2) as

ojt1kie1 = (B —Re(Xj41))1k;
gjrakjre = (B = N1 D)(B = A D)kj = 011 (B — Re(Ajs1)Dkjer + Im(Aj1)k;.

In this case, the matrif’ € R*+1*s in the equations3.1) and (3.9 is tridiagonal. So far,

the scalarg;,j = 1,...,min (3.1) are used to control the growth of the vecte@kg}j:jl”.
The common choice is to take; = ||k;||. The parallelism inside this step is kept by the

preconditioning and the parallel matrix-vector operagioh/ —! — A\ )k = A(M k) — Ak.
Wheno; = ||k;]|, then there arém + ) global communications, which are far fewer than
the (m? + 3m) global communications in the Arnoldi process. For somei@alr cases,
this norm can be computed distributively. When using fordanste the explicit formulation
of the multiplicative Schwarz procedure, the basis vecadescomputed in a pipeline across
all the subdomains. Each process is thus able to computavitscontribution to the norm
and the basis vectors are normalizedosteriori[4, 33]. When the size of the basis is small
enough, the rows and columns of the matrix can be equilid@atel no scaling, thus no global
communication, is needed during the computation of theshaesitors 4.

3.2.3. Orthogonalization of the basis.After the basis vectors have been computed,
they should be orthogonalized amongst each other aBstéplgorithm 1 to produce the or-
thogonal systeni. ;. At the end of stes, the vectords<,, are distributed on all processors
as a contiguous block of rows which is equivalent to the adas4D row-wise partitioning
for the matrix-vector products. Any algorithm for paralénseQ R factorization can now
be used to orthogonalize the systdii, ;. In our implementation, we use the RODDEC
algorithm described in42, Section 4.2]. This method performs first a Householderogoh
nalization on each block of rows. This is done in a perfecalparphase by all the processes
having the rows. After that, Givens rotations are used tdtlate the blocks below the first
one. During this second step, the processors are placediog #pology and each process
sends the required data on this ring. This step requies?) point-to-point messages on a
ring topology, and the average message Ieng%(is + 1) double precision numbers. The
approach advocated in§] maps the processors on a binary tree to eliminate the eidra t
gular factors of RODDEC. The TSQR algorithm of Demmel et ab][which gives a more
general divide-and-conquer algorithm, can be used as wHlissstep. It require® (log(P))
MPI messages, whet is the total number of MPI processes sharing the sydtem .

3.2.4. Updating the current approximation. At the end of theQ) R factorization, the
triangular matrixR of equation 8.4) is usually available on one process. In the RODDEC
algorithm, it is available in the last process. It can be Hoaated to all other processes such
that the step40and11 are done by all the processes. When the number of MPI processes
gets large, it is more efficient to perform these steps ondbegrocess and to broadcast
only the result of the least-squares problem at dteplin our implementation, we choose
to send a copy of the matrix since it is required by all proesge update the eigenvectors;
see Sectior.2.5 So far, the Hessenberg matiX, is assembled fronR, and T using a
modification of Algorithm 1.2 in42]. The modification allows us to take into account the
scaling factors of the augmented vectors in the basig.[&factorization is performed on the
output Hessenberg matrix to solve the least-squares proilehe minimization step. The
LAPACK routinedgeqrfis applied for this purpose. The output solution is used tomate
the new approximate solution at sttp Note that since we are using right preconditioning,
we can obtain an estimate of the true residual norm withopii@iy computing the residual
vectorrs. Nevertheless, at the time of restart, we negtbr the new search direction.
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3.2.5. Updating the eigenvectorsWhen the iterative process starts at lirfeof Algo-
rithm 1, the eigenpairsu;, ;) of B = AM~! are approximated using the first GMRES(
cycle with a standard projection technique as follows,

V.E(B - \D)V,g; =0,
leading to the eigenvalue problem
ngj = )‘jgj'

The Ritz values\;, j = 0,...,m — 1, are used as shifts for the Newton basis and the vectors
corresponding to thesmallest eigenvalues; = V,,,g;,j = 0,...,r—1, are used to augment
the Newton basis.

