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Intensity and localization of flows in fractured media have promoted the development of a large range

of different modeling approaches including Discrete Fracture Networks, pipe networks and equivalent

continuous media. While benchmarked usually within site studies, we propose an alternative

numerical benchmark based on highly-resolved Discrete Fracture Networks (DFNs) and on a stochastic

approach. Test cases are built on fractures of different lengths, orientations, aspect ratios and hydraulic

apertures, issuing the broad ranges of topological structures and hydraulic properties classically

observed. We present 18 DFN cases, with 10 random simulations by case. These 180 DFN structures are

provided and fully documented. They display a representative variety of the configurations that

challenge the numerical methods at the different stages of discretization, mesh generation and system

solving. Using a previously assessed mixed hybrid finite element method (Erhel et al., 2009a), we

systematically provide reference flow and head solutions. Because CPU and memory requirements stem

mainly from system solving, we study direct and iterative sparse linear solvers. We show that the most

cpu-time efficient method is a direct multifrontal method for small systems, while conjugate gradient

preconditioned by algebraic multrigrid is more relevant at larger sizes. Available results can be used

further as references for building up alternative numerical and physical models in both directions of

improving accuracy and efficiency.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Intensity and localization of flows in fractured media have been
intensively discussed in the various perspectives of high-level nuclear
waste storage, oil and gas production including lately the non-
conventional shale gas and water resources in hard-rock aquifers
(National Research Council, 1996; Neuman, 2005). Because flows
are essentially concentrated in the fractures, the flow pattern is
embedded in the fracture network structure and even in a subset of it
when accounting for fracture-scale channeling effects (de Dreuzy
et al., 2001c; Tsang and Neretnieks, 1998). Inheriting both from the
topological complexity of the network and from the fracture aperture
heterogeneity, flows are widely distributed and highly correlated.
Their complexity has promoted a wide variety of different modeling
frameworks including equivalent continuous media (Long et al.,
1982; Tsang et al., 1996), dual porosity media (Warren et al., 1963)
and Discrete Fracture Networks (DFNs) (Cacas et al., 1990; Dverstop
and Andersson, 1989).
ll rights reserved.
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A DFN represents a fractured medium as a network of inter-
connected elements generated according to the statistical fracture
properties issued by field observations (mostly coming from
outcrops, wells and tunnels) (Billaux et al., 1989; Cacas et al.,
1990; Dershowitz and Einstein, 1988; Dverstop and Andersson,
1989; Hsieh, 1998; Xu and Dowd, 2009). The DFN is made up
of an ensemble of statistical laws describing the main fracture
characteristics as size, orientation, transmissivity, density
(Bourbiaux, 2010; Davy et al., 2006b; Davy et al., 2010; National
Research Council, 1996). DFNs are built as fundamental analogs of
natural media by sharing the same discrete structure and the
same statistical properties as those observed on sites. DFNs are
subsequently used as the basis for simulating mechanical,
hydraulic or transport processes both for direct and inverse
problems (Davy et al., 2006a; de Marsily et al., 2005; Doughty
et al., 1994; Le Goc et al., 2010; Sudicky and McLaren, 1992;
Verscheure et al., 2012). They have been applied for the transport
of radionuclides from High-Level Radioactive Wastes (HLRW), the
stability of vitrified nuclear wastes, the mechanical stability of
rock blocks or the production of oil from fractured reservoirs
(Baghbanan and Jing, 2007; Blocher et al., 2010; Bourbiaux, 2010;
Cacas et al., 1990; Crevoisier et al., 2011; Long et al., 1982;
Wellman et al., 2009).
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The interest of DFNs comes from their high similarity with the
key features of natural fractures including the wide variety of
their size and hydraulic properties (Bonnet et al., 2001; Bour and
Davy, 1999). The simultaneous occurrence of fractures on a wide
range of scales and their arrangement in intricate clusters
challenge the classical simulation methods of physical and che-
mical processes (de Dreuzy and Erhel, 2002; Frampton and
Cvetkovic, 2007; Kalbacher et al., 2007). The power-law distribu-
tion of fracture lengths is likely the most constraining feature for
modeling as it rules out the a priori existence of a characteristic
homogenization scale and requires any model to cover a wide
range of scales (Bonnet et al., 2001). The stochastic nature of
modeling also enhances the variety of encountered connectivity
configurations. While DFNs are inherently 3D structures, most
flow and transport studies have been conducted in 2D. Indeed,
3D simulations face numerous modeling issues including the
generation of good quality meshes for the complex fracture
network structures, the treatment of the large-scale numerical
systems issued by discretization and the broad range of fracture
lengths and transmissivities (Bonnet et al., 2001; Davy et al.,
2010; Schmittbuhl et al., 1993). The need of robust and highly
efficient numerical methods is even reinforced by the large sets of
random simulations necessary to get reasonable estimates of
uncertainties. While several numerical methods have been devel-
oped, they are still to be compared underlining the need of a
common benchmark (Cacas et al., 1990; Dershowitz and
Fidelibus, 1999; Gylling et al., 1998; Lenti and Fidelibus, 2003;
Long et al., 1985; Maryka et al., 2004; Nordqvist et al., 1992;
Vohralik et al., 2007).

We present in this article a comprehensive benchmark for flow
simulations in DFNs. The benchmark proposes reference head and
flow solutions in a wide variety of fracture networks and is
designed to serve several purposes. It is built up on a series of
structures organized by increasing level of complexity for setting
up numerical methods. Elementary configurations are amenable
to analytical or well-known numerical solutions and can be used
as toy models in the early phase of development. Advanced
configurations are made geologically relevant to assess numerical
models, like pipe networks or mappings on 3D grids. In the pipe
network approach, fracture flow is approximated by a mesh of 1D
pipes at the network scale, either displayed randomly or relating
fracture intersections (Cacas et al., 1990; Dershowitz and
Fidelibus, 1999; Gylling et al., 1998; Nordqvist et al., 1992). These
simplified models do not involve numerical difficulties, but their
relevance cannot be a priori ascertained, especially when mixing
fractures of different sizes. In the mapping approach, fractures are
projected on a regular 3D mesh (Fourno et al., 2004; Tsang et al.,
1996). If the major advantage is the ultimate possibility to
account for matrix flow, fine grids are necessary to represent
accurately fracture intersections and flows. Thus, even for few
fractures, this model issues a very large numerical system. Thanks
to recent progress in the simulation of 3D DFNs (Erhel et al.,
2009a; Pichot et al., 2012; Pichot et al., 2010), we propose
reference solutions obtained with a fine model and an accurate
numerical finite element method.

