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This paper focuses on the inverse ElectroCardioGraphy problem which consists in recovering the

electrical potential and flux on the heart from electrical potential on the body surface. An energy-like

error functional introduced in Andrieux et al. [3] and a generalized least-squares method are performed

in the context of this ill-posed problem of missing boundary data recovering. Numerical experiments

with 2D domains highlight the efficiency of the proposed methods as well as their robustness in the

model context.
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1. Introduction

The aim of this paper is to solve the inverse ElectroCardio-
Graphy (ECG) problem by means of an energy-like error
functional and a generalized least-squares method.

The general framework of our contribution consists in recover-
ing lacking data on some part of the boundary of a domain from
overspecified data on the remaining part of the boundary. This kind
of problem occurs in the reconstruction of cardiac activity. In fact,
noninvasive imaging of heart’s electrical activity from Electro-
CardioGram becomes a standard diagnosis tool in clinical applica-
tion. The reconstruction of the spread of electrical excitation in the
human heart of each single beat shall facilitate cardiologists to
discriminate normal from abnormal activity, localize the origin of
arrhythmias, ischemie or infarcted regions [25]. Thus, the aim of
the inverse problem in ElectroCardioGraphy is to recover non-
invasively regional information about intracardiac electrical events
from electrical measurements on the body surface. For this scope
there are two classes of formulations based on different equivalent

representations of the intra-cardiac sources: formulation in terms of
activation wavefronts or potential distributions [22].

The first type is based on the fact that during the spread of
activation in the heart, the most significant bioelectric source is
the large potential difference that exists across the moving
wavefront dividing active tissue from resting one. Therefore,
ll rights reserved.
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researchers have developed source representations leading to
tractable inverse problem directly modeling this wavefront [19].
However, the disadvantage of this method is that it covers only
the activation wavefronts and does not give information about
repolarization or recovery. In addition, it does not reflect the
effects of anisotropic conduction. In fine it requires to do a surgery
for putting the electrodes in the heart tissue.

The second type of formulation represents the intra-cardiac
sources in terms of the distribution of the electrical potential on a
closed surface that completely separates the sources from the
observations. The field anywhere on the observation side of such a
surface has a one-to-one association with the potential distribu-
tion on the surface itself. Thus the potential distribution on this
surface represents an equivalent source. One such ideal surface is
the epicardium, the outer surface of the heart, with measure-
ments made on the body surface. A second variant of the potential
distribution formulation takes the inner surface of the heart, the
endocardium, as the bounding surface representing the source,
see Khoury et al. [21]. But in this case an intracavitary probe is
introduced surgically.

One strength of the potential based formulations is that they
are more general, they recover the potential anywhere on the
surface or within the appropriate volume conductor at any point
in the cardiac cycle. Furthermore they can take account of the
heterogeneity of the body.

Both of the methods described above share certain common
assumptions: quasi-static propagation, temporally constant geo-
metry, a torso with conductivity, a linear medium, potentials
recorded with respect to a common reference and insignificant
noncardiac electrical activity. Given these assumptions many
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numerical methods were developed for solving the forward and
the inverse problem. However, the boundary element method
(BEM) and the finite element method (FEM) remain the main
numerical approaches. The final result of all these approaches is a
simple description of the relationship between sources and remote
body-surface or probe-surface potentials. For the epicardial to
body surface formulation, for example, we have uT ¼ T uH , with uT

and uH the body surface and the epicardial potentials, respectively,
and T is a transfer function weighting the contribution of each
epicardial site to the potential at each body surface site.

However, the formulation of a useful inverse model does not
follow directly from the source models and forward solutions
described above, because of the ill-posed nature of the inverse
problem, the ambiguities of various source models, the error in any
forward solution and the presence of noise in measured data. So we
need to find a way to select the best solution from the available
information. The most straightforward way is to look for the solution
that minimizes the difference between the torso measurements
predicted by a certain solution together with the forward model, on
one hand, and the actual measured data on the other hand. This
difference, the residual error, is measured in terms of L2 norm in the
least-squares method. But the effect of the ill-posedness character of
the inverse problem is that solutions will be unreliable and often
unrealistic. Consequently we have to regularize the solution by
minimizing a weighted sum of two terms: one term is the residual
error and the other is a penalty term describing an undesirable
property of the solution as shown by MacLeod et al. [22].

In the classical regularized least-squares approach, the transfer
function T is used to define the residual error [15]. Here we
introduce a generalized regularized least-squares approach, where
the body surface potential is related to both the epicardial potential
and current. We also define another approach, based on an energy
misfit functional. A common feature is that both methods recover
simultaneously the epicardial potential and current.