Then in order to change the vectdrs at step?1, we use a Rayleigh-Ritz procedure. In-
deed, as advised by previous studie3 B1], this procedure does better at finding eigenvalues
near zero. Using the augmented subspgaceach extracted approximate eigenvect® ex-
pressed as = W,g;. Using BW; andWj, the Galerkin condition becomes

(BW,)T(B — M\ I)W,g; = 0.
It follows from relation (8.1) that
HIHgg; =\ HI'V W, g;.
Gs F,

We thus obtain a dense generalized eigenvalue probleme§ sizs where(\;, W,g;) is a
harmonic Ritz pair of3. Multiplying F, andG, by H; 7, we get

HTG, = H;T[HT  ae] {H%}

e,
_ 2 -T,_ T
=H,+ hs+1’sHS esey ,

HTF, = [IS hs+1,sHs_T€s] Vsjjers,

0

The overhead here is small since it induces anlyot products of size: and a small
generalized eigenvalue problem.

If the basis of, is equal to[ K, U.], then the overhead is larger since it involveot
products. Nevertheless, in most test cases the numeripariemxents show that when the
convergence is accelerated by deflation, the time to uptiatagproximate eigenvectors is
negligible compared to the total time saved without the tiefla Moreover, the adaptive
strategy proposed next sets off deflation only if the cormecg is too slow.

With VI, W, = [VZ Ve VZ,U,] andVZ, vy, = [Im]

3.2.6. Adaptive strategy. When the desired accuracy is not achieved, the method ®start
andr new approximate eigenvectors (corresponding to the e@jees to deflate) are ex-
tracted from thes-dimensional subspad®. This process may become expensive and is not
beneficial if the convergence rate is not improved enoughtht¥e propose an adaptive strat-
egy which detects if the deflation process will be benefidadeed up the convergence or to
avoid stagnation. This approach is based upon the work bgrkosa et al. §7], which has
been used successfully in another formulation of the defl@aldRES B5]. At line 16, based
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on the convergence rate already achieved, we estimatertie@mag number of stepd{er)
needed to reach the desired accuracyWe use a small multiples(nv) of the remaining
number of steps to detect some insufficient reduction in ¢és&gdual norm. If it is greater
than a small multiple{mv) of the number of steps allowed(ax), then we switch to the
deflation. We use a large multiplég) of itmax to detect near-stagnation in the iterative
process. In this case, the number of eigenvectors to augmamreased by a fixed (small)
value. Clearly with the parameterd, Iter, smuv, bgv, the adaptive strategy can be sketched
as follows:
o If Iter < smw * itmax, then the convergence rate is good enough and no more
update should be done on the eigenvectors already computed.
o If smvxitmaz < Iter < bgv xitmaz, then there is an insufficient reduction in the
residual norm and the eigenvectors are updated for the next cycles of AGMRES.
o If Iter > bgv x itmax, then stagnation may have occurred and we increase the
number of eigenvalues to extract/update by a fixed nurhb&his can be changed
at runtime by the user. Unless stated otherwise, wé usé in all our test cases.
Note that there are more sophisticated methods to ensuréothsome given values oh,
GMRES((n) (and thus AGMRES)) will not stagnate; see, for instancé4[ 46]. Our cur-
rent stagnation test is computagbosterioriand should be mostly used to detect a very slow
reduction in the residual norm. Although the proposed patars are problem dependent,
they can be useful to avoid the stagnation if there is som&qare knowledge about the con-
vergence behavior for the problems under study. Some noatedsults are given in this
sense in the next section.

4. Numerical experiments. This section presents some numerical results to show the
parallel efficiency and the numerical robustness of the ggegd approach. We first present
the template for all the numerical tests in Sectohand the test cases in Sectiérz.

4.1. Test routines and implementation notes.Implementations are done using the
PETSc routines and data structurésd]. Algorithm 1 has been implemented by<&Pmod-
ule called AGMRES using a locally modified version of PETSdgs®en 3.1.p8. It uses rou-
tines for matrix-vector product evaluation, the applicatof the preconditioner, and the other
parallel linear algebra functions. Algorithincan be used transparently with any precondi-
tioner implemented in the package including the domain ogxsition preconditioners. We
use the Restricted Additive Schwarz (RAS) methdd] ppplied as a right preconditioner in
all our tests. The main steps are outlined in Algorithm

Algorithm 2 Test routine for the parallel computation of the systémi)(using the Restricted

Additive Schwarz method and the GMRES-based accelerator.
1: Read the matrix from a binary file and store it in a distribu@8R format. Read the

right-hand side vector and store it accordingly.

2. Perform parallel iterative row and column scaling on therirand the right-hand side
vector [3].

. Partition the weighted graph of the matrix in parallel withRMETIS.

: Redistribute the matrix and right-hand-side accordindiedRARMETIS partitioning.

: Define the overlap between the submatrices for the additihev&rz preconditioner.

