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Abstract Water resource management involves
numerical simulations in order to study contamination
of groundwater by chemical species. Not only do the
aqueous components move due to physical advection
and dispersion processes, but they also react together
and with fixed components. Therefore, the mass
balance couples transport and chemistry, and reactive
transport models are partial differential equations
coupled with nonlinear algebraic equations. In this
paper, we present a global method based on the
method of lines and differential algebraic system
(DAE) solvers. At each time step, nonlinear systems
are solved by a Newton-LU method. We use this
method to carry out numerical simulations for the
reactive transport benchmark proposed by the
MoMas research group. Although we study only 1D
computations with a specific geochemical system,
several difficulties arise. Numerical experiments show
that our method can solve quite difficult problems, get
accurate results and capture sharp fronts.
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1 Introduction

The behaviour of potential storage sites is governed
by many complex physico-chemical mechanisms.
Numerical simulations are carried out in order to
contribute to safety evaluations and risk assessment. In
this paper, we focus on chemistry as well as transport
of the aqueous solutions. In order to take into account
these two phenomena simultaneously, we need to
consider a coupled model.

Two types of methods have been described in the
literature for carrying out simulations for this reactive
transport model. The sequential approaches [3, 20, 26,
28, 30, 32] separately solve the equations while global
approaches [13, 23, 26, 27] simultaneously solve the
whole system. Whereas the first approach involves the
consecutive solutions of decoupled systems and allows
the use of methods adapted to each model, it requires,
in general, very small time steps. Because of high
memory requirements, the global approach was first
rejected [29], but the memory capacity of computers has
greatly improved so that a high memory requirement
is no longer a crucial drawback. Moreover, a global
approach requires generally fewer iterations than a
sequential iterative approach and may allow larger time
steps. Thus, a global approach is sometimes preferable
[6, 25, 26].
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In this paper, we present a global approach based
on a framework of partial differential algebraic
equations (pdaes). We consider a geochemical model
composed of homogeneous and heterogeneous
reactions at equilibrium. We could also consider kinetic
reactions, with a slight modification of our method.
Concerning transport, we assume that the velocity and
the diffusion tensor are independent of species and that
porosity is independent of the time variable. Because
of this assumption, the transport operator is linear, and
we can rewrite the transport equations by introducing
total variables. We assume that the coupled problem is
well-posed.

The method is described in detail in [11, 12].
Here, we present results obtained for the MoMas
benchmark [5]. The main objective of this benchmark
is to check numerical methods against numerical
complexity. We study the so-called 1D easy test case,
where hydrodynamics and chemistry are simplified.
The 1D computational domain is composed of two
media, there are neither kinetic nor precipitation–
dissolution reactions. On the other hand, numerical
difficulties are artificially increased. Our main
objective is to get accurate results. Therefore, we use a
fine mesh and small tolerances in our simulations.
We check convergence in our numerical experiments
and focus on specific behaviour such as numerical
oscillations. This benchmark is also studied by other
participants [4, 16, 19, 22]. Our results are in good
agreement with theirs. The paper is organised as
follows: Section 2 presents the mathematical model
based on total concentrations and on a coupled pdae
system. Then, in Section 3, we describe the numerical
model based on the method of lines and a coupled
discrete dae system. Finally, Section 4 presents the
results obtained with the 1D easy test case of the
MoMas benchmark.

2 Mathematical model

We consider a groundwater chemical system containing
Ne species, which interact due to chemical reactions.
In addition, the mobile species are transported by
advection and dispersion. The mathematical model
is thus composed of chemistry equations coupled to
transport equations.