The paper is organized as follows:
�
 Section 2 is devoted to the description of the mathematical
model.

�
 In Section 3 the modeling Cauchy problem for Laplace’s

equation is described.

�
 In Section 4 we define, in the continuous framework, two

misfit functionals namely, an energy like error functional and a
generalized least-squares one.

�
 In Section 5 we present the discretized form of the two

previous functionals.

�
 Section 6 deals with numerical experiments on 2D domains

and some comments.

�

Table 1
Conductivity and relative permittivity of some human tissues [23].

Tissue type Conductivity (S/m) Relative permittivity

Aorta 0.478 56.01

Heart 0.765 84.30

Lungs 0.315 29.48

Bone 0.067 14.72
The paper ends with some concluding remarks.

2. The mathematical model

A general volume conductor can be defined as a region of
volume O, with a conductivity s, in which resides a source current
IV per unit volume. Solving a volume conductor problem means
finding expressions for the electric E and potential u fields
everywhere within the domain O.

The bioelectric current sources IV, rise from excitable cells
undergoing an activation process. The cardiac activation gives
arise to such current. As IV is, in general, time-varying the
resulting field quantities are governed by Maxwell’s equations.
For the macroscopic volume conductor problem, in which we do
not consider the individual membrane currents, we can use a
quasi-static approximation [20].

In Table 1 we show the conductivity s and relative permittivity
eR values for some tissues. The permittivity e which is the product
of the permittivity of free space e0 ¼ 8:85� 10�12
ðF=mÞ by the

relative permittivity eR, is very small. Thus the displacement
current is much smaller than the conduction current.
Consequently Maxwell’s equations are reduced to a Poisson’s
one. The general form of Poisson’s equation for electrical
conduction is

r � sru¼�IV in O: ð1Þ

In this form, one includes the source region and an under-
standing of the primary bioelectric sources, IV. Alternatively, one
can define a surface bounding the region which includes the
sources. The formulation in terms of information on that surface
yields to Laplace’s equation:

r � sru¼ 0 in O: ð2Þ

Estimating the cardiac potential distribution from the body-
surface potential is referred to as inverse problem of ElectroCardio-

Graphy. In this paper we formulate the inverse problem of ECG in
terms of epicardial potentials and thus to use Laplace’s equation.
Therefore the ECG problem is rephrased as follows: Let O be the
volume of the thorax, GT the surface of the torso, GH the surface of
the heart such that they constitute a partition of the whole
boundary @O and n the unitary normal vector on the boundary.
Given a zero current density since the air around the body is
insulating, and the corresponding potential T on the torso surface,
one wants to recover the corresponding flux and potential on the
heart surface. The most general setting takes into account both
the non inhomogeneities and the anisotropy, in that case the
conductivity is a variable matrix [22]. The model problem is

r � sru¼ 0 in O;
sru � n¼ 0 on GT ;

u¼ T on GT :

8><
>: ð3Þ

This problem is known since Hadamard to be illposed in the
sense that the dependence of u on the data T is not continuous
[16]. We propose, in this paper, to reconstruct the lacking data
using an energy-error functional introduced in Andrieux et al. [3]
and the generalized least-squares method regularized by the
Tikhonov procedure studied by Erhel et al. [11] and Hechme [18].
3. Data completion

Let us consider the above Cauchy problem (3). Provided the
data T is compatible with a null flux, which means that the pair
(T,0) is indeed the trace and normal trace of a unique harmonic
function u, extending the data means finding ðj; tÞ such that

r � sru¼ 0 in O;
u¼ T; sru � n¼ 0 on GT ;

u¼ t; sru � n¼j on GH :

8><
>: ð4Þ

The question is how to reconstruct numerically the pair ðj; tÞ.
In practical problems data are not expected to be compatible,
since data errors may occur by measurements errors as well as
discretization ones. The ill-posedness in Hadamard’s sense shows
up—dramatically—when one tries to approximate the given data
T: it is possible to approach it as closely as desired on GT by traces
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of a single harmonic function, the surprise being a hectic behavior
of this function on the remaining part of the boundary.
Regularization procedures are therefore required to treat the data
completion problem. There are several approaches to regularize
such ill-posedness. Some of them transform the ill-posed problem
into a well-posed one by adding a penalty term or by mollifying
the data in order to avoid data oscillations. Tikhonov like methods
use the penalty approach [29]. The classical least-squares
procedure encountered in the literature, for example Cimetiére
et al. [9], recovers the Dirichlet condition and estimate the
Neumann one in a post-processing step, consequently the
Neumann data is not identified accurately. We define a new
approach, still using Tikhonov method, but with generalized least-
squares. This new method recovers both Dirichlet and Neumann
conditions. However, this approach needs to estimate a regular-
ization parameter [11,18]. We use also an another method [3],
which is based on an energy like misfit function. In this method,
we introduce two distinct fields each of them meeting only one of
the overspecified data. Moreover, with this method, there is no
need to add a penalty term and thus there is no parameter to tune.
4. Misfit functionals