We successively describe the domain configuration, flow
model and boundary conditions (Section 2), the DFN test cases
(Section 3), the numerical methods used to establish reference
head and flow fields for the advanced cases (Section 4), the
characteristics of the networks and the simulation results
(Section 5). Section 6 compares the performances of generally
available system solvers, as linear system solving is the most
CPU-intensive step of the simulation chain. All test cases pre-
sented hereafter are available as a supplementary material to this
article. File organization, contents and format are described in
Appendices A and B.
2. Domain definition, flow equation and boundary conditions

In order to define a bounded open domain, the network is
embedded into a cube of edge size L, orientated along the
directions of a x,y,z coordinate system with the origin at the
center of the cube. The matrix is considered impervious, thus the
flow domain is the union of the NF fractures Of (f¼1yNF), with NI

intersection Sk (k¼1...NI) between the fractures. In each fracture
Of, the diffusion equation is approached by:

u¼�Trh

r � u¼ 0 ð1Þ

where u is the velocity multiplied by the aperture of the fracture,
h is the head, T is an equivalent transmissivity, generally given by
the local aperture through Poiseuille’s law (Auradou et al., 2005;
Brown, 1987; Méheust and Schmittbuhl, 2001). The model must
be completed with continuity conditions on fracture intersections
Sk, which are written:

hk,f ¼ hk,8f AFk

X
f AFk

uk,f � nk,f ¼ 0 ð2Þ

with Fk the set of fractures intersecting on Sk, hk the head on the
intersection Sk, hk,f the trace of the head on Sk in the fracture f, uk,f.
nk,f the normal velocity through the intersection Sk coming from
the fracture Of (Erhel et al., 2009a; Noetinger and Jarrige, 2012;
Vohralik et al., 2007). Boundary conditions are classical permea-
meter boundary conditions: two opposite faces of the cube have
fixed charges (Dirichlet type boundary conditions) and the four
orthogonal faces are impervious (Neumann type boundary con-
ditions). Moreover, there is no flow between fractures and matrix.
Boundary conditions on the fracture f are summarized:

h¼ hþ on Gf \ Gyþ

h¼ h� on Gf \Gy�

u� n¼ 0 on Gf \ Gyþ [Gy�

� �
ð3Þ

where Gx�,Gxþ ,Gy�,Gyþ ,Gz�,Gzþ are the six faces of the cube and
Gf is the border of the fracture f. The direction of the head gradient
along y will be referred as the main flow direction.
3. DFN test cases

The benchmark is made up of fracture networks of increasing
complexity divided in four categories of elementary fracture
networks for which analytical solutions are available, 2D-like
fracture networks that are direct extensions of 2D DFNs, 3D
percolation-like structures and fully 3D power-law DFNs.

3.1. Analytical solutions of flow in elementary fracture networks

We call elementary ‘‘analytical’’ fracture networks those sim-
ple networks on which flows can be calculated analytically. They
remain simple and are basically extensions to 3D of the linear
head solution on a 1D medium. The first example is made up of a
single fracture of homogeneous transmissivity orientated along
one of the directions (x or z) orthogonal to the main flow direction
(y), fully connected to the y� and yþ Dirichlet boundary condi-
tions and passing through the center of the cube (Fig. 1a). Within
the fracture, head depends linearly on the distance to the
boundary condition. For the case of a fracture parallel to the z

direction, the linear evolution of head from h� to hþ from y� to
yþ leads within the fracture plane to:

h x,y,zð Þ ¼ h�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xy
L þ

x
2

� �2
þ

y2

L þ
y
2

� �2

x2þy2

vuut
hþ�h�ð Þ ð4Þ
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Fig. 1. Fracture network configurations for which head field can be determined analytically. All lines are traces of 3D fractures parallel to the z direction.

Fig. 2. 2D-like fracture networks with (a) 10 and (b) 50 fractures.
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where it is implicitly assumed that the point of coordinates (x,y,z)
belongs to a plan passing through (0,0,0).

This case can be straightforwardly extended to two fracture
cases of interest for validating assessing numerical methods. The
first one consists in adding a fracture orientated along the same
direction orthogonal to the y direction as the first fracture and
connected to the no-flow boundary conditions (Fig. 1b). In this
additional fracture, flow is uniformly null. The second one con-
sists in adding the same kind of fracture orientated along the
same direction orthogonal to the y **direction as the first fracture
passing through the cube center and connected to the fixed-head
boundary conditions (Fig. 1c). In each fracture, the flow remains
linearly dependent on the distance to the boundary condition
within the fracture plane as given by (4).

Several test networks can be built up on this configuration for
example on the two fractures case of Fig. 1b by adding other
fractures touching the no-flow boundary conditions parallel to
the same direction as the other ones (dashed line on Fig. 1b).
Another possible extension is that of the regular grid. It should be
underlined that the grid should remain aligned with the coordi-
nate system. If the grid is tilted, heads can no longer be computed
analytically because of the introduction of a variety of shortcuts
that breaks the former independence of flow solution in the
different fractures. The only exception is the 451 rotation for
which an analytical solution can be built up thanks to the
invariance of the zigzag pattern by translation orthogonally to
the main flow direction along the x direction. The head field
depends only on the distance to the yþ boundary condition along
the fracture network:

h x,y,zð Þ ¼ h�þ
y

L
þ

1

2

� �
hþ�h�ð Þ ð5Þ

3.2. 2D-like fracture networks

2D-like fracture networks are direct generalizations of the
previous test networks. They display a translational invariance in
the z direction, which makes them similar to a 2D network with
the traces of fracture in the (x,y) plane. Flows computed with the
3D network can thus be compared with the flows computed with
the 2D network. We provide two test cases in the benchmark,
made up of, respectively 4 and 50 fractures (Fig. 2). Moreover, ten
random networks are generated for each test case, yielding a
benchmark of 20 DFNs. Heads on intersection points of the 2D
networks are given in single text files D2_LIKE_h-no, the content
of which is provided by Table 4, and results for the 3D corre-
sponding networks are discussed in Section 4. Even if the 2D
reference remains numerical, it is a very accurate solution with-
out discretization error as the mesh is the network itself and head
solution between two nodes is linear (de Dreuzy and Erhel, 2003;
de Dreuzy et al., 2001b). The only error, which arises when
solving the linear system, can be easily controlled. We have used
the direct multifrontal method implemented in SuiteSparse
(Davis and Duff, 1999) to solve the linear system.