: Set up the submatrices (ILU or LU factorization using MUMBH.[

. Iteratively solve the system using either the KSP AGMRES)(ithm 1) or the PETSc
built-in KSP GMRES {1, Algorithm 4].

8: Write the solution vector to a binary file.

~N o 0~ Ww
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Note that at stef of our test routine, we compare AGMRES with the classicallenp
mentation of GMRES. As stated earlier, either classicaingchmidt or modified Gram-
Schmidt can be used for the Arnoldi process. The main adgardaCGS over MGS is the
number of MPI messages, the amount of MPI reductions, andrdraularity in the compu-
tational kernel. However, a practical implementation of £i@cludes a possible refinement
strategy to be as stable as MGS. During our numerical expgatisn however, this refine-
ment was not used in CGS, and we did not notice any differeateden GMRES-MGS and
GMRES-CGS. We therefore present the results of GMRES witls Ohless stated other-
wise, the stopping criterion of GMRES and AGMRE ' ’g“f” < 10719 and the maximum
number of iterations is 1000. In AGMRES, the residual norwoisiputed only at each outer
iteration. In GMRES, it is available during each inner iteva. Note that since we are using
a right preconditioner, this residual norm is obtained phe&rom the Givens rotations that
are used to transform the Hessenberg matrix iB) (nto a triangular matrix.

In the following, since right preconditioning is used, thamwber of iterations is under-
stood as the total number of matrix-vectors products andgmditioning steps. Hence in
GMRES(n), it is equivalent to the counts of (M ~'k). In AGMRES, it is equal to the size
of the augmented basis times the restart cycles. So far, ABMR) refers to the Algorithmi
without the deflation (i.e;; = 0,1 = 0). In AGMRES(n, r), r vectors corresponding to the
smallest harmonic Ritz values are added to the basis andcesplt each restart. With the
adaptive strategy, whenever it is necessaig,increased by = 1 (unless stated otherwise).
In the numerical experiments, the basis of the augmentespsick’;; is equal to[Km U,.] .

4.2. Test problems. The matrices of the test problems arise from industrialiappbns
in fluid dynamics and from convection-diffusion problem$eTmain characteristics are listed
in Table4.1

The problems IMO7R, VV11R, and RMO7R arise from design ojai@ition in com-
putational fluid dynamics simulations. They are providedttry FLUOREM company, a
CFD software editdr Table4.1lists the coefficient matrices with their main charactérsst
The physical equations are the Reynolds-Averaged NataeS equations for compressible
flows discretized using the finite volume methods as predantg86]. The resulting matrix
is comprised by x b blocks, whereb is the number of fluid conservative variables (den-
sity, velocity, energy, and turbulent variables). The ma@®MO7R is available online in the
University of Florida sparse matrix collection (s€€f]) in the FLUOREM directory. The
matrix is structurally symmetric in the blocks. Regardihg values, the matrix is nonsym-
metric and indefinite. In34, 36€], preliminary studies have shown that hybrid solvers based
GMRES and Schwarz-based preconditioners offer robusbappes to solve these systems
efficiently. As pointed out in36], we avoid the ILU factorization in the subdomain matrices
because of its unpredictable behavior. We therefore rely dinect solver (MUMPS) within
each subdomain.

The test cases 3DCONSKY_121 and 3DCONSKY_161 corresportldetoonvective
SkyScrapeproblem in [L, 29]. The physical equation is given by the boundary value bl

div(a(z)u) — div(k(x)Vu) = f in

u=20 ondup
ou

5 =

wherep = [0,1]3, Ounx = Ou\Oup. The tensork is isotropic and discontinuous. The
domain contains many zones of high permeability which aaisd from each other. Lét)

0 onduy,

“ww. f 1 uor em cont en/ sof t war es/ opti mi zation/turb-opty-cfd


www.fluorem.com/en/softwares/optimization/turb-opty-cfd
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TABLE 4.1
Characteristics of test matrices, N: number of rows/colapiNZ: nonzero entries.

Matrix N NNZ geometry
IMO7R 261,465| 26,872,530 3D
VV11R 277,095| 30,000,952 3D
RMO7R 272,635| 37,355,908 3D

3DCONSKY_121| 1,771,561 50,178,241 3D
3DCONSKY_161| 4,173,281| 118,645,121 3D

denote the integer value of Thenk is given in 3D by

(2) 103 % ([10 % 2] +1) if [10 x 23] = 0 mod(2)i = 1,2, 3,
k() =
1 otherwise

For the numerical tests, the right-hand side is sef te- 23 + 23 + 2% and the velocity
field toa = (1000, 1000,1000)”. The discretization is done using P2-type finite element
methods in the Freefm-+P4package. We consider a uniform grid withx n x n nodes and
choosen = 121 and161. During our experiments, we rely on tH&.U (1) factorization to
approximate the solutions on the subdomains induced bydittighee Schwarz method.