We resort in this work to two misfit functionals of least-squares
type. The first one is a measurements to computations misfit
function and the second one is built on the energy norm. Observe
that, when the complete data are available on G, we have an
overspecified boundary value problem described by Eqs. (4).

4.1. The classical and generalized least-squares functionals

In this part, we consider a 2D domain O and a homogeneous
conductivity s. The method could be extended to 3D domains. Let
us consider the measurements to computations misfit function:

minJu�TJL2ðGT Þ
; ð5Þ

where u is the solution of the following wellposed mixed value
problem:

r � sru¼ 0 in O;
u¼ t on GH;

sru � n¼ 0 on GT :

8><
>: ð6Þ

Notice that this least-squares formulation has been studied in
Chakib et al. [7] resorting to the optimal control tools.

We resort to the boundary integral representation of the
forward problem, where the heart potential and the flux are
simultaneously considered:

uðxÞ ¼

Z
@O

@uðyÞ

@n
Uðx; yÞ�uðyÞ

@Uðx; yÞ
@n

� �
dsðyÞ; ð7Þ

where n is the unitary normal vector on the boundary and U is
Green’s function. In the 2D case, this function has this expression:

Uðx; yÞ ¼� 1

2p lnðJx�yJÞ: ð8Þ

We express the state function on both boundaries and obtain

uðxÞ ¼
R
GT
�uðyÞ

@U
@y

� �
dsþ

R
GH

ZðyÞU�tðyÞ @U
@y

� �
ds; xAGT ;

tðxÞ ¼
R
GT
�uðyÞ

@U
@y

� �
dsþ

R
GH

ZðyÞU�tðyÞ @U
@y

� �
ds; xAGH :

8>>><
>>>:

ð9Þ

In the classical formulation, Z is formally eliminated so that u

is expressed as a function of t. Problem (5) is written as

t¼ arg min
t

Ju�TJL2ðGT Þ
; ð10Þ
with (u; tÞ satisfying (9). We introduce here a new formulation,
which, on the contrary, relies on the fact that the state function u

depends on both Z and t. In this generalized formulation, we keep
both ðZ; tÞ so problem (5) is written as

ðj; tÞ ¼ arg min
ðZ;tÞ

Ju�TJL2ðGT Þ
; ð11Þ

with (u;Z; tÞ satisfying (9).

4.2. The energy like error functional

In this part, the domain O can be 2D or 3D and the conductivity
can be heterogeneous and anisotropic. The approach in the
energy-like error functional method developed in Andrieux et al.
[3] follows two steps. First, we consider, for a given pair ðZ; tÞ, the
two following mixed well-posed problems:

r � sru1 ¼ 0 in O;
u1 ¼ T on GT ;

sru1 � n¼ Z on GH;

8><
>: ð12Þ

r � sru2 ¼ 0 in O;
u2 ¼ t on GH;

sru2 � n¼ 0 on GT :

8><
>: ð13Þ

The second step is to build an energy-like error functional on the
pair ðZ; tÞ using a seminorm H1 denoted E. Indeed, these fields are
obviously equal only when the pair ðZ; tÞmeets the real data ðj; tÞ
on the boundary GH . We propose then to solve the data
completion problem via the following minimization one:

ðj; tÞ ¼ arg min
Z;t

EðZ; tÞ; ð14Þ

with

EðZ; tÞ ¼ 1

2

Z
O
sðru1�ru2Þ

2; ð15Þ

with u1 solution of (12) and u2 solution of (13) where
ZAH�1=2ðGHÞ and tAH1=2ðGHÞ.

Using Green theorem this functional can be expressed as a
boundary control:

EðZ; tÞ ¼
Z
GT

sru1 � nðT�u2Þþ

Z
GH

ðZ�sru2 � nÞðu1�tÞ: ð16Þ

5. Discrete formulations

In order to solve (9) or (12) and (13), we have to define a
discrete formulation. When we consider a homogeneous 2D
domain, the boundary element method (BEM) is well suited for
solving (9). On the other hand, for the general case a finite
element method (FEM) is preferable for solving (12) and (13).