3.3. Percolation-like structures

Random networks of small fractures having all the same size
lmin display a well-defined collective behavior that has been
revealed by percolation theory (Stauffer and Aharony, 1992).
If the percolation threshold is sensitive to the fracture shape (de
Dreuzy et al., 2000), the scaling of the geometrical and hydraulic
properties at threshold only depend on the Euclidean dimension.
It especially means that the scaling of the equivalent permeability
Keq at threshold follows a universal law:

Keq Lð Þ � L�m=n ð6Þ

where m/n is a very well defined exponent that can however only be
approached numerically. Approximations on site percolation struc-
tures of m/n are 2.2670.04 for Normand and Herrmann (1995) and
2.283 for Kozlov and Lagues (2010). The test consists in computing
the equivalent permeability at different scales ranging typically over
two orders of magnitude and further evaluating m/n. It may be used
for assessing simplification methods based for example on equiva-
lent pipe network concepts (Cacas et al., 1990). The exponent is
sensitive to systematic errors in the local approximations necessary
to transform local connectivity structures into equivalent perme-
ability structures and can be used as a first necessary step to qualify
approximations.

3.4. 3D power-law DFNs

We consider a series of DFNs defined by the following
ensemble of characteristics (Table 3). Fracture centers are uni-
formly distributed within the domain. Fractures are ellipses of
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aspect ratio e (major axis over minor axis) uniformly distributed
between 0.25 and 0.75 to avoid disk-like and needle-like frac-
tures. Fracture lengths l follow a power-law distribution fl such
as:

f l lð Þ � l�a3D ð7Þ

with a characteristic exponent a3D equal to 2.7 or 3.7 (Bonnet
et al., 2001). The minimum fracture major axis is fixed to lmin.
Fracture lengths are thus distributed from lmin to aL, where we
recall that L is the characteristic domain scale, and a is a
coefficient larger than 1, accounting for the truncation of ellipses
larger than the cube. Fracture orientations are either uniformly
distributed or close to three orthogonal directions, with allowed
deviations to the orthogonal directions of at most 101. Fracture
local apertures a are either constant equal to 10�4 m/s or have the
generally observed Gaussian distribution, with self-affine correla-
tion function fa (Méheust and Schmittbuhl, 2001; Méheust and
Schmittbuhl, 2003):

f a að Þ ¼
1

s
ffiffiffiffiffi
2p
p e�

a�mð Þ
2

2s2 if aZac

0 if arac

						 ð8Þ

where ac is a small aperture value designed to prevent the
occurrence of negative or null aperture values (Méheust and
Schmittbuhl, 2003). In practice ac/m¼10�3 is enough. The mean
aperture m is kept at 10�4 m/s and the standard deviation s is
equal to the mean leading to a so-called closure s/m of 1. Local
fracture transmissivities T are related to the fracture aperture a by
assuming locally the validity of Poiseuille’s law (Taylor, 1953):

T ¼
g

n
a3

12
ð9Þ

with n the dynamic viscosity and g the classical gravitational
acceleration. Taking for the fluid water at ambient temperature,
T¼8.2 10�7 m2/s for a¼10�4 m/s. Finally, fracture density is
counted according to the appropriate definition of the percolation
parameter p for power-law distributions of ellipses (de Dreuzy
Fig. 3. Examples of tested networks. Only clusters connected to both y� and yþ (inflo

a) ORUNI_A27_THRE, (b) ORUNI_A37_THRE, (c) ORUNI_A37_DENS, (d) ORTHO_A27_T

references to color in this figure legend, the reader is referred to the web version of th
et al., 2000):

p¼
N

L2

Z
min l,aLð Þð Þ

3 f l lð Þ dl ð10Þ

where N is the number of fractures. We normalize it by its value at
threshold pc and consider two characteristic values of p/pc just above
percolation threshold (p/pc¼1.2) and twice above percolation
threshold (p/pc¼3). The full set of DFNs is obtained from the 16
combinations of the two choices of length, orientation and aperture
distributions and of the two possible values of density. Each network
is named with a combination of the labels given in Table 3. For
example, the case of a network with uniform orientations (ORUNI), a
power-law distribution of fracture lengths with a3D¼2.7 (A27), just
above threshold (THRE), with self-affine correlated fracture aper-
tures (TSAFF) is named ORUNI_A27_THRE_TSAFF.

Because of the statistic characterization of fracture properties,
modeling is inherently stochastic. We provide in the benchmark
10 random samples generated for each set of parameters. On top
of conceptual relevance, random simulations also broaden the
range of network configurations on which numerical methods are
assessed. The 160 fracture networks are made available with the
H2OLab platform, under the format documented in Appendix A1.

The length distribution has a major influence on the network
structure as shown by the differences between the left and middle
columns of Fig. 3. When the power-law length exponent a3D

increases from 2.7 to 3.7, the range of fracture lengths contributing
to connectivity widens as well as the tortuosity and the density of
dead ends. Structures close to percolation threshold promote
high degrees of network scale channeling and solute dispersion
(de Dreuzy et al., 2001a; Le Goc et al., 2009; Renard and Allard,
2012; Tsang and Neretnieks, 1998). At higher densities (right
column of Fig. 3), even though connectivity becomes less critical,
hydraulic and transport properties can still strongly differ from
homogeneous like structures. Indeed, a limited number of main flow
paths is in interaction with a dense network of smaller fractures.
Fracture aperture distributions enhance this multiple porosity like
hydraulic behavior (de Dreuzy et al., 2001c; de Dreuzy et al., 2002).
Preferential fracture orientations have, respectively less influence
(Fig. 3, top line compared to bottom line). They however control to
w and outflow faces) are considered. Fracture length increases from red to blue.

HRE, (e) ORTHO_A37_THRE and (f) ORTHO_A27_THRE. (For interpretation of the

is article.)
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some extent the disposition of fracture intersections within the
fracture planes that constrain the generation of high-quality meshes
(Erhel et al., 2009a; Kalbacher et al., 2007). Note that the difference
between uniformly orientated networks and orthogonal fracture
orientations is only the fracture direction, fracture centre, whereas
major and minor axes remain identical for each fracture (Fig. 3, top
line compared to bottom line). If some of the largest fractures and
the general connectivity structures are similar, connectivity details
still vary substantially.
4. Numerical methods for complex DFNs

For the DFNs described above, no simplified model can be a
priori devised and numerical methods are required to approximate
the head and flow fields. We have developed a complete software
suite, called MP_FRAC, which generates a random DFN and
simulates a steady-state flow in this network, with various
boundary conditions (Erhel et al., 2009a). This software is inte-
grated in the platform H2OLab (Erhel et al., 2009b). In order to
generate random DFNs, with the various probability laws model-
ling the geometry and the physical properties, a specific tool is
developed in H2OLAB (Erhel et al., 2008; Erhel et al., 2009b), with
streams of random numbers generated by the RngStream package
(L’Ecuyer et al., 2002), and input and output parameters described
in XML files. This generic tool allows also running multi-parametric
simulations with a large number of samples. It provides simulation
results for each sample as well as statistical results. The software
MP_FRAC uses intensively this tool, whereas computational geo-
metry is handled by the CGAL package (CGAL, Computational
Geometry Algorithms Library, http://www.cgal.org). Currently,
MP_FRAC can simulate steady-state flow with various boundary
conditions. We first describe the numerical model implemented
and in the next section, we provide our simulation results for the
networks of Section 3.4. It should be noted that our model can also
be used for all the networks of Section 3.