4.3. Platform of tests. Experiments are done on a distributed memory supercomputer
VARGAS® which has 3584 Power6 CPUs. Each Power6 CPU is a dual-coray2SMT
with a peak frequency at 4.7 GHz. The computer is made of 18i2soonnected through an
Infiniband network. Each node has 32 Power6 CPUs that ac28s5H of local memory in a
non-uniform way (hardware NUMA nodes). The memory acce$sseal single MPI process
is limited to 3.2 GB for the data and 0.5 GB for the stack.

4.4, Analysis of convergence for the matrix RMO7R.We first consider the large test
case RMO7R from the FLUOREM collection and compare AGMRES() with GMRES{n).

We first use AGMRES without deflatiom & 0). The goal is to confirm that the two methods
have the same convergence behavior for a reasonable fegfgth. After that, we show the
benefits of using deflation when the restart length in AGMREShiall and when the number
of subdomains increases. We finish this section by statiadémefits of using an adaptive
strategy.

In Figure 4.1, we plot the convergence of GMRES) and AGMRES(n) with three
restart lengthsy = 32, 48, and64. The number of subdomains is 32 and the LU factorization
is used within the subdomains. The first remark on Figutés that there is no real difference
between the residual norm obtained from the two strate§iesondly, the convergence curve
for GMRES{n) indicates periodic stagnation in the iterative proce$gsE ticks occur at the
time of restart and are more visible whenis small, hence the larger number of iterations.
These ticks suggest that some information is lost at the ¢ifmestart and that the augmented
basis could be beneficial to improve the convergence rateesetcases. The other test cases
show a similar behavior.

Now we show the impact of deflation by augmenting the basis.Figure 4.2, we
display the convergence history of GMREg(and AGMRES{n, r) with m = 32,48,
andr = 2, that is we compute two approximate eigenvectors at eatdéwrtesd use a basis of
sizes = m + 2. The number of subdomains is still 32. The adaptive strategwt used at

Shttp://wm freefem org/ff++/index. htm
bhttp://ww. idris.fr/su/Scal aire/vargas/ hw vargas. htm
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FIG. 4.1.RMO7R: Influence of the restart length in AGMRES and GMRESuB@omains.
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FiG. 4.2.RMO7R: Influence of the augmented basis in AGMRES over GMI2E&sibdomains.

this point. It can be clearly noticed that adding only twoagigectors to the basis is sufficient
to speed up the convergence in AGMRES. For instance, GMREB3&Ruires 886 itera-
tions while AGMRES(32,2) needs only 272 iterations. When meaase the restart length
to 48, GMRES benefits greatly and requires 355 iterationsadoh the desired accuracy while
AGMRES(48,2) needs 250 iterations. The general remark iseteat AGMRES(32,2) and
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FiG. 4.3.RMO7R: Influence of the number of subdomains on the conveegrGMRES. The restart length is
fixed and the benefits of the augmented basis in AGMRES isyclésible.

TABLE 4.2
RMO7R: Number of iterations with GMREB), AGMRES{», 2), and AGMRES(, 4) as a function of the
number of subdomains in the Restricted Additive Schwarz.

KSP| GMRES() | AGMRES(n,2) | AGMRES(n,4)
™1 32 48 64| 32 48 64| 32 48 64

8| 93 70 57|100 98 57105 100 57
16 | 254 169 123] 169 148 130| 177 153 132
32| 886 355 2200 272 250 196| 212 205 200
64 - 702 445| 311 303 265 287 258 270

AGMRES(48,2) have almost the same convergence rate whilRES3lis more sensitive to
the restart length. This is more visible when the number bflemains vary.

The robustness of Schwarz preconditioners decreases asrtfit@er of subdomains in-
creases. GMRES will thus require more and more iteratioauiqularly if the restart length
is fixed. We show this behavior in Figu#ie3, where the restart length is fixed and the num-
ber of subdomains is increased. Clearly, as expected, timbewuof iterations in GMRES
increases as we add more subdomains. For instance, GMRE®(2res 886 iterations
with 32 subdomains. With 64 subdomains, we carry out 1008titsms without reaching the
prescribed tolerance di0—!°. In AGMRES(n, r), there is no such difference. As we in-
crease the number of subdomains, we observe that the cemneergates remain quite close.
Indeed, AGMRES(32,2) requires respectively 272 and 3Iatitsns for 32 and 64 subdo-
mains. The fact that the number of iterations increases slightly when increasind has
great impact on the scalability of AGMRES. We give timingdtie next section.