2.1 Chemistry equations

For the geochemical system considered, we assume
a thermodynamic equilibrium at any time. Aqueous
and sorption reactions can be expressed in terms of

nonlinear algebraic equations based on mass action
laws. Some species, named secondary species, can
be expressed as functions of others, referred to as
components [21, 29]. In fact, components form the
minimum set of species required in the model. We
make a distinction between aqueous species and fixed
species. For the sake of simplicity, we assume here that
all activity coefficients of the aqueous and fixed species
are equal to 1, so that the species can be identified with
their concentration. Thus, the mass action laws can be
written

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui(x, t) = Ku
i

nc∏

j=1

c j(x, t)Sij, i = 1, ...nu,

vi(x, t) = Kv
i

nc∏

j=1

c j(x, t)Aij

ns∏

k=1

sk(x, t)Bik , i = 1, ...nv,

(1)

where c j, j = 1, ...nc and sk, k = 1, ...ns are,
respectively, the concentrations of the nc aqueous
and ns fixed components, whereas ui, i = 1, ...nu and
vi, i = 1, ...nv are, respectively, the concentrations
of the nu aqueous and nv fixed secondary species.
The matrices S ∈ R

nu×nc , A ∈ R
nv×nc and B ∈ R

nv×nc

contain the stoichiometric coefficients, and the vectors
Ku ∈ R

nu and Kv ∈ R
nv contain the equilibrium

constants. By definition of components and secondary

species, the matrix
(

S 0
A B

)

is of full rank.

Precipitation–dissolution reactions are governed by
different laws from aqueous and sorption reactions.
Again, we assume that the activity of a precipitated
species is equal to one, and we identify a precipitated
species by its number of moles per unit of volume pi.
In the general case, precipitated species do not exist at
any time; thus, their fraction can be zero. This general
model involves nonsmooth nonlinear equations and
can be written as a complementary problem. Here,
we assume that the number of precipitated species np

is known and constant in time. With this restriction,
precipitation–dissolution laws are differentiable and
can be written

⎧
⎪⎪⎨

⎪⎪⎩

pi ≥ 0, i = 1, ...np,

1 = K p
i

nc∏

j=1

c j(x, t)Eij, i = 1, ...np.
(2)

As previously, E ∈ R
np×nc is the matrix of stoichiometric

coefficients and Kp ∈ R
np is the vector of equilibrium

constants related to precipitation.
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We rewrite the previous laws in a logarithmic
form. Indeed, all concentrations must have positive
values. This chemical constraint is guaranteed by
using logarithms. With ln(c), ln(s) and p as primary
unknowns, the new chemical model is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x, t) = exp( ln(Ku) + S ln(c(x, t))),

v(x, t) = exp( ln(Kv) + A ln(c(x, t)) + B ln(s(x, t))),

0 = ln(Kp) + E ln(c(x, t)),

p ≥ 0.

(3)

The model is completed by mass balance equations
applied to components. We define T and W as the
vectors of total concentrations related to, respectively,
aqueous and fixed components and denote by C and
F, respectively, the aqueous and fixed parts of the total
concentrations of aqueous component T. The mass
balance equations are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ti(x, t) = Ci(x, t) + Fi(x, t), i = 1, ...nc,

Ci(x, t) = ci(x, t) +
nu∑

j=0
S jiu j(x, t), i = 1, ...nc,

Fi(x, t) =
nv∑

j=0
A jiv j(x, t) +

np∑

j=0
E ji p j(x, t), i = 1, ...nc,

Wi(x, t) = si(x, t) +
nv∑

j=0
B jiv j(x, t), i = 1, ...ns.

(4)

In a closed system, both W and T are given; in a
reactive transport system, W is assumed to be constant,
whereas T depends on the transport operator.

By combining Eqs. 3 and 4, we get a nonlinear
system of (nc + ns + np) equations, with (nc + ns + np)
unknowns ln(c), ln(s), p. This system is completed by
the constraint p ≥ 0 and can be written as

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
T − C (ln(c)) − F (ln(c), ln(s), p)

W − W (ln(c), ln(s))
ln(Kp) + E ln(c)

⎞

⎠ = 0,

p ≥ 0,

(5)

where C , F and W express, respectively, C, F and W,
as functions of the primary unknowns ln(c), ln(s) and
p. We assume that, for any T, the system (Eq. 5) has a
unique solution and that Newton’s method converges
locally towards this solution. This assumption is critical
to obtain a well-posed mathematical model and to

ensure convergence of the numerical model. We
rewrite the chemical model as

{
�(ln(c), ln(s), p, T) = 0,

p ≥ 0.
(6)