4.1. Numerical model

The numerical model is based on the Mixed Finite Element
method, mainly for two reasons: it ensures both local and global
mass conservation and it provides an accurate velocity field,
which can be used in subsequent transport simulations. We
implemented the so-called RT0 scheme (Brezzi and Fortin,
1991; Raviart and Thomas, 1977). The networks considered have
a very specific geometry: it is a 3D intricate structure of 2D
domains. Since the matrix is impervious, the mesh is 2D inside
each fracture, 1D at the intersections between fractures, and a 3D
set of 2D intersecting domains at the network scale. A first
difficulty is to generate this mesh, since it cannot be handled
directly by a mesh generator. A second difficulty is to ensure head
and flow continuity at the intersections of the fractures and a
third challenge is to solve the resulting linear system.

To generate the mesh, a first approach is to discretize first the
boundaries and the intersections, then the 2D fractures. However,
this method induces very small angles because of the intricate
geometry and may fail for some networks (Mustapha, 2005).
Therefore, we designed a new method, introducing a pre-proces-
sing step where fracture borders and intersections are discretized
using a regular 3D grid. These staircase-like discretizations are
finally projected onto each fracture plane. Then a good quality 2D
mesh is generated in each fracture plane, using the resulting 1D
discretizations of the border and intersections. Local adjustments
are necessary to guarantee geometrical properties. We developed
this approach in both a conforming and a non conforming settings
(Erhel et al., 2009a; Pichot et al., 2012; Pichot et al., 2010). Local
modifications and a non conforming method are also used in
(Vohralik et al., 2007).

With a hybrid method and a conforming mesh, it is finally quite
easy to ensure the continuity conditions at the intersections, because
of the choice of the main unknowns (the trace of head on each edge
of the mesh) (Erhel et al., 2009a). With a non conforming mesh, we
used the Mortar framework to write the discrete problem (Pichot
et al., 2010). However, the pre-processing step induces particular
cases where some parts of intersections are common to three
fractures or more. Thus, we had to generalize the Mortar method to
deal with these configurations (Pichot et al., 2012).

Either in the conforming or the non conforming case, linear
equations written at each edge of the mesh express local mass
conservation. The resulting linear system Ax¼b, with x the trace
of head on edges and b accounting for boundary conditions, is
large. It has as many unknowns as edges in the mesh but is sparse,
with roughly five non zero coefficients per line for a mesh with
triangles (Erhel et al., 2009a). The matrix A of the system is SPD
(symmetric positive definite), also for the non conforming case.
Thus several solving algorithms can be used: a direct method,
based on the Cholesky factorization; an algebraic multigrid
method; a preconditioned conjugate gradient method, with var-
ious preconditioners; a domain decomposition method (Poirriez,
2011). High performance computing is required to handle very
large systems. Once the system is solved, it is easy to compute the
mean head, as well as the transverse flux through each edge and
the velocity inside each triangle, using the RT0 scheme.

4.2. Assessment of the model

The Mixed Finite Element method is well studied in the
literature (Roberts and Thomas, 1991). Here, we introduce addi-
tional approximations with the pre-processing step and with the
generalized Mortar method. Although we did not prove theore-
tical results, we checked convergence experimentally and
observed convergence behaviour with an order 1, both in the
conforming and the non conforming cases (Erhel et al., 2009a;
Pichot et al., 2012; Pichot et al., 2010).

In order to validate the software, we generated the simple
networks described in the first two categories. We got a very good
agreement with analytical results. Regarding 2D-like networks,
each intersection in the 3D network corresponds to a crossing
point i in the 2D network and the head value at any edge j of the
intersection should be equal to the head value at the crossing
point. In order to compare 2D and 3D results, we compute the
relative matrix of errors eij. For the 20 tested 2D-like fracture
networks, this matrix is very small, as expected.

Regarding general complex networks, we compute the equiva-
lent permeability Keq, defined by the rate of the specific flow
(Q/L2) to the head gradient ((Dh/L):

Keq ¼
Q in

LDh
ð11Þ

with Qin the flow integrated over all edges belonging to the inflow
boundary. Normal fluxes on each edge and mean head on each
triangle are computed from the trace of head, using the Raviart-
Thomas basis functions (Brezzi and Fortin, 1991). Equivalent
permeability is in any case a relevant first-order measure for
upscaling hydraulic properties in complex structures as it is
sensitive to both the topological structures and the hydraulic
heterogeneities that has extensively used for qualifying flows in
fractured media (de Dreuzy et al., 2010; Long et al., 1982).

In our numerical simulations, we check systematically both
local and global mass conservations. The norm of the residual
r¼b�Ax measures the deviation from an exact local conservation
rule. It is small with an accurate linear solver. The deviation from



Table 1
List of 2D like DFNs with their name (corresponding to the folder name where

results are stored), number of fractures, fracture length, transmissivity and

orientation distribution.

Name Number of

fractures

Length l Transmissivity (T) Orientation

D2_like_N10 10 lc L T¼8.2 10�7 m2/s Uniform

D2_like_N50 50

Table 2
Geometrical, hydraulic and numerical parameters common to all tested networks.

Units are indicative. Dimensionless parameters can straightforwardly be deduced

by taking the scale lmin as the reference scale.

Parameter name Description Value

Geometrical

and hydraulic

L System size 20 m

lmin Minimum fracture major

axis

1 m

hþ Maximum head (imposed

on Gf \ Gyþ )

20 m

h- Minimum head (imposed

on Gf \ Gy�)

0 m

Head gradient 1

Numerical Maximum mesh length 0.1 m

System solver Direct or PCG

Solver precision in PCG 10�14

Table 3
DFN characteristics and names.

Characteristics Options Label

Position Uniform distribution in domain

Shape Uniform distribution of major to minor axes in

[0.25,0.75]

Orientation Uniform distribution ORUNI

Nearly orthogonal fracture orientations ORTHO

Length Power law distribution with a3D¼2.7 A27

Power law distribution with a3D¼3.7 A37

Density 20% above threshold (p/pc¼1.2) THRE

Twice above threshold (p/pc¼3) DENS
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a global conservation rule is measured by computing all the fluxes
at the borders of the cubic domain. More precisely, no flow
boundary conditions are checked and a global criterion at the
domain scale is defined by:

prec¼
Q inþQout

Q in
ð12Þ

with Qout the flow integrated over the outflow boundary. All our
simulation results exhibit a very small residual and a very small
global error. Thus our software MP_FRAC is very reliable and can
be used for studying statistical properties of DFNs.