In GMRES, a better convergence rate can be obtained if thartésngth is increased
as a function of the number of subdomains. We show in Talehat in such a case, it is
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still beneficial to have an augmented basis in AGMRES. Theselts can be divided into
three parts:

1. With 8 subdomains, GMRES needs fewer iterations than AGBIFor all values of
the restart length. Note that this difference is mainly dute fact that the stopping
test is computed only at each outer cycle in AGMRES. The amyuachieved in
AGMRES for these cases is always better. Typically, AGMRE&gan accuracy
of 10~'# in the computed residual while it i©~!! for GMRES.

2. For the same reasons, AGMRES needs more iterations tha®ESMor 16 subdo-
mains and a large value of. However, for small values of., AGMRES is clearly
better than GMRES.

3. For 32 subdomains, AGMRES needs fewer iterations than EMPr all restart
lengths. The dash in GMRES(32) for the 64 subdomains inefictitat the desired
accuracy has not been reached within the 1000 iteratioowedl. On the contrary,
it requires only 300 iterations for AGMRES(, r) to converge.

Thus, the main empirical conclusion from these experimantsothers not reported
here is that AGMRES is less sensitive to the restart lengtitla@ number of subdo-
mains than GMRES. On the other hand, AGMRES is rather seasdithe number
of extracted eigenvectors. As for the basis size, it is idd#ifficult to know how
many vectors should be added to the basis to improve convezgér (the number
of eigenvectors to be added) is very large, the process ddtingdthe eigenvec-
tors could add more overhead.rlfiis small, deflation might not be beneficial. The
proposed adaptive strategy provides a trade-off betwessettwo bounds.

If some information about the convergence behavior has talected before, then it can
be used to define thenv andbgv parameters in an adaptive strategy. Our goal is to show that
this technique can be used to speed up the convergence kyvatlaadjusting the frequency
and the number of extracted eigenvalues. We take the sinaitart lengthn = 32, a large
number of subdomains, and the smallest number of harmotucvBctorsr = 1. Yet, we
know from D = 16 that GMRESg2) and thus AGMRES}J2) needs roughly 254 iterations.
From the adaptive strategy, we still set the maximum numbé&emtionsitmaz = 1000
but now we setsmv = 0.1 andbgv = 0.2. As explained in Sectio3.2.6 smv X itmax
defines the lower bound below which it is not beneficial to us@@gmented basis, and the
productbgv x itmax defines the upper bound beyond which slow convergence rabe is
pected and some action should be done. In this last case,oneaer by a fixed valud.
We takel = 2 in this case. Figuré.4 displays the convergence history of AGMRES(1)
with m = 24 andm = 32. It can be observed that when= 1 and without an adaptive
strategy, the augmented basis does not contain enoughapefirmation to speed up the
convergence. Whenis adaptively increased, the basis recovers more and meodrapin-
formation and the convergence rate gets better. At conaesgdor instance, we obtain=3
andr = 5, respectively for AGMRES(24,1) and AGMRES(32,1) with theaptive strat-
egy, whiler = 1 for the non-adaptive strategy. It should be noted, howetat,the actual
limitation of the proposed adaptive strategy is the choicthe appropriate values afmv
andbgw. It is heuristic and problem-dependent. Nevertheles$eife is some experimental
knowledge available about the convergence of GMRES on airpiloblems, a good inter-
val arounditmax can be set bgmwv andbgv to detect near-stagnation and to switch to the
augmented basis.

4.5. Convergence analysis for the other matricesTable 4.3 reports the number of
iterations for the two test cases IMO7R and VV11R. For AGMRES") we user = 2 and
adaptively increase it untitmaz = 5. As noted before, we observe that for a fixed value
of m, the number of iterations increases/@asncreases. It increases faster for GMRES than
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FiG. 4.4.RMO7R: Benefits of the adaptive deflation strategy. Restdrand 32, 32 subdomains.

TABLE 4.3
VV11R & IMO7R: Number of iterations with GMRES), AGMRESf, r) as a function of the number of
subdomains in the Restricted Additive Schwaris adaptively increased untitmaz = 5.