5.1. The classical and generalized least-squares discrete methods

We use a boundary element method (BEM) to discretize
problem (9), which can be written as

A11 A12 A13

A21 A22 A23

 ! x1

x2

y

0
B@

1
CA¼ 0; ð17Þ

where x1 is the discretization of t, x2 is the discretization of Z and
y is the discretization of T.

In the classical least-squares formulation, the unknown x2 is
eliminated by inverting A22 then y is computed by inverting the
Schur complement matrix; the solution y can be expressed with
the so-called transfer matrix T , giving y¼ T x1. The discrete
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classical least-squares problem is thus

min
x1

JT x1�yTJ2; ð18Þ

where yT discretize T on GT , or equivalently

min
x1

Jy�yTJ2 subject to y¼ T x1: ð19Þ

We keep both x1 and x2 in the generalized least-squares
problem, so we have

min
ðx1 ;x2Þ

Jy�yTJ2 subject to ð20Þ

A11 A12

A21 A22

 !
x1

x2

 !
þ

A13

A23

 !
y¼ 0: ð21Þ

These two problems are equivalent. Now, both discrete
problems must be regularized and we choose Tikhonov method
in both cases. The classical regularized method is [29]

min
x1

ðJy�yTJ
2
2þl

2
Jx1J

2
2Þ subject to y¼ T x1: ð22Þ

On the other hand, the generalized regularized method is [17]

min
ðx1 ;x2Þ
ðJy�yTJ

2
2þl

2
ðJx1J

2
2þJx2J

2
2ÞÞ subject to ð21Þ: ð23Þ

These two methods are no longer equivalent.

5.2. The energy like error discrete method

The implementation of the energy-like error method can be
carried out using finite element method (FEM). The components
of the gradient of the functional E can be computed in an efficient
way by using the adjoint state method, which makes it possible to
evaluate the gradient in any direction using only the determina-
tion of two adjoint fields. The derivative of the adjoint state is
preferably established on the basis of the FEM discretized
problem. The advantage of this fully discrete approach is that
the exact gradient of the discrete objective function is obtained;
moreover it is easy to implement it in existing FEM software.

We consider a mesh of O characterized by N nodes. The
discretized forms of the problems (12) and (13) are

KU1 ¼ F1; ð24Þ

KU2 ¼ F2; ð25Þ

where K is the overall N � N stiffness matrix, U1 and U2 are the
nodal variables vectors, and F1 and F2 are the load vectors. Vectors
F1 and U2 can be split as follows: F1 ¼ fXZ;YFg

T , where XZ contains
the nodal loads on GH and depends explicitly on Z, while YF

gathers fluxes left unknown by the boundaries conditions of (12).
The components of U1 defined on GT are fixed, the others depend
implicitly on Z. Likewise, U2 can be split into two subvectors:
U2 ¼ fXt;YUg

T , where Xt gathers the prescribed nodal variables
associated with t, while YU collects all nodal variables left
unknown by the boundaries conditions of (13). The components
of F2 defined on GT are prescribed, while the others are unknown
and hence depend implicitly on t. However, notice that the matrix
K is constant. We rewrite (24) and (25) as

KU1 ¼
XZ

YF

( )
; ð26Þ

K
Xt

YU

( )
¼ F2; ð27Þ

Then, XZ and Xt are the discretized design variables of the
optimization problem described above (14). The energy-like
function, in its discretized form, can be written as follows:

EðU1ðXZÞ;U2ðXtÞÞ ¼
1
2ðU

t
1KU1þUt

2KU2�2Ut
1KU2Þ: ð28Þ

To evaluate the derivatives of E we use the adjoint method. The
following Lagrangian is hence defined by

LðU1;U2; l1; l2;XZ;XtÞ ¼ EðU1;U2;Xt;XZÞþl
t
1ðF1�KU1Þþl

t
2ðF2�KU2Þ;

ð29Þ

where l1 and l2 are vectors of Lagrange multipliers, which will be
used to eliminate the implicit sensitivity terms. Differentiation of
(29) with respect to the design parameters yields:

dE

dXZ
¼ lt

1

@F1

@XZ
¼ l1jGH

; ð30Þ

dE

dXt
¼

@E

@U2
�lt

2K

� �
@U2

@Xt
¼ KðU2�U1�l2ÞjGH

; ð31Þ

where l1 is solution of (32) which is referred to as adjoint
problem for the adjoint response l1 with the adjoint load @E=@U1:

Kl1 ¼
@E

@U1
¼ KðU1�U2Þ and l1 ¼ 0 on GT ð32Þ

and l2 is solution of (33) which is referred to as adjoint problem
for the adjoint response l2 with the adjoint load @E=@U2:

Kl2 ¼
@E

@U2
¼ KðU2�U1Þ and l2 ¼ 0 on GH ð33Þ

The adjoint method requires the solution of two adjoint
problems (32) and (33) for each response functional E, it is
efficient when the number of functionals and constraints is small
compared to the number of design parameters.

In order to optimize the computational cost, we adopt the
Trust Region Method [10] to solve this optimization problem.
Each iteration involves, the solution of four linear systems (24),
(25), (32) and (33). More details are given on this topic in
Baranger et al. [5,6], Andrieux et al. [1–4] where this method is
applied to 2D and 3D linear elasticity field to identify nonlinear
boundary conditions and [12,13] where it is used in hydrogeology
contex.
6. Numerical trials

Computations have been run on FemLab [14] for the energy
error functional and [24] for the classical and generalized least-
squares methods. To test the efficiency of the proposed recon-
struction processes, we resort to synthetic data obtained from the
numerical solving of the forward problem (6). We test the
capability of the three reconstruction methods and compare their
accuracy and robustness by the mean of different experiments: in
the first class of experiments, we consider a simple 2D geometry
with a homogeneous conductivity (s¼ 1 in O). In the second class
of experiments, we consider a complex 2D geometry with a
heterogeneous and anisotropic geometry.

For the energy like error functional, simulations are performed
with finite elements of class C1, the mesh is regular and consists of
triangular elements with linear interpolation, characterized by nn

nodes and nm elements. For both FEM and BEM we use p nodes
over the heart surface and q nodes over the torso surface. We
recall that there is no regularization parameter in the energy like
method.

In the legends of the figures, Energy denotes the results from
the energy like error functional, GLS those of the generalized
least-squares method and CLS those of the classical least-squares
method.
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Fig. 1. The actual geometry and the approximated one (two ellipses) for the human heart and torso.
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Fig. 2. Reconstructed potential and flux on the heart from a sinusoidal potential. Fig. 3. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� lnð1=ðJz�aJÞÞ with a¼ 14�30i.
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Notice that on the plot of the heart flux there is no curve
corresponding to the classical least-squares method because this
method does not give directly the unknown flux.
Fig. 4. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� lnð1=ðJz�aJÞÞ with a¼ 30�30i.
6.1. Homogeneous case without noise

The considered geometry corresponds to a transversal section
of Torso-Heart which is, as illustrated in Fig. 1, well approached
by two ellipses. This is in accordance with the studies done by
Rudy et al. [26] in which they use a concentric and eccentric
spheres for the 3D case. The selected potentials correspond to
data ranging from very smooth to severely singular one.

The first numerical trial corresponds to a smooth case: the
Dirichlet condition of problem (6) t, is a sinusoidal function. Fig. 2
illustrates the obtained result. We use a mesh with nn=544,
nm=88, p=28 and q=60.

Next experiments deal with more difficult types of potential. In
all of them, we use a mesh with nn=2057, nm=172, p=52 and
q=120.

The second series of tests is based on a pointwise source

potential induced by u¼ lnð1=Jz�aJÞ. We consider three
cases: the position is in the center of the heart (Fig. 3), near the
heart surface (Fig. 4) and near the torso surface (Fig. 5). Note that
the center of the ellipse-torso is taken as the origin of the system
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Fig. 5. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� lnð1=ðJz�aJÞÞ with a¼ 14þ150i.

Fig. 6. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� ðlnð1=ðJz�aJÞÞþ lnð1=ðJz�a1JÞÞÞ with a¼ 14�30i and

a1 ¼ 30�30i.

Fig. 7. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� Reð1=ðz�aÞ with a¼ 14�30i, so the singular data is in the

center of the heart ellipse.

Fig. 8. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� Reð1=ðz�aÞÞ with a¼ 30�30i, so the singular data are near

the heart ellipse.
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Fig. 9. Reconstructed potential and flux on the heart from overspecified data

generated by u¼ 103
� Reð1=ðz�aÞÞ with a¼ 14þ150i, so the singular data are

near the torso’s ellipse.