Finally, we would like to emphasize that our method is very
robust, in the sense that we could generate many random 3D
networks, generate the mesh of these DFNs and simulate the flow,
with no failure at all. With the software MP_FRAC, we could
simulate flow in more than 105 complex 3D fracture networks.

We provide now comprehensive results for the networks
presented in Section 4, which can be used as a reference for
comparison with other models Table 1.
Aperture Uniform equal to 10�4 m/s (T¼8.2 10�7 m2/s) TUNIF

Self affine correlated, Gaussian distribution

(m¼10�4 m/s,sXm¼1)

TSAFF

Table 4
D2_LIKE_h-no file format and content.

D2_LIKE_h-no

Column name Description

no Line number within the file (not necessary)

no_inter 2D node number

x x coordinate of the node

y y coordinate of the node

h Head value at the node
5. Complex 3D DFN cases with reference head and flow fields

We use the numerical methods of Section 4 to compute reference
head and flow fields on the 2D-like networks of Section 3.2 and on
the power-law DFN networks cases of Section 3.4. As already stated,
10 random simulations have been run for both 2D-like networks
and each of the 16 power-law DFNs. Physical and numerical
parameters are given in Table 2. Computations are done with 64-
bit floating point arithmetic. For all the networks, the mesh
generated is conforming and is based on a mesh step equal to
0.1 m. The characteristics of the networks are given in Table 2.
Results are obtained on a bi-cpu six-core Intel Xeon 3 GHz computer
with 96 GB of RAM, configured with windows server 2008 64-bit
system. The reference head and flow fields are computed using
either a direct solver or an iterative PCG solver with a convergence
criterion of 10�14 (Table 2). More precisely, two solver libraries are
interfaced: SuiteSparse, a direct solver (Davis and Duff, 1999) and
PCG, of Hypre suite, with default parameters, a conjugate gradient
preconditioned by one cycle of boomer-AMG (Falgout et al., 2005).
The choice of the linear solver is discussed in Section 6.

5.1. Main characteristics of networks and some results

Some integrated results are given in Table 5, as means over the
10 samples generated. The set of 3D power-law DFNs cover a
wide range of configurations, at least partly characterized by the
number of fractures (n_frac), the cumulated fracture surface
(surface), the mean intersection length (int_length) and the
average distance between two intersections (int_dist) (Table 5).

The mean number of fractures varies from 180.2 to 6845. The
cumulated fracture surface differs by at most 25% for the two
power-law exponents, showing that the length distribution has a
stronger impact on the network structure than the cumulated
surface. Mean intersection length depends mostly on the length
distribution (int_lengthE0.6 for a3D¼3.7 and int_lengthE1.3 for
a2D¼2.7). The mean number of edges (edges), which is also the
system size, is quite large, from 3.66 million to 27.8 million.
It depends highly on the density and to a lesser extent on the
power-law exponent Tables 3 and 4.

The orientation has only a small influence on the equivalent
permeability Keq, which is surprisingly only weakly sensitive to the
aperture distribution. It is true as long as the correlation length of the
fracture aperture distribution is not much larger than the distance
between fracture intersections (de Dreuzy and Méheust, 2012).

Local mass conservation is ensured by a small residual in the
system solver and the criterion prec, testing global mass con-
servation, is very small. Time measurements and performance
results are discussed in Section 6.

5.2. Detailed description of networks

For each of these 180 fracture networks, three levels of inter-
mediary results are provided at different stages of the modeling
process covering, respectively (1) the network intersections and
fracture contours, (2) a possible conforming mesh, (3) and the linear
systems issued by a Mixed Hybrid Finite Element scheme. These
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three levels can be used for addressing different modelling issues. The
single fracture network description can be used for evaluating simple
estimates like those given by effective media (Kirkpatrick, 1971) or
percolation (de Dreuzy et al., 2001b; Stauffer and Aharony, 1992), the
fracture and intersection characteristics for generating meshes, the
mesh for finite element schemes and the linear systems for linear
system solvers. In Appendix A, we document precisely these outputs.
5.3. Reference head and flow

Head and flux files formats are given in Appendix B. Visual
inspection of the flow for two close networks (Fig. 4) show similar
Fig. 4. Head (left column) and average flow (right column) for two of the test

networks. Heads and flows increase from black to red on linear and logarithmic

scales, respectively from their minimal to the maximal values. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 5
Network results. All results are averages over 10 random realizations. Computational

and PCG (tPCG). Results are obtained on a bi-cpu six-core Intel Xeon 3 GHz computer

Network name n_frac surface int_length int_dist edges ed

D2_LIKE_N4 4 1,635.73 20 18.8223 8.34Eþ06

D2_LIKE_N50 49,9 18,798.5 20 5.2 4.73Eþ07 1

ORTHO_A27_DENS_TSAFF 808.3 5,186.4 1.4 2.9 1.31Eþ07

ORTHO_A27_DENS_TUNIF 808.3 5,186.4 1.4 2.9 1.31Eþ07

ORTHO_A27_THRE_TSAFF 136.3 1,499.7 1.2 5.4 3.66Eþ06

ORTHO_A27_THRE_TUNIF 136.3 1,499.7 1.2 5.4 3.66Eþ06

ORTHO_A37_DENS_TSAFF 5515.6 9,008 0.6 1.1 2.28Eþ07

ORTHO_A37_DENS_TUNIF 5426.6 8,851.2 0.6 1.1 2.24Eþ07

ORTHO_A37_THRE_TSAFF 521.6 1,725.4 0.6 1.6 3.66Eþ06

ORTHO_A37_THRE_TUNIF 521.6 1,725.4 0.6 1.6 3.66Eþ06

ORUNI_A27_DENS_TSAFF 965.5 6,058.5 1.4 2.3 1.54Eþ07

ORUNI_A27_DENS_TUNIF 965.5 6,058.5 1.4 2.3 1.54Eþ07

ORUNI_A27_THRE_TSAFF 180.2 1,876 1.3 3.9 4.69Eþ06

ORUNI_A27_THRE_TUNIF 180.2 1,876 1.3 3.9 4.69Eþ06

ORUNI_A37_DENS_TSAFF 6845 10,780.6 0.5 0.9 2.78Eþ07 1

ORUNI_A37_DENS_TUNIF 6845 10,780.6 0.5 0.9 2.78Eþ07 1

ORUNI_A37_THRE_TSAFF 727 2,157 0.6 1.4 4.74Eþ06

ORUNI_A37_THRE_TUNIF 727 2,157 0.6 1.4 4.74Eþ06
head fields but quite different flows. Head similarities come from
the fixed boundary conditions. Depending on local head gradi-
ents, flows are more sensitive to the fracture aperture distribution
as shown by the comparison of the top and bottom lines of Fig. 4.
Fig. 4 further shows the multi-scale nature of channelling at the
fracture and network scales.