KSP| GMRES(n) AGMRES(n, 2)
™ 24| 32| 48| 24| 32| 48

VV11R
8| 251 | 191 | 147 | 248 | 172 | 146
16 | 499 | 458 | 288 | 492 | 304 | 207
32 - | 957 | 670 | 641 | 541 | 516
IMO7R
81240 | 235 | 189 | 249 | 203 | 195
16 | 695 | 623 | 521 | 378 | 370 | 316
24 | 927 | 913 | 759 | 492 | 444 | 408
32 - - | 833 | 724 | 629 | 579

for AGMRES. We note here again that deflation is needed tdraamod accuracy for large
values ofD. For the IMO7R test case, for instance, and for 32 subdomiaittse additive
Schwarz method, neither GMRES(24) nor GMRES(32) can predhe desired accuracy
while AGMRES(32) requires 724 iterations to converge.

We end this section by considering the two matrices arisimgthe convection-diffusion
problem. In Tablet.4, we report on the number of iterations. Unlike the previast tases,
here GMRES is less sensitive to the restart parameter amvaiizion of subdomains. Hence
the augmented basis is not as beneficial for the convergenitevas before. Nevertheless,
AGMRES is still faster than GMRES if we consider the paradificiency. This is the topic
of the next sections.
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TABLE 4.4
Number of iterations with GMRES and AGMRES for the test praBI3BDCONSKY_121 and 3DCONSKY_161.
Matrix 3DCONSKY_121 3DCONSKY_161
D m GMRES(16) | AGMRES(16,1)| GMRES(16) | AGMRES(16,1)

16 158 169 229 177

32 164 141 251 177

64 170 141 261 177

128 180 141 262 177

256 202 159 266 195

4.6. Analysis of the CPU time. To better show the benefits of using an augmented
subspace approach with the Newton basis, we analyze thagtirsults in this section. The
paramount goal when showing these results is that, as wedsethe number of subdomains,
we should be able to get a decrease in the iterative time. IRE$fn) and AGMRES{n),
the best way is undoubtedly to increase the restart lengthells Even then, the time will
not decrease efficiently because of the negative effectieofdstarting procedure and the
weakness of the one-level Schwarz preconditioner. In AGBRRE r), only a few extracted
Ritz vectors are sufficient to decrease the time and obtagnéfisant efficiency.

Table4.5 compares GMRES{), AGMRES{n), and AGMRES{n, r) for the test case
RMO7R by varying the number of subdomaibs the restart lengthn, and the number of
harmonic Ritz values, which increases adaptively untimaxz = 5. The number of MPI
processes is equal to the number of subdomains. The toglisithe CPU time required to
perform all the steps in Algorithr@. The iterative time is the time spent in stépThe set up
time is the difference between the two times. It is indepahdéthe method and of.. It de-
creases wheb increases because the subdomains become smaller ahtl tlaetorizations
are faster. Thus from now on, we focus on the iterative timiee fime per iteration is the
time of one cycle divided by the number of matrix-vectorsdurcts in the cycle, which is:
orm+r. Itincludes the time to compute the orthonormal basis (Wittoldi GMRES orQR
factorization for AGMRES) and the time to update the eigetwmsU for AGMRESm, 7).
The iterative time is thus the product of the time per iteratnd the number of iterations.
The behavior of both GMRES() and AGMRES({n) is similar. Increasingn has two op-
posite effects: it decreases the number of iterations (inesoases, the number of cycles
remain the same for AGMRES) and increases the time peritarbecause of the orthogo-
nalization steps. Thus in most cases, there is an optimaéwaiim, which depends o,
with a minimal solution time. Increasind has also two opposite effects but in the reverse
way: it increases the number of iterations and decreasdbsrther iteration, thus there is in
general an optimal value dp, which depends om. Even though their behavior is similar,
AGMRES((m) clearly performs faster than GMRESJ for all but one configuration. This is
mainly due to a faster time per iteration thanks to a moreieffiqarallel algorithm. This is
explored in the next section by analyzing the communicatmuome.

The objective of deflation in AGMRES(, r) is two-fold: to get an algorithm that is less
sensitive tan and to increase the number of subdomains (thus the numbelPbpMcesses).
For D fixed, there is still an optimal value af but it is smaller. The iterative time decreases
from D = 8 until D = 64. Thus, our method allows us to choose a small valusafnd
to reduce the CPU time with a large number of subdomains. Wandeed a more efficient
parallelism because the number of iterations does noténf@early, AGMRES, r) gives
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TABLE 4.5
Timing statistics for RMO7RD: number of subdomains and number of MPI processes, Tota: TiaPU
elapsed time in seconds, Iter. Time: CPU time in the iteeatiiase, Time/lter: average time spent in each iteration
(matrix-vector product and preconditioning step), MSG: IMfessages and reductions. With AGMRES(), r is
adaptively increased untilmaz = 5.

