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Summary. Many scientific libraries are currently based on the GMRES method as a Krylov 7

subspace iterative method for solving large linear systems. The restarted formulation known as 8

GMRES(m) has been extensively studied and several approaches have been proposed to reduce 9

the negative effects due to the restarting procedure. A common effect in GMRES(m) is a slow 10

convergence rate or a stagnation in the iterative process. In this situation, it is less attractive 11

as a general solver in industrial applications. In this work, we propose an adaptive deflation 12

strategy which retains useful information at time of restart to avoid stagnation in GMRES(m) 13

and improve its convergence rate. We give a parallel implementation in the PETSc package. 14

The provided numerical results show that this approach can be effectively used in the hybrid 15

direct/iterative methods to solve large-scale systems. 16

1 Introduction 17

The GMRES method due to [11] is widely used, thanks to its monotonic convergence 18

properties, as a Krylov subspace method for solving large and sparse linear systems. 19

Due to memory and computational requirements, the restarted GMRES (noted as 20

GMRES(m)) is generally used. At the time of restart, information from the previ- 21

ous Krylov subspace is discarded and the orthogonality between successive Krylov 22

subspaces is not preserved. The worst case is when the successive generated Krylov 23

subspaces are very close. As a result, there is no significant reduction in the residual 24

norm and the iterative process may stagnate. Deflation techniques are a class of ac- 25

celeration strategies that collects useful information at the time of restart mainly to 26

avoid this stagnation and improve the convergence rate. The main idea behind these 27

methods is to remove the smallest eigencomponents from the residual vector as they 28

are known to slow down the convergence of GMRES. 29

In a practical use of a deflation strategy, it is necessary to define the number 30

of eigenvalues to deflate. As the deflation process induces additional operations to 31

GMRES(m), it is interesting as well to know a priori if the deflation will be benefi- 32

cial. In this work, we propose an adaptive deflated GMRES(m) which aims at enhanc- 33

ing the convergence of GMRES(m) by adaptively extracting the spectral information 34
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needed to speedup the convergence. The adaptive strategy is based on a (near) stag- 35

nation test which defines if the deflation process is needed or not and if more accurate 36

spectral information are required. Although we use a stagnation test similar to that 37

in [12], our approach is different since we assume that the restart length m is fixed. 38

This work is motivated by the convergence behavior of GMRES when it is used with 39

a Schwarz preconditioner. As the number of subdomains increases, the eigenvalues 40

are less and less clustered. The restarting may have the disadvantage to discard the 41

smallest eigenvalues before their convergence. The proposed adaptive strategy will 42

thus keep these spectral values in the Krylov subspace until their convergence. 43

The remaining part of this report is organized as follows: in Sect. 2, we first recall 44

the basis of the deflation technique applied as a preconditioner and we derive the 45

adaptive strategy. In Sect. 3, we discuss on the parallel implementation. Section 4 46

is focused on numerical experiments to show the benefits of this scheme on a real 47

industrial CFD test case. 48

2 Adaptive Preconditioner for the Deflated GMRES(m) 49

We are interested in the solution of the linear system 50

Ax = b (1)

The GMRES method is among the best methods to solve this system when the co- 51

efficient matrix A is nonsingular and nonsymmetric. For large linear systems, the 52

restarted version should always be used to reduce the memory and computational 53

requirements. The deflated GMRES has been proposed to reduce the negative ef- 54

fects of the restarting procedure. The general idea behind these methods is to add 55

to the Krylov subspace an approximation of the invariant subspace associated to the 56

smallest eigenvalues. In [7], this is carried out by defining a preconditioner that is 57

equal to the projected matrix onto the approximated invariant subspace and is taken 58

as the identity on the orthogonal subspace. Hence, given U = [u1, . . . ,ur] ∈R
n×r the 59

r-dimensional basis of the invariant subspace associated to the eigenvalues to deflate, 60