Aside from the detailed head and fluxes given in each mesh
cell within the fractures, we also provide the jump of flux at the
fracture intersections. This output may be used more straightfor-
wardly to benchmark equivalent pipe network approaches (Cacas
et al., 1990; Nordqvist et al., 1992) for very large domains, that are
currently out of reach of the methods presented in Section 4.
Jumps of flux at intersections may also be used as a starting point
to build approximate solute transport solutions. The full fracture
network may be approached as a graph with the nodes being the
fracture intersections and the edges the main flow tubes within
the fracture determined by simple geometrical rules. The graph
is directed and weighted by the fluxes at the intersections
distributed among the edges. Such methods may be interesting
in hydro-geophysics methods where only a rough approximation
is necessary for assessing connectivity structures (Dorn et al.,
2011).
6. Performance analysis

As can be observed from the simulation results (Table 5), the
most CPU-intensive computation is the linear system solver,
which is the critical step of the simulation, especially for the
large fracture networks. Indeed, all other steps require in general
a small amount of CPU time, increasing in most cases linearly
with the system size (Erhel et al., 2009a). In Table 5, discretization
time is high with 4 networks, with an exponent a3D¼3.7 and a
high density, because of many local adjustments. In order to
reduce this time, we are improving the algorithms and we will
use the Mortar method with cheaper local adjustments (Pichot
et al., 2012; Pichot et al., 2010).

The CPU time for solving the linear system increases with the
system size, so that it is essential to use a fast sparse solver. In this
section, we show that we could consider complex DFNs resulting
in linear systems with millions of unknowns (Poirriez, 2011).
In order to study thoroughly the system solvers, we provide
results with a preliminary experiment and test cases inducing
relatively small systems (Poirriez, 2011).
time for solving the linear system is given for the two solvers UMFPACK (tsUMF)

with 96 GB of RAM, configured with windows server 2008 system.

ges_i Keq Prec t_disc t_mesh t_sysprep tsPCG tsUMF

1,062.2 6.8E�08 3.84E�13 0.03 3 4.,3 21.2 55

50,092 8.60E�07 1.00E�13 22.9 50.1 83.2 1171.1 745.7

35,408.1 1.30E�07 1.10E�11 51.2 28.4 32.7 615.4 295.9

35,408.1 1.90E�07 3.70E�13 48.4 27.4 34.3 545.6 386.5

3,981.8 1.90E�08 7.80E�12 3.8 8.9 10.6 132.6 25.3

3,981.8 3.60E�08 4.10E�13 3.6 9.2 10.4 126.7 25.4

98,018.4 8.10E�08 1.30E�11 695.7 33.7 44.1 907.8 979.8

95,674.1 1.30E�07 6.90E�13 526.8 26.5 29 632.5 631

7,902.6 7.10E�09 4.80E�11 13.5 7.7 9.5 133 22.4

7,902.6 1.40E�08 2.10E�12 13.5 7.7 9.3 109.6 23.5

47,074.7 1.30E�07 6.30E�12 40.9 22.4 26.1 548.3 361.3

47,074.7 1.90E�07 2.00E�13 60.2 28.5 39.5 713.2 454.2

5,670.3 1.90E�08 2.00E�11 5.4 11.1 13.2 178.1 36.9

5,670.3 3.50E�08 1.10E�12 5.7 11.3 13.1 172.4 35.1

31,359 8.60E�08 5.40E�12 930.2 40.8 56.1 1445.8 1154.8

31,359 1.60E�07 5.80E�13 860.1 43.3 53.5 1417.6 1173.2

11,736.5 3.90E�09 1.70E�10 17.3 8.9 11.6 150.8 45.3

11,736.5 1.00E�08 5.50E�12 16.6 9.1 12.3 138.5 28.7
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6.1. Preliminary experiment with small DFNs

In this preliminary experiment, we generate a large number of
various random networks and solve the linear system with three
different software libraries: SuiteSparse, PCG and Boomer-AMG,
of Hypre suite, an algebraic multigrid solver, with default para-
meters (Falgout et al., 2005). We run sequential simulations on a
machine with 4 quadri-core Intel Xeon 2.4 GHz processors and
with 16 GB of RAM, configured with windows server 2003 64-bit
system.

We define two sets or random DFNs, with a homogeneous
transmissivity. In the first set, the system size increases with the
ratio N/Nc, the number of fractures N relatively to the number of
fractures Nc at percolation threshold. We choose three values of
power-law exponents a3D, a given mesh step, six values of the
ratio N/Nc and draw ten samples for each combination of para-
meters, yielding a set of 177 connected networks. Indeed, we do
not consider non connected networks since the resulting linear
system is singular. The system size ranges from 140,000 to
610,000. In the second set, the system size increases by refining
the mesh. We fix the ratio N/Nc, choose three exponents a3D and
nine mesh steps, and again draw ten samples for each combina-
tion, resulting in a set of 270 connected networks. The system size
ranges from 60,000 to 5900,000. Finally, we get a total number of
417 connected networks, since some DFNs are in the two sets
(Tables 6 and 7).
6.2. Results with the three sparse linear solvers

For the largest systems of this preliminary experiment, the
direct solver fails because of memory requirements, so that 387
systems are solved among the 417 test cases. We could solve
larger systems with CHOLMOD instead of UMFPACK (CHOLMOD
will be interfaced very soon), but memory requirements would
also increase rapidly with the size and would put a barrier. In the
benchmark experiment (Table 5), the direct solver does not fail
Table 7
Preliminary experiment: second set. The linear system size increases by refining

the mesh.

Parameter

name

Description Value

L System size 3 m

lmin Minimum fracture

major axis

1 m

a3D Power law exponent 2.5; 3.5; 4.5

N/Nc Relative number of

fractures

4

Mesh step 0.01; 0.02; 0.03; 0.04; 0.05; 0.06; 0.07;

0.08; 0.09

Number of random

samples

10

Table 6
Preliminary experiment: first set. The linear system size increases with the ratio

N/Nc, the number of fractures N relatively to the number of fractures Nc at the

percolation threshold.

Parameter name Description Value

L System size 3 m

lmin Minimum fracture major axis 1 m

a3D Power law exponent 2.5; 3.5; 4.5

N/Nc Relative number of fractures 2; 3; 4; 5; 6; 7

Mesh step 0.04

Number of random samples 10
and is fast, thanks to the memory available (96 GB instead of
16 GB). As expected, we observe in both experiments an algo-
rithmic complexity, with CPU time increasing as a power of the
system size, but it is difficult to estimate the exponent because of
the large variability and of the range considered.