D Algo. Total Time | Iter. Time | Time/lter | MSG (x10%)
8 | GMRES(32) 427.3 327.33 3.52 1.74
GMRES(48) 386.1 291.64 4.166 141
GMRES(64) 358.1 264.58 4.64 1.03
AGMRES(32) 358.5 263.08 2.74 1.3
AGMRES(48) 369.1 271.9 2.832 1.45
AGMRES(64) 329.4 236.76 4.228 1.23
AGMRES(32,2) 347.4 257.11 2.624 1.32
AGMRES(48,2) 373.1 277.98 2.837 1.48
AGMRES(64,2) 329.4 236.76 4.228 1.23
16 | GMRES(32) 379.3 349.97 1.378 13.1
GMRES(48) 333.1 302.66 1.791 9.05
GMRES(64) 286.8 257.03 2.09 6.88
AGMRES(32) 305.8 276.1 1.079 8.1
AGMRES(48) 263.0 230.5 1.201 6.78
AGMRES(64) 256.8 227.82 1.78 5.56
AGMRES(32,2) 224.1 193.39 1.316 9.84
AGMRES(48,2) 240.9 210.56 1.376 10.01
AGMRES(64,2) 231.4 201.05 1.547 5.66
32 | GMRES(32) 573.4 557.13 0.629 96.25
GMRES(48) 239.5 223.54 0.63 39.74
GMRES(64) 158.4 139.2 0.633 25.38
AGMRES(32) 273.0 256.91 0.287 54.97
AGMRES(48) 167.1 150.84 0.393 25.93
AGMRES(64) 131.4 114.83 0.449 19.42
AGMRES(32,4) 91.41 75.23 0.357 31.83
AGMRES(48,4) 94.79 79.028 0.38 33.9
AGMRES(64,4) 99.45 83.148 0.406 32.24
64 | GMRES(32) - - - -
GMRES(48) 214.8 204.16 0.291 227.02
GMRES(64) 165.6 156.44 0.352 145.69
AGMRES(32) - - - -
AGMRES(48) 167.0 157.72 0.219 132.42
AGMRES(64) 97.87 86.066 0.192 88.67
AGMRES(32,4) 62.39 52.839 0.202 101.53
AGMRES(48,4) 67.0 57.733 0.22 110.99
AGMRES(64,4) 63.15 53.788 0.203 116.08

the smallest CPU time. These results are confirmed with eds¢icases shown in Table6
and Figuregl.5and4.6.

Itis better for GMRES{:) to choose a small number of subdomainand a large restart
lengthm. On the contrary, it is more efficient to choose a large nunabeubdomainsD
and a small restart length with our method AGMRES(, ). Clearly, AGMRES(n, r) is
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TABLE 4.6
Timing statistics for GMRES and AGMRES for the test casedR\&hd IMO7R. D: number of subdomains
and number of MPI processes, Iter. Time: time spent in thatitee phase, MSG: MPI| messages and reductions.
With AGMRESf, r), r is adaptively increased untitmaxz = 5.

m
5 24 32 48
Iter. Time MSG Iter. Time MSG Iter. Time MSG
GMRES(n)
8 92.84 2.05 68.95 1.69 77.7 1.47
16 101.1 12.27 89.37 11.47 63.2 7.66
32 - - 312 225 29.7 1854
AGMRES(n, 2) o
8 528 1.28 385 1.02 205 105 <
16 51.8 7.4 345 401 28.08  3.87
32 383 256 312 225 29.7 18.5
GMRES(n)
8 76.219 2.6 733 2.63] 63.669 2.31
16 111.74 20.06] 96.246 18.25 83.583 15.76
32 - - - - 77.066  59.87 o
AGMRES(n, 2) 5
8 45781 1.65] 40.905 5.48 40.85 152 =
16 36.492 21.65 34.803 24.12 33.65 23.64
32 33.262 9454 27.837 93.27] 27.109 105.35
3DCONSKY_121
40~
[ IGVRES( 16)
35, u BAGVRES( 16, 1)
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FIG. 4.5.CPU time for the iterative phase for the 321 x 121 x 121 convective SkyScraper problem (matrix
size 1,771,561, nonzeros 50,178,241), 16 to 256 subdoptahd) in subdomainsy, = 16, r = 1.
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FiG. 4.6. CPU time in the iterative phase of GMRES and AGMRES for tha@Dx 161 x 161 convective
SkyScraper problem (matrix size 4,173,281, nonzeros 438,81), 16 to 256 subdomains, ILU(1) in subdomains,
m = 16,r = 1.