the preconditioner is defined as 61

M−1
D ≡ In +U(|λn|T−1

r − Ir)U
T , T =UT BU, (2)

where λn is the largest eigenvalue in magnitude, In and Ir are the identity matrices 62

and B the initial preconditioned matrix. Since M−1
D is nonsingular, the eigenvalues of 63

the resulted matrix M−1
D B or BM−1

D are λr+1, . . . ,λn, |λn|with a multiplicity at least r. 64

It is therefore expected to get a faster convergence rate with this preconditioner since 65

the r smallest eigencomponents that slow down the convergence are deflated. This 66

assumes that U is a good approximation of the basis of the selected invariant sub- 67

space. For large matrices however, the cost of accurately computing U (as suggested 68

in [7] and later in [4]) may induce a significant overhead. This process should be 69

carried out only when it is necessary, for instance to avoid stagnation. 70
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Algorithm 4 DGMRES(m,k,r): Restarted GMRES with adaptive deflation
1: input (m, itmax, ε , k, smv, bgv, rmax);
2: Set B≡ AM−1, M−1 is any external preconditioner
3: r0 = b−Ax0; U = [ ]; MD = I; it = 0; r = 0;
4: while (‖r0‖> ε)
5: Arnoldi process on B to get BM−1

D Vm =Vm+1H̄m. See [11]
6: xm = x0 +M−1

D M−1Vmym, ym solution of min‖βe1− H̄mym‖2;
7: rm = b−Axm, it← it +m;
8: If (‖rm‖> ε and it < itmax) then

9: Iter = m∗ log(
ε
‖rm‖ )/log(

‖rm‖
‖r0‖ );

10: If( (Iter > smv∗ (itmax− it) and r < rmax) then
11: Compute k Schur vectors of B noted X . See [7]
12: Orthogonalize X against U

13: Compute T =
[

U X
]T

B
[

U X
]≡

(
UT BU UT BX
XT BU XT BX

)

14: Increase U by X ; r← r+k;
15: If(Iter > bgv∗ (itmax− it) ) then
16: Improve U as indicated in [4, Sect. 3]
17: EndIf
18: Factorize T Set M−1

D ≡ In +U(|λn|T−1− Ir)UT

19: End If
20: End If
21: x0 = xm, r0 = rm

22: end while

We thus propose here an adaptive strategy that detects a near-stagnation in the 71

iterative process or a slow reduction in the residual norm. This approach is based 72

upon the work by Sosonkina et al. [12] in which the Krylov subspace is adaptively 73

increased along the cycles of GMRES(m); Here, we find it natural to enrich the sub- 74

space with the eigencomponents that slow down the convergence. The main steps are 75

given in Algorithm 4. First, m steps of the Arnoldi process are performed to compute 76

the orthonormal basis Vm. It also creates an upper Hessenberg matrix Hm = V T
m BVm 77

which is the restriction of B onto the m−dimensional Krylov subspace. Then, a least- 78

squares problem is solved to minimize the residual norm in the Krylov subspace. At 79

the time of restart, if the desired residual norm is not achieved, a stagnation test 80

is computed to determine if a deflation process could be beneficial to accelerate the 81

convergence. This test considers the convergence rate over the previous restart cycles 82

and evaluates the number of iterations (Iter) needed to achieve the desired accuracy. 83

If Iter is greater than the remaining number of steps (bounded by a small multi- 84

ple smv of the number of iterations allowed), then data are computed to update the 85

preconditioner associated to the deflation process. This test is therefore used to re- 86

duce the iteration counts in GMRES(m). To detect a near-stagnation, we use another 87

test which considers a large multiple bgv of the remaining number of steps. In this 88

case, a harmonic projection is carried out to accurately compute the eigenvalues and 89

continuously update the previous estimation of U . 90
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3 Implementation Notes 91