Regarding AMG, an unexpected behaviour occurs, since con-
vergence rate varies a lot from one system to another. When we
simulate flow in 2D or 3D random heterogeneous porous media
for example, the number of V-cycles of AMG is constant, resulting
in a linear algorithmic complexity (Erhel et al., 2008; Erhel et al.,
2009b). In Fig. 5, we plot the number of V-cycles for the first set of
the preliminary experiment and observe slow convergence or
even failure (when the number reaches the fixed limit of 500
cycles) for some networks, with a small residual only for 375
systems out of the 417 considered. We still investigate this result
by characterizing the connectivity and the corresponding matrix
graph. We could also tune the parameters in Hypre, but our
simulations must be fast and reliable for any random network.
Here, the matrix graph is particular, since the domain is neither a
2D surface nor a 3D volume but a 3D network of interconnected
2D subdomains. This particular structure could have an impact on
the spectral properties of the iteration matrix, thus on conver-
gence of the multigrid method. When the convergence rate is
good, AMG is very fast, but it becomes expensive when conver-
gence deteriorates. Thus we do not consider AMG in the bench-
mark experiment.

Finally, we use also PCG, preconditioned by one V-cycle of
AMG, which turns out to be robust since all 417 systems can be
solved accurately. In Fig. 6, we plot the number of PCG iterations
for the first set of the preliminary experiment and observe a small
number of iterations, with some variability, between 3 and
5 iterations. In the benchmark experiment, the number of itera-
tions is also small, with some variability. In our simulations,
convergence of PCG slows down slightly when the system size
increases. Nevertheless, the combination of a Krylov method
and a multigrid method is indeed very reliable and less memory
consuming than a direct solver.

6.3. Comparison of the three sparse linear solvers

In Figs. 7 and 8, we plot the CPU time of UMFPACK, AMG and
PCG, versus the system size, for all DFNs in the preliminary
Fig. 5. Number of V-cycles in Boomer-AMG versus the system size for the first set

of networks in the preliminary experiment, with a varying number of fractures.



Fig. 6. Number of PCG iterations (CG preconditioned by Boomer-AMG) versus the

system size for the first set of networks in the preliminary experiment, with a

varying number of fractures.

Fig. 7. CPU time of the three sparse solvers versus the system size, for the first set

of the preliminary experiment, with a varying number of fractures.

Fig. 8. CPU time of the three sparse solvers versus the system size, for the second

set of the preliminary experiment, with a varying mesh step.
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experiments, with points missing when UMFPACK or AMG
failed. The CPU time with UMFPACK and PCG for the benchmark
experiment are given in Table 5.

The winner is AMG when it converges very fast but, as already
pointed out in Section 6.2, it is not reliable in our preliminary
experiment, since it converges very slowly for some DFNs. We
have no clear explanation of this behavior, even though we reckon
that the network structure may have an impact.

As can be expected, the direct solver is the most efficient up to
a given size, which depends on the target computer. Clearly,
memory requirements are a bottleneck for the direct solver. In the
preliminary experiment with only 16 GB of RAM, the threshold is
at about 0.5 million; with the benchmark experiment and 96 GB
of RAM, the threshold is higher than 47 million.

In all our simulations, PCG (preconditioned by AMG) is reliable
and requires less memory than a direct solver, thus both the
direct and PCG solvers are our current methods of choice.
7. Conclusion and future work

We propose an extensive benchmark for modeling single-
phase flow in stochastic Discrete Fracture Networks (DFNs).
Analytical or highly accurate solutions are given for single
fractures and 2D-like networks. Previously assessed mixed hybrid
finite element methods (Erhel et al., 2009a) are used to propose
reference solutions for geologically relevant DFNs. A set of 180
test cases is built on randomly generated DFNs, with fractures of
different lengths, orientations, aspect ratios and hydraulic aper-
tures issuing the broad ranges of topological structures and
hydraulic properties classically observed. Structures and flow
solutions are provided and fully documented. Both a direct and
an iterative Preconditioned Conjugate Gradient methods are
efficiently used to solve the large linear systems, of size up to
47 million. Available results can be used further as references for
building up alternative physical and numerical methods in both
directions of improving accuracy and efficiency.

The mesh generated in the benchmark is conforming but
we plan to use also a non conforming mesh, thanks to our
Mortar method (Pichot et al., 2012; Pichot et al., 2010). This
should reduce the number of edges thus the memory and CPU
requirements.

The model with a non conforming mesh will be combined with
the domain decomposition method currently under development
(Poirriez, 2011). This should also improve the performances, in
particular with multicore or multiprocessor architectures.

Thanks to these numerical improvements, flow will be com-
puted on very large DFNs, with many fractures and edges. The
stochastic model will be used to run Monte Carlo simulations and
to analyze statistical outputs. We aim at studying the equivalent
permeability and at deriving upscaling rules.
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Appendix A. Database of DFN test cases

We document precisely the file list, structure and content for
the elements given for the fracture networks. Directories are
organized according to the network names of Table 5. For each
simulation, the files listed below and summarized in Table 8 are
stored in the same directory named ‘‘run_global_results’’ and the
files Aij.txt and bij.txt are stored in a directory called ‘‘systems’’.
Fracture network

Each fracture modelled by an ellipse is described by its centre,
its normal, the unitary vector along the major and minor axes, the
length of the major and minor axes (Table 9). Fracture centres are
given in the reference coordinate system centred at the centre of
the cube.
Table 10
Characteristics of mesh triangles (column number, parameter name and

description).
Fracture contours and intersections

Fracture contours are ellipse polygons with segments described
in file ‘‘polygon-no.vector’’ (Table 15). Intersections between frac-
tures are segments given in a separate file ‘‘polygon-intersections-
no.vector’’ (Table 16). The 2D coordinates within the corresponding
Table 8
List of files.

File name Description Column

description

frac-no.vector Fracture network Table 9

triangle-no.vector Triangles of mesh Table 10

edge-no.vector Edges of mesh Table 11

vertex-no.vector Vertices of mesh Table 12

Aij.txt Matrix of linear system

bi.txt rhs vector of linear system

h.txt head at the triangle center

q.txt flux on edges

Jump_flux_by_frac_by_inter-

no.vector

Jump of flux at intersections Table 14

Polygon-no.vector Contour segments of the ellipse

polygons

Table 15

Polygon_intersections-

no.vector

Intersection segments between

ellipse polygons

Table 16

Segments_coordinates_2D-

no.vector

Contour segments of the ellipse

polygons

Table 17

Table 9
Fracture network file (column number, parameter name and description).