If there is no precipitation–dissolution reaction, the
model simplifies to

�(ln(c), ln(s), T) = 0 (7)

2.2 Transport equations

Now, we consider the transport of aqueous species by
advection and dispersion. For a species c, the transport
operator L (c, x) is given by:

L (c, x) = ∇.(a(x).c − D(x).∇(c)), (8)

with D the effective diffusivity tensor and a the average
velocity. We assume that these two parameters are
independent of the species and of the time, but
they may depend on space. Due to this assumption,
we obtain a transport equation for each aqueous
component, by using the total variables Ti and Ci. For
sake of simplicity, we consider no sink/source terms.
Here, we use a TC formulation [18, 21], where T is
the differential variable and where the operator L
is applied to the variable C. The mass conservation
equations can be expressed for each total concentration
Ti as

ε(x)
∂Ti

∂t
(x, t) + L (Ci(x, t), x) = 0, i = 1, ...nc, (9)

where ε is the porosity of the medium, assumed to
be independent of time but spatially variant. These
partial differential equations are completed by
boundary conditions and initial conditions.

2.3 Global system of partial differential algebraic
equations (pdae)

The global system couples chemistry equations with
transport equations. The transport equations are
written for each aqueous component, whereas the
chemistry equations are expressed at each point of the
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computational domain. We get a system of pdaes, with
T, C, ln(c), ln(s) and p as unknowns:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂Ti

∂t
+ L (Ci, x) = 0, i = 1, ...nc,

�(ln(c), ln(s), p, T) = 0,

Ci − Ci(ln(c)) = 0, i = 1, ...nc,

p ≥ 0,

+initial conditions,
+boundary conditions.

(10)

We assume that the system (Eq. 10) has a unique
solution in a suitable function space. We also assume
that it is possible to write the equations in weak form
and to develop a rigorous mathematical framework.

3 Numerical model

We present now the global system, which couples
chemistry and transport. In the method called direct
substitution approach [13, 23], the variables Ci in
the transport equations are replaced by the function
Ci. This approach strongly couples chemistry with
transport. We therefore prefer to keep C as unknown
and to add equations involving the functions Ci.

In [11, 12], we describe in detail the numerical method
we propose and we compare it with other methods.
Here, we recall briefly the outline of our global
approach. In order to solve the global system (Eq. 10), we
use the method of lines [17]. This method is a general
procedure for the solution of time-dependent partial
differential equations involving the transformation
of the partial differential equations into ordinary
differential equations (ode) or differential algebraic
equations (daes). This method has a rigorous
mathematical basis and can use efficient and robust
dae solvers for initial value ode/daes. Let us assume
that spatial discretisation is achieved by any classical
Eulerian method such as the finite difference, the finite
volume or the finite element methods. Let nx be the
number of cells (or more specifically, the number of
degrees of freedom) in the mesh. Then, the discrete
system can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
dT
dt

(t) + Ld ∗ C(t) + f = 0,

�d(ln(c(t)), ln(s(t)), p(t), T(t)) = 0,

C(t) − Cd(ln(c(t))) = 0,

T(0) = Tinit,

(11)

with Ld and f as the matrix and the vector obtained
after spatial discretisation of the transport operator,

respectively, �d as the chemistry nonlinear system
written at each discrete point, and the function Cd also
written at each discrete point.

The system (Eq. 11) is a differential algebraic system
(DAE) of index 1 [2, 12]. It contains ncnx differential
equations and (2nc + ns + np)nx algebraic equations.
We assume that it has a unique solution in an suitable
function space, and that the computed solution
converges towards the solution of Eq. 10 when the cell
size approaches zero. Again, this is a critical assumption
in order to set up the numerical model in a mathematical
framework. Let Y = (T C ln(c(t)) ln(s(t)) p(t)).