We now give some details about the implementation of Algorithm 4 on distributed- 92

memory computers. The programming model is SPMD (Single Program Multiple 93

Data) and communications are done using the message-passing interface (MPI). The 94

adjacency graph of the input sparse matrix is first built. PARMETIS is then used 95

to partition the vertices of the graph into D disjoint vertices. From this partition- 96

ing, the matrix is distributed such that each processor holds a contiguous chunk of 97

rows corresponding to the vertices it owns. The right hand side and all other vectors 98

(Krylov basis, invariant basis) are distributed accordingly. Note that the goal of this 99

data distribution is to get a good load balance and to minimize communication during 100

matrix-vector multiply and preconditioning steps. When the additive Schwarz pre- 101

conditioner is used, an overlapping partitioning can be defined by taking recursively 102

adjacent vertices from the initial disjoint partitions. 103

The main parallel operations in Algorithm 4 so far are the matrix-vector multi- 104

ply, scalar products, and the application of M−1 and M−1
D . M−1 can be any parallel 105

preconditioner as long as it implements the basic operation v j←M−1vi. In our tests, 106

the restricted additive Schwarz has been used as defined in [5]. It is then necessary 107

in the setup phase to factorize in each process the block matrices Ap corresponding 108

to the restriction of A onto the defined subdomains. M−1
D is applied to a distributed 109

vector v j in a straightforward manner given the data distribution described above. 110

This implies r all-to-all communications to compute the projection onto the invariant 111

subspace. There is no additional communication for the other terms since the r× r 112

dense matrix T is owned by each process. 113

We provide an implementation of this method using the PETSc package (see 114

[3]). The original implementation of the built-in KSP GMRES has been modified to 115

provide the data needed for the deflation and to apply the resulting preconditioner 116

to generate the Krylov basis. Although the current presentation does not discuss the 117

choice of side of preconditioning, the implementation does define left and right pre- 118

conditioning. Note that the current adaptive preconditioning can be associated with 119

any other preconditioner available in the package or defined by the end user since we 120

provide generic interface similar to the other Krylov subspace methods in the pack- 121

age. The resulted KSP module (named as DGMRES) is available in PETSc release 122

3.2. 123

4 Numerical Experiments 124

This section presents some numerical results to prove the efficiency of the proposed 125

approaches. The test problem arises from design optimization in computational fluid 126

dynamics. The physical model is a 3D flow simulation in a jet engine compressor 127

rotor. The physical equations are the Reynolds-Averaged Navier-Stokes for com- 128

pressible flows, discretized using the finite volume method as presented by Aubert 129

et al. [2]. The matrices have been extracted from the software Turb’OptyTM de- 130

signed by the FLUOREM company. They are also available in the University of 131
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Florida sparse matrix collection (see [6]) under the name RM07R in the FLUO- 132

REM group. The matrix is nonsymmetric and indefinite with a size 272,635 and 133

37,355,908 nonzero entries. Other test cases can be found in [8]. 134

With this test case so far, previous studies have shown the limits of some existing 135

solvers in terms of memory usage and numerical accuracy (see [9]). Pacull et al. [10] 136

have proved as well the instability of the ILU factorization to approximate the solu- 137

tion of linear subsystems. In our hybrid approach, we therefore rely on a direct solver 138

within each subdomain, such as MUMPS [1]. 139

4.1 Benefits of the Deflated Restarting 140

We now give the main benefits of using the deflated GMRES with the additive 141

Schwarz method (ASM). It is known that one level ASM is a weak preconditioner 142

when the number of subdomains D gets large. The size of the Krylov subspace m 143

could then be increased to enhance the robustness of the global method. However, 144

choosing a good size m of the Krylov subspace is a trial-and-error process. With the 145

adaptive deflation, we show experimentally that the method is robust for various val- 146

ues of m and D. Moreover, using a large number of subdomains reduces the memory 147

required to handle the submatrices by the direct solver. Hence it is expected that the 148

time to factorize these matrices and the memory required will get smaller as D in- 149

creases. This is reported in the last column of Table 1. We also report the number of 150

matrix-vector multiplies and the global CPU time with respect to the number of sub- 151

domains D. We then compare the restarted version (GMRES(m)) with the deflated 152

version (DGMRES(m,k)), where m = 48 and 64. A dash in a field means that the 153

relative residual norm of 10−8 is not reached after 2500 iterations. It can be observed 154

that DGMRES provides reliable and faster convergence than the classical restarted 155