Fig. 10. Reconstructed potential and flux on the heart from a sinusoidal potential

with different levels of noise.
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coordinates. Fig. 6 illustrates the results for multiple pointwise

potential.
The third series of tests is induced by singular data associated

to u¼ Reð1=ðz�aÞÞ, where z=x+ iy, is the affix of the current point
M(x,y) and a¼ aþ ib. We consider three cases: the singular data
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are in the center of the heart ellipse (Fig. 7), in the vicinity of the
heart (Fig. 8) and in the vicinity of the torso (Fig. 9).

For all these examples the three considered recovering
processes (CLS, GLS and Energy) lead to a very satisfactory
reconstruction of the potential. The classical method CLS does not
recover directly the flux on the heart, while both methods GLS and
Energy give a correct estimation of the flux. However, as expected,
better reconstruction is obtained by the two proposed methods
when we deal with smooth data. Slight degradation is observed
when one deals with singular fields.
Table 2

Various noise levels, in the case of a singular data generated by u¼ 103
�

Reð1=ðz�aÞÞ with a¼ 14�30i.

Noise level (%) 1 2 3 4 5 8

E (Energy) (%) 2.52 2.71 3.52 6.59 9.31 10.02

E (GLS) (%) 2.56 5.18 5.75 7.10 9.14 12.37

Fig. 11. A real geometry of a human torso with the different resistivities [23].
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6.2. Homogeneous case with noise

We now analyze the sensitivity of the two reconstruction
methods, Energy and GLS, with respect to noisy data. We still
consider the same geometry with s¼ 1. A noise with null mean is
applied to the measurements on the torso. In Fig. 10 we show the
reconstructed heart potential and flux for different levels of noise
in the case of smooth data. We observe that the heart potential is
well identified, however, the heart flux deteriorates when the
level of the noise is greater than 8%.

We define the relative error as

E¼
Juexact�ucomputeJL1

JuexactJL1

� 100; ð34Þ

where u is the heart potential. We compare the two methods in
the case of a singular data. Table 2 shows the relative error with
different levels of noise up to 8%.
6.3. Heterogeneous anisotropic case

In this general case, we consider only the FEM method. To go
through more realistic case, we test our energy-like error
functional with the model described in Fig. 11. Let us first recall
that the electric source lies within the heart, whereas the volume
conductor contains the heart and the remaining organs in the
torso. We consider an electro-physiological model where the
various electrical resistivities are given for lungs, surface muscle,
fat and bones are considered [23]. This model takes into account
the heterogeneity as well as the anisotropy of the volume
conductor. We use a slightly simplified model which is
illustrated in Fig. 12. We consider a singular case with
u¼ Reð1=ðz�aÞÞ with a¼ 7�6i. Our results without noise show
that the reconstructed data are in good agreement with the actual
ones (see Fig. 13). We also consider the same case with noise until
10% and, as shown in Fig. 14, results are very satisfactory.
6 8 10 12 14
X

Lungs

Heart

Γ H

anisotropic geometry for study.
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Fig. 13. Reconstructed potential and flux on the heterogeneous heart from

overspecified data generated by u¼ Reð1=ðz�aÞÞ near the heart.

Fig. 14. Reconstructed potential and flux on the heterogeneous heart from

overspecified data generated by u¼ Reð1=ðz�aÞÞ near the heart with different level

of noise.
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7. Conclusion

In this work, we design a minimization of an energy error
functional (Energy) and a generalized least-squares method (GLS)
for recovering the cardiac electrical properties from the body-
surface electrical activity (current flux and potential). The peculiar
character of the two methods lies on the treatment of the
reconstructed potential and current flux: in contrast to the
classical least-squares method (CLS), the cardiac potential and
the flux are both recovered.

We run numerical experiments in the 2D case. For a
homogeneous domain, the boundary element method is easy to
implement and cheaper than the finite element method. Our two
methods (Energy and GLS) recover correctly the potential and the
flux, also in the presence of noise. Thus the regularized GLS
approach should be preferred, because of low computational
requirements.

However, for a heterogeneous anisotropic domain, it is not
easy at all to use the boundary element method, whereas the
finite element method is efficient. Thus the Energy method is
relevant here. As highlighted by the numerical experiments, the
Energy method recovers potential and flux, also with noise.

It should be noted that the Energy method does not require
any regularization parameter. It is a general recovering process for
data completion problems. As shown in [1,6,5,12,13], this method
can be easily implemented to deal with different physical models
(fluid or solid mechanics), nonlinear and time dependent
problems.
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