Global methods based on a direct substitution
approach [13, 23] reduce the number of unknowns in
the system by eliminating T and C and keeping only
the chemistry unknowns (ln(c(t)) ln(s(t)) p(t)). This
substitution is generally done after time discretisation
by an implicit first-order Euler scheme. In our method,
we prefer to keep all the unknowns in order to use a
general DAE solver. This approach reduces coupling
at the price of a larger nonlinear system to solve. By
classical transformations, the system (Eq. 11) can be
written
⎧
⎨

⎩

g(t, Y(t), ˙Y(t)) = 0,

Y(t0) = Y0,

Ẏ(t0) = Ẏ0.

(12)

where Ẏ denotes the time derivative of Y.
In order to solve this system, we use a variable-

order (from one to five), variable-coefficient, backward
differentiation formula (bdf) in fixed-leading-coefficient
form [1]. The bdf of order q is given by the multistep
formula

q∑

i=0

αn,iYn−i = (tn − tn−1)Ẏn, (13)

where Yn and Ẏn are approximations to Y(tn) and
Ẏ(tn), respectively.

We define

G(Yn) = g

(

tn, Yn,
1

(tn − tn−1)

q∑

i=0

αn,iYn−i

)

. (14)

Then, each time step requires the solution of the system
of nonlinear algebraic equations

G(Yn) = 0. (15)

We solve this system by a modified Newton method
[10, 24]. Each Newton iteration gives a linear system
of equations of the form

J
[
Yk+1

n − Yk
n

] = −G
(
Yk

n

)
, (16)
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where J is an approximation of the Jacobian of the
function G. In order to save computational time, the
Jacobian is kept unchanged during several Newton
iterations and, possibly, several time steps, leading to
a modified Newton method. The updating strategy for
the Jacobian is embedded in the DAE solver [1].

The matrix J, of size (3nc + ns + np)nx, where
nx is the number of discrete points, is sparse and
nonsymmetric. We can reduce the size of the matrix
down to (nc + ns + np)nx, by using a substitution
approach, keeping only the chemistry unknowns as
in the DSA approach. In this paper, we keep all the
unknowns and we solve the linear system (Eq. 16)
by a direct nonsymmetric-pattern multifrontal method
[8, 9]. Direct methods are quite efficient for solving
systems with consecutive multiple right-hand sides,
since the factorisation, which is the most time
consuming part, is done only once.

We have implemented our method by using the
ida solver [14] from sundials [15], developed by
the Lawrence Livermore National Laboratory. Linear
solvers provided by ida are a dense direct solver, a
banded direct solver and a Krylov matrix-free iterative
solver. We have interfaced a sparse direct multifrontal
solver by adding a module based on umfpack [7].

We have implemented two methods for spatial
discretisation [11]. In the first version, we use a
cell-centered finite-volume method with a centered
scheme for the diffusive flux and a first-order upwind
approximation for the advective flux. This version is
restricted to 1D domains with a fixed cell size. In
the second version, we use a finite difference scheme
with also an upwind approximation for advection, by
interfacing the software MT3DMS [31]. Here, the cell
size can be variable.

4 Results on the MoMas benchmark

We carried out several numerical experiments for
validating our method [12]. We also did some numerical
experiments with 2D domains [11]. Here, we consider
numerical experiments using the MoMas benchmark
[5] and present results for the so-called 1D easy test
case, which is not so easy. This model is purely
theoretical and is built in order to illustrate complexity
of reactive transport models. The hydrodynamic model
is simple with two media. The chemistry model is
also simple with few species, and with only aqueous
and sorption reactions. However, physical data are
chosen in order to increase numerical difficulties. For
example, hydrodynamic heterogeneities are quite large
and reaction constants vary over several orders of

magnitude. We present results for two sets of transport
conditions, with the same velocity but with different
diffusion tensors. These two test cases exhibit different
kinds of difficulties.