GMRES. It also gives a faster method since significantly fewer iterations are needed. 156

Furthermore, the method reveals a substantial acceleration as the number of proces- 157

sors increases. Note that without the deflation, this acceleration will not be obtained 158

since the number of matrix-vector multiplies increases hugely with the subdomains. 159

For instance, this behavior can be seen with GMRES(64) when using D = 16 and 160

D = 32.

Table 1. RM07R : Benefits of using DGMRES with an additive Schwarz preconditioner and
an overlap of 1. The deflation process reduces the total number of iterations and helps to use
a large number of subdomains and thus a large number of processors. Here, the number of
processors is indeed equal to the number of subdomains.

t1.1
D

GMRES(48) DGMRES(47,1) GMRES(64) DGMRES(63,1)
t1.2Matvecs Time Matvecs Time r Matvecs Time Matvecs Time r
t1.316 551 230 212 173.4 3 355 193.8 208 168.9 2
t1.432 - - 533 109.2 4 2217 244.6 455 94.6 7
t1.564 - - 410 56.8 4 - - 453 50.8 7
t1.6128 - - 791 51.5 15 - - 638 44.3 8

161
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4.2 Adaptive DGMRES and Full GMRES 162

From the robustness standpoint, the full GMRES approach is more reliable than the 163

restarted version even with the deflation process. However as the size of the basis 164

grows, it should be more sensitive to round-off errors. To illustrate this behavior, 165

we consider two formulations of the Arnoldi process, namely the classical Gram- 166

Schmidt (CGS) and the modified Gram-Schmidt (MGS) algorithms. The former is 167

sometimes preferred since it provides good kernel operations in parallel environ- 168

ments. In the PETSc package, for instance, it is used by default in the GMRES im- 169

plementation as the orthogonalization method with a possible iterative refinement 170

strategy. In Fig. 1, the residual history is displayed with respect to the number of 171

matrix-vector products. The method stops when the relative residual norm is 10−10. 172

It can then be noticed that with CGS, stagnation occurs in the full GMRES (in solid 173

line) due to severe cancellation in the algorithm and consequently a loss of orthog- 174

onality. This does not happen when the basis is small since the round-off errors are 175

not propagated very far and DGMRES (dash-dotted line) converges at the desired 176

accuracy even with CGS. Note that although good accuracy is finally achieved in

Fig. 1. Convergence of full GMRES, GMRES(m) and DGMRES(m,k,r) with classical Gram-
Schmidt(CGS) and modified Gram-Schmidt (MGS) orthogonalization scheme. k is the number
of eigenvalues to extract at each detected stagnation and r is the total number of eigenvalues
extracted at the convergence. Thirty two subdomains are used in the additive Schwarz method
with a 1-overlap

177

full GMRES with MGS (dashed line), it will require much more memory to store all 178

the vectors of the growing Krylov basis (265 vectors in this case). In DGMRES, the 179

Krylov basis is stored just for one cycle. Only the invariant basis U is stored over 180

the restart cycles together with vectors M−1AU to reduce the matrix-vector counts. 181

Thus in this example, only 63+ 7× 2 = 77 vectors are stored. Note also that this 182

number can be further reduced by using a smaller Krylov basis since convergence is 183

still good, as shown in Table 1. 184
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5 Conclusion 185

We have designed an adaptive deflation strategy that can be used for preconditioned 186

GMRES. We show in this paper that the proposed algorithm can be used to improve 187

the robustness and reduce both CPU time and memory required by hybrid solvers 188

based on a one level additive Schwarz method. We have implemented this method in 189

the new module DGMRES of the PETSc library. 190
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