5 3DCONSKY_121 5 3DCONSKY_161
1% 10 - - 15 10 = o
IGVRES( 16
EA E(S( 12 i [ JGVRES( 16)
WAGVRES( 16, 1)

—
o

MPI Messages

o = N w s ol N © ©
MPlI Messages
o

32 ‘ 128 2 64 128

Subdonai ns Subdongi ns

o

Fic. 4.7. Amount of MPI Messages in the iterative phase of GMRES and PEB/for the convective
SkyScraper problems on the 321 x 121 x 121 and161 x 161 x 161 grids.

faster than GMRES¢). In order to compare the methods with similar memory rezraints,
we choosen = 24 for AGMRES andm = 48 for GMRES, since AGMRES needs to store
the two systemdV, and V,. For all but one value oD, AGMRESQ4, r) is faster than
GMRES(48) for both matrices VV11R and IMO7R. This is alscetfor AGMRES@2, r)
compared to GMRES(64) for the matrix RMO7R.

4.7. Analysis of parallelism. Another advantage of AGMRES over GMRES is the
communication volume. In Tables5and4.6and in Figured.7, we have reported the num-
ber of MPI messages exchanged. The counts are done on th&8eaive routines as well
as the collective communications (Reduce and Broadcast)ddhot take into account the
MPI message lengths. It appears that the number of messagefunction of the num-
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ber of subdomains. This is generally reduced by allowingyrsardomains to be assigned
to a unique CPU. In the problems under study, this is not bdasn practice as it will in-
duce more iterations as the number of subdomains increikescommunication volume is
obviously proportional to the number of iterations as wélhe second observation is that
AGMRES communicates less than GMRES for the same numberhbafosoains and the
same basis size. As more subdomains are used, the gap behgdamm methods increases.
For instance, in Tablé.5, GMRES on 64 subdomains produces nearly a ratio of 1.5 more
messages than AGMRES. In the augmented basis, the situstilifferent. At each cycle,
AGMRES(n, r) communicates more than AGMRES] because of the computation of the
eigenvectors. However, since a substantial number oftibeisis saved by using the aug-
mented basis, we actually observe a better communicati@GMRES(n, ). Now between
GMRES and AGMRES(, r), the previous analysis holds as well but there are two cases
when the restart length is very close to the number of subdwnthe communication for
the computation of eigenvectors may dominate if there isulstantial acceleration in the
convergence rate of AGMRES(, r). This is observed in Tablé.6 for VV11R and IMO7R.
With a substantial gain in the convergence rate as in TabJAGMRES((n, r) benefits from
that and the communication volume decreases proportiotzethe number of iterations. The
second situation occurs when the number of subdomainsyidarge with respect to the basis
size. Even if there is no substantial acceleration in AGMRES), the kernel computations
of AGMRES will produce less communication volume than tHfae8MRES. This is observed
in Figure4.7. As the number of subdomains increases, the differencedastthe two meth-
ods is more and more pronounced. A fine-tuned adaptive gyregstill required to determine
whether or not to augment the basis.

5. Concluding remarks. We have proposed the AGMRES(r) implementation, which
combines the Newton basis GMRES implementation with an @&mnged subspace technique.
This approach benefits from the high level of parallelismirtythe kernel computation of
the Krylov basis. The proposed augmented basis reducesiveegffects due to restarting
and due to a large number of subdomains.

The numerical results on the VARGAS supercomputer (IBM Rdsvprocessors) con-
firm that AGMRES communicates less than GMRES and producasterfsolution of large
linear systems. Moreover, for the proposed test cases, AEB/§ves a fairly good conver-
gence rate when a few Ritz vectors are added to the Krylowbakie proposed implementa-
tion is done in the PETSc package. It thus benefits from thiengqed routines for the usual
linear algebra operations on matrices and vectors. Itsctbpgented interface allows us to
use transparently any parallel preconditioner implengimehe package based on algebraic
domain decomposition methods or multilevel methods. Iddeean be used as a smoother
for algebraic multigrid methodsLB].

Although the proposed augmented basis behaves well fordsepted test cases, there
are some cases where it may not be useful to use. Carefulsa#ystill needed of the
adaptive strategy to avoid the computation of Ritz vectors.

The proposed augmented basis is combined with a fixed prémoridg matrix. We plan
to combine it with flexible GMRES in a future work.
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