4.1 Description of MoMas benchmark

Since this 1D easy test case of MoMas benchmark does
not refer to a physical experiment, the units used are L
for length, T for time and m for amount of substance.
The computational domain is composed of two media:
a dominant medium A and a medium B at the middle
of the domain (Fig. 1). The medium B has a higher
porosity (ε = 0.5 for medium B versus ε = 0.25 for
medium A) and initially a higher reactivity (W =
10 m.L−3 for medium B versus W = 1 m.L−3 for
medium A).

The geochemistry system is composed of four
aqueous components and one fixed component, along
with five secondary aqueous species and two secondary
fixed species. Stoichiometric coefficients and equilibrium
constants are given in Table 1. Mass action laws for
each secondary species are read by rows and mass
balance equations for each component are read by
columns. For example, the mass action law for the
species u4 is given by

u4 = K4

4∏

j=1

c
S4, j

j = 0.1 · (c1)
0 · (c2)

−4 · (c3)
1 · (c4)

3m.L−3.

(17)

Two different sets of transport parameters are
applied in this domain, called advective and dispersive
conditions. These two conditions have the same pore
velocity value a = 5.5 × 10−3L.T−1 but different
dispersion values (Table 2).

Boundary conditions are defined by prescribed
total concentrations at inflow boundary and prescribed
zero concentration gradient at the outflow boundary.
At the inflow boundary, prescribed concentrations
vary in time: the injection period is the time interval
[0 : 5,000] and the leaching period is the time interval

1

OUTFLOW

Impermeable boundary

Impermeable boundary

INFLOW

0.1

Medium A Medium A
B

Medium

1

Fig. 1 Computational domain of the 1D easy test case of MoMas
benchmark
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Table 1 Stoichiometric coefficients and equilibrium constants for
the 1D easy test case of MoMas benchmark

c1 c2 c3 c4 s K

u1 0 −1 0 0 0 10−12

u2 0 1 1 1 0 1.0
u3 0 −1 0 1 0 1.0
u4 0 −4 1 3 0 0.1
u5 0 4 3 1 0 10+35

v1 0 3 1 0 1 10+6

v2 0 −3 0 1 2 10−1

[5,000 : 6,000]. Data are given in Table 3. Because we
use logarithms in our model, concentrations cannot be
equal to zero; therefore, initial and boundary values
that are prescribed to zero are approximated by 10−20

in our implementation.
We present in Subsections 4.2 and 4.3 the figures

suggested in the benchmark definition. More results
can be found in [11]. Since we use an adaptive time
step automatically chosen by the DAE solver, we do
not run specific numerical experiments with a fixed
time step and we do not study the behaviour when
the time step approaches zero. On the other hand, we
study the convergence behaviour when the cell size
approaches zero. Since no reference solution is
provided in the benchmark definition, we cannot easily
define a convergence criterium. Thus, we choose to
plot the concentrations for various cell sizes and to
analyse the behaviour qualitatively. For all species and
for both transport conditions, we observe convergence
when we refine the mesh. However, we also observe
some numerical artefacts such as oscillations and slower
convergence in some specific zones of the time interval
or the spatial domain. We choose to present these
particular behaviours and try to give some explanation.

All the results presented are obtained with the first
version of our software, using a finite volume method
and a fixed cell size in the domain, except for some
complementary results. The grey boxes represented in
some of the figures enclose a particular zone where
we have enlarged the plot in order to provide some
additional information.

In all computations, for both advective and
dispersive test cases and for all mesh sizes, we use the

Table 2 Values of the dispersion coefficient D (L2.T−1) as
functions of the medium and of the transport conditions for the
1D easy test case of MoMas benchmark

Medium A Medium B

Advective case 5.5 × 10−5 3.3 × 10−4

Dispersive case 5.5 × 10−2 3.3 × 10−1

Table 3 Boundary and initial conditions for the 1D easy test case
of MoMas benchmark

c1 c2 c3 c4 s

Initial values of the total concentrations (m L−3)
Medium A 0.0 −2.0 0.0 2.0 1.0
Medium B 0.0 −2.0 0.0 2.0 10.0

Prescribed total concentrations at the inflow boundary (m L−3)

Injection t ∈ [0; 5000] (T.) 0.3 0.3 0.3 0.0
Leaching t ∈ [5000; 6000] (T.) 0.0 −2.0 0.0 2.0

same tolerances in the DAE solver: ATOL = 10−12 and
RTOL = 10−9. We did not try to reduce computational
time by using larger thresholds because we aimed at
obtaining accurate results.