File frac-no

No Name Description

1 no Line number within the file (not necessary)

2 Laxis_maj Half length of fracture major axis

3 Laxis_min Half length of fracture minor axis

4 c_x Coordinates of fracture centre

5 c_y

6 c_z

7 n_x Coordinates of vector normal to the fracture plane

8 n_y

9 n_z

10 no_fracture Number identifying the fracture

11 u_x Coordinates of vector along the fracture major axis

12 u_y

13 u_z

14 v_x Coordinates of vector along the fracture minor axis

15 v_y

16 v_z
fracture plane of those contour and intersections segments are given
by the file ‘‘segments_coordinates_2D-no.vector’’ (Table 17).

Conforming mesh

We provide a ‘‘nearly’’ conforming mesh issued by our numer-
ical method (Erhel et al., 2009a). Indeed the projection step within
each fracture plane, used to obtain a good quality mesh (see the
meshing procedure presented in Section 4.2), introduces a small
gap between the edges of the intersections in the intersected
planes. But from the view point of the finite element method, the
resulting mesh is conforming. We underline that this mesh is not
unique but it can be used to test classical finite element methods.
The mesh is described in three files for the triangles (Table 10),
edges (Table 11) and vertices (Table 12). Coordinates of vertices
are referenced within the fracture plane as the mesh has been
generated within this 2D system. The coordinate system is
centred at the centre of the ellipse with the three unitary axes
along the major and minor axes of the ellipses (u v) and the
File triangle-no

1 no Line number within the file (not necessary)

2 T Transmissivity of the triangle

3 no_edge_0 Number of the 3 edges defining the triangle

4 no_edge_1

5 no_edge_2

6 no_fracture Fracture number to which belongs the triangle

7 no_triangle Local triangle number in the fracture

8 no_vertex_0 Number of the 3 vertices of the triangle

9 no_vertex_1

10 no_vertex_2

Table 11
Characteristics of mesh edges (column number, parameter name and description).

File edge-no

1 no Line number within the file (not necessary)

2 edge_no_global Global edge number

3 edge_no_system Position of the edge head unknown within the linear

system

4 lim_arc One if the edge belongs to the arc of an ellipse,

0 otherwise

5 lim_face One if the edge belongs to a domain face, 0 otherwise

6 lim_intersection One if the edge belongs to an intersection between

fractures, 0 otherwise

7 lim_no_face Border number to which belongs the edge if lim_arc is

one, �1 otherwise

8 no_fracture Fracture number to which belongs the point

9 no_triangle_0 Triangles numbers to which belong the edge

10 no_triangle _1

11 no_vertex_0 Vertices numbers defining the edge

12 no_vertex_1

Table 12
Coordinates of mesh vertices (column number, parameter name and description).

File vertex-no

1 no Line number within the file (not necessary)

2 coord_0 Coordinates of the vertex in 2D within the fracture plane

3 coord_1

4 no_fracture Fracture number to which belongs the point

5 no_vertex Local vertex number in the fracture



Table 13
Coding of cube faces.

Number Face

0 x�
1 xþ
2 y�
3 yþ
4 z�
5 zþ

Table 14
Jump of flux at edges (column number, parameter name and description).

File Jump_flux_by_frac_by_inter-no.vector

1 no Line number within the file (not necessary)

2 jumpflux Jump of flux at the intersection

3 no_fracture Fracture number of the intersection

4 no_inter Intersection number

Table 15
Contour segments of the ellipse polygons (column number, parameter name and

description).

polygon-no.vector

1 no Line number within the file (not necessary)

2 lim_arc 1 if the segment belongs to the discretization of an ellipse arc,

0 otherwise

3 lim_face 1 if the segment belongs to a domain face, 0 otherwise

4 no_face Face number to which belongs the segment if lim_arc is one,

�1 otherwise

5 no_fracture Fracture number

6 no_segment Global segment number

Table 16
Intersection segments between ellipse polygons (column number, parameter

name and description).

polygon_intersections-no.vector

1 no Line number within the file (not necessary)

2 no_fracture1 Fracture number to which belongs the intersection segment

3 no_fracture2 Fracture number to which belongs the intersection segment

4 no_inter Global number of the intersection

5 no_segment Global segment number
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normal to the ellipse plan (n) forming a direct coordinate system.
u, v and n are given for each fracture in the ‘‘frac-no’’ file (Table 9).

Additionally, each edge is given several labels identifying its
possible location on ellipse arc, cube face and intersection
(Table 11). All corresponding fields are equal to 0 for internal
fracture edges. Edges can be simultaneously on a cube face and on
an intersection or on an arc and on an intersection. Edges cannot
however be simultaneously on an arc and on a cube face. Edges on
a cube face are given the number of this cube face (Table 13).
Edges on Dirichlet boundary conditions are assigned a fixed head,
whether they are also intersections or not, while edges on ellipse
arcs and other cube faces are assigned no flow boundary condi-
tions. Intersection edges are listed in all the fractures to which
they belong.

Linear system

The linear system Ax¼b is issued by the application of a mixed
hybrid finite element scheme applied on the mesh described in
the previous section and with the boundary conditions given in
Section 2. The matrix A is stored in the file Aij.txt, in coordinate
format (line,column,value), with the number of non-zero ele-
ments written on the first line. The right-hand side b is stored in
the file bi.txt, with two columns i and val such that b(i)¼val.
Table 17
Coordinates of intersections and contour segments of the ellipse polygons (column

number, parameter name and description).

segments_coordinates_2D-no.vector

1 no Line number within the file (not necessary)

2 no_fracture Fracture number to which belongs the segment

3 no_segment Global segment number

4 point_0_coord_0 Coordinates of the first extremity point P0 of the

segment in 2D within the fracture plane5 point_0_coord_1

6 point_1_coord_0 Coordinates of the second extremity point P1 of the

segment in 2D within the fracture plane7 point_1_coord_1
Appendix B. Reference pressure and flow solutions

Head and fluxes in mesh cells

Mean head solution: file h.txt (fracture number, triangle
number, head value). Mean head solution, constant in the corre-
sponding triangle.

Flux solution: file q.txt (fracture number, edge number, trian-
gle number, flux value). Normal fluxes through the three edges of
each triangle.

Jumps of flux at intersections

Jumps of flux at each intersection of a given fracture are
computed as an intermediary output between the full head or
velocity field and the highly integrative equivalent permeability.
They are stored in the file named Jump_flux_by_frac_by_inter-
no.vector (Table 14). By convention, fluxes are positive when
entering the fracture and negative otherwise. We underline that
an intersection can be partly shared by more than two fractures
after discretization. Thus, mass conservation is checked at the
network level Table 15–17.
Appendix C. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2012.07.025.
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