4.2 Results for the advective test case

We carried out simulations with a varying number
of cells in order to check convergence (nx = 50,

100, 200, 400, 800, 1,600, 2,100, 3,200). We observe a
global convergence and observe that the sharp fronts
are well captured when we refine the mesh. Our results
are in good agreement with those of other participants
in this MoMas benchmark [4, 16, 19, 22]. Because we
want to illustrate that our global approach is able to
solve difficult numerical problems with high accuracy,
we choose to present the results obtained with a fine
mesh (nx = 1,600 cells). Figures 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 and 12 show the results obtained for the advective
condition. Figures 2–7 plot the evolution of some
species at a given point in function of time, whereas
Figs. 8–12 show the evolution of some species at a given

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  500  1000  1500  2000  2500  3000

Time (T.)

Concentration (m.L.–3)

Fig. 2 Elution curve of total dissolved concentration C3 at x =
2.1L for the advective 1D easy test case with nx = 1,600 cells
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0.24

0.242
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0.246

0.248

0.25

2250 2300 2350 2400 2450 2500 2550

Time (T.)

Concentration (m.L.–3)

nx=800
nx=1600
nx=3200

Fig. 3 Elution curve of total dissolved concentration C3 at x =
2.1L for the advective 1D easy test case: from Fig. 2, zoom on
oscillations with three spatial grids

time in function of space. In order to illustrate some
numerical difficulties, we show zooms with a coarser
mesh (nx = 800) and a finer mesh (nx = 3,200).

We first comment on results at the outflow point.
Regarding the elution curve for the total aqueous
component C3 at x = 2.1L, we focus on the time period
[2,250 : 2,500] as shown by the grey box in Fig. 2.
This time interval is chosen to illustrate the oscillatory
behaviour of the curve. We plot the concentration for
three spatial grids in Fig. 3 and observe oscillations
for the two coarser grids. However, when the mesh is

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000

Time (T.)

Concentration (m.L.–3)

regular mesh

non regular mesh

Fig. 4 Elution curve of total dissolved concentration C3 at x =
2.1L for the advective 1D easy test case. Results with a coarse
grid with a fixed cell size and with a grid locally refined around
medium B. Both grids use nx = 420 cells

0.17

0.172

0.174
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0.178

0.18

0.182

0.184

0.186

0.188

0.19

850 900 950 1000 1050 1100

Time (T. )

Concentration (m.L.–3)

Fig. 5 Elution curve of component c3 at x = 2.1L for the advec-
tive 1D easy test case with nx = 1,600 cells

refined, the amplitude of the oscillations decreases and
the frequency increases so that no oscillation is visible
with the finest grid.

We also used the second version of our software,
with a finite difference method and a variable cell size.
In Fig. 4, we plot the same concentration for two
different spatial grids, with a coarse mesh and a fixed cell
size and with a mesh refined around medium B. Both
grids have nx = 420 cells. We observe that oscillations
disappear for the mesh refined around medium B.

Therefore, we conclude that these oscillations are
due to the numerical scheme. Also, we conclude that

0

2e−07

4e−07

6e−07

8e−07

1e−06

1.2e−06

1.4e−06

1.6e−06

1.8e−06

2e−06

5000 5200 5400 5600 5800 6000

Time (T.)

Concentration (m.L.–3)

Fig. 6 Elution curve of species u1 at x = 2.1L for the advective
1D easy test case with nx = 1,600 cells
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1.8e−06
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5400 5420 5440 5460 5480 5500

Time (T.)

Concentration (m.L.−3)

nx=800

nx=1600

nx=3200

Fig. 7 Elution curve of species u1 at x = 2.1L for the 1D advec-
tive easy test case: from Fig. 6, zoom with three spatial grids

local refinement is a cheap way to remove these
oscillations.

Oscillations are also observed for the elution curve
of the aqueous component c3 at the outflow point. They
are still visible in Fig. 5 because the time scale of the
figure is refined here. However, they disappear when
we refine the mesh.

Concerning the elution curve for the aqueous
secondary species u1 at x = 2.1L, no oscillation is visible
(Fig. 6) and the sharp front is quite accurate. However,
convergence is slower near this sharp front than in
other areas. When we focus on the time interval [5,400 :
5,500] in Fig. 7, we observe some differences between
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Fig. 8 Concentration profile for the advective 1D easy test case
of species u1 at t = 10.T with nx = 1,600 cells
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Fig. 9 Concentration profile for the advective 1D easy test case
of species u1 at t = 10.T.: from Fig. 8, zoom on peak for three
spatial grids

the three spatial grids, which are larger than in other
areas.

Therefore, we observe that both the finite volume and
the finite difference methods converge experimentally
when the cell size approaches zero. However, locally,
at some point or at some time, the distance between
two curves (for two cell sizes) may not decrease in a
monotone way. The behaviour is improved by local
refinement; thus, some a posteriori error estimation
could be very useful for this test case.

After these comments on the concentrations at the
outflow point, we analyse the results at a given time.
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Fig. 10 Concentration profile for the advective 1D easy test case
of fixed component s at t = 10.T. with nx = 1,600 cells
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Regarding the concentration profile of the aqueous
secondary species u1 at t = 10T, in Fig. 8, we observe
a high peak between x = 0.015L and x = 0.05L; since
convergence is slower in this area, Fig. 9 shows a zoom
of the peak with the three spatial grids. We observe that
the peak becomes more accurate when we refine the
mesh.

Figure 10 shows the concentration profile for the
sorbed component s at the beginning of the injection
period, for t = 10T, near the left boundary of the
domain. In the benchmark definition, it is required to plot
the result in the space interval [0 : 0.06], which is quite
small; therefore, we show results with only a fine mesh
with nx = 1,600 cells, in order to use 45 cells in the space
interval. With a coarser mesh, the concentration peak
observed is not so sharp.

Finally, the concentration profile of aqueous
secondary species u2 at time t = 5,010T is shown in
Fig. 11. Here too, we still observe convergence when
we enlarge the critical zone (Fig. 12).

We now discuss computational requirements of our
global method for this test case. Computations are done
on an Intel Pentium 4 with a frequency of 3 GHz, a
memory ram of 1 Gb and a memory cache of 1 Mb,
under the operating system Linux Fedora Core 6. We
use a unit time based on the cpu time required for a
blas3 operation. More specifically, this operation is the
product of two (1,000 × 1,000) real matrices. We make
this computation twice, either with the blas function
from the atlas implementation of blas library or with
three classical loops of computation. Both units are
called, respectively, Ublas and Uno blas. For the sake of
information, we get Ublas = 0.43 s and Uno blas = 8.5 s.
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Fig. 11 Concentration profile of species u2 at t = 5,010.T for the
1D advective easy test case with nx = 1,600 cells
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Fig. 12 Concentration profile for the 1D advective easy test case
of species u2 at t = 5,010.T.: from Fig. 11, zoom on the peak with
three spatial grids

The blas library is optimised to perform basic linear
algebra operations. In our software, only the sparse
linear solver uses blas3 operations, so that the effective
computational time unit is in between Ublas and Uno blas.

In Table 4, we give the computing times expressed
in these two units for a varying mesh size. Results
are given here for the first version with a fixed cell
size in the domain. We observe a complexity of about
O(n1.8

x ). Two effects induce this nonlinear complexity:
the factorisation of the matrix follows a power law, and
the number of time steps increases when we refine the
mesh. We could adapt the various parameters of the
DAE solver and refine only locally the mesh in order
to reduce the CPU time.

4.3 Results for the dispersive test case

As for the advective test case, we carried out
simulations with a varying number of cells (nx = 42, 84,

168, 336, 672, 1,344). Here too, we use the first version
of the method with a finite volume method and a fixed

Table 4 cpu time obtained for different mesh sizes for the
advective test case in units of time with blas function (Ublas) and
in units of time without blas function (Uno blas)

Mesh size nx cpu time (in Ublas) cpu time (in Uno blas)

50 698 35
100 2,511 127
200 8,537 432
400 29,929 1,514
800 111,565 5,644
1,600 379,080 19,177
3,200 1,358,701 68,734
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Fig. 13 Elution curve of total dissolved concentration C3 at x =
2.1L for the dispersive 1D easy test case with nx = 672 cells

cell size. We also obtain a global convergence and
observe that the sharp fronts are well captured when
we refine the mesh. As for the advective test case, we
choose to present the results obtained with a fine mesh
(nx = 672 cells). The method gives accurate results with
a coarser mesh than for the advective condition.

Figures 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 show
the different results obtained concerning the dispersive
1D easy test case. Figures 13–19 present the evolution
of some species in function of time, whereas Figs. 20–22
show the evolution of some species in function of space.
For this test case also, we present simulation results
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Fig. 14 Elution curve of total dissolved concentration C3 at x =
2.1L for the dispersive 1D easy test case: from Fig. 13, zoom on
oscillations with three spatial grids
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Fig. 15 Elution curve of species u1 at x = 2.1L for the dispersive
1D easy test case with nx = 672 cells

with a coarser mesh (nx = 336) and a finer mesh (nx =
1,344), in order to illustrate some numerical difficulties.

We first comment on results at the outflow point.
Concerning the elution curve for the total dissolved
concentration C3 at x = 2.1L, we focus on time period
[280 : 310] as shown by the grey box in Fig. 13 in
order to underline numerical difficulties. Oscillations
are indeed visible in Fig. 14. As for the advective test
case, the amplitude of the oscillations decreases and the
frequency of the oscillations increases when we refine
the mesh. However, the oscillations seem to be less
important than for the advective test case (Fig. 3).
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Fig. 16 Elution curve of species u1 at x = 2.1L for the dispersive
1D easy test case: from Fig. 15, zoom on oscillations with three
spatial grids
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We observe a similar behaviour for the elution curve
of the species u1; when we enlarge the area plotted in
Fig. 15, corresponding to the time interval [100 : 140],
we observe oscillations (Fig. 16) which are no longer
visible for the finest mesh. Here too, oscillations are not
as important as in the advection test case.

In order to analyse this numerical artefact, we
run other test cases with the same chemistry but with
transport conditions where diffusion coefficients
increase from the advective condition to the dispersive
condition (Fig. 17). Although we still observe some
oscillations in the dispersive case, their amplitude clearly
increases when the diffusion coefficients decrease. We
suspect that the first-order upwind scheme used for
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Fig. 18 Elution curve of species u2 at x = 2.1L for the dispersive
1D easy test case for nx = 672 cells
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Fig. 19 Elution curve of species u2 at x = 2.1L for the dispersive
1D easy test case: from Fig. 18, zoom on two peaks for three
spatial grids

advection induces numerical dispersion. This artefact
has a reduced impact if the model includes physical
dispersion.

Regarding the species u2, we enlarge the area plotted
in Fig. 18, corresponding to two peaks of concentration.
In this time interval, we observe a slower convergence
than in the whole time interval, but no numerical
oscillations (Fig. 19).

For all the species, we observe convergence when
we refine the mesh. A fine mesh is necessary at some
point or at some time in order to reduce oscillations or
to improve accuracy. Adaptive mesh refinement based
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Fig. 20 Concentration profile of total dissolved concentration C2
at t = 10.T for the dispersive 1D easy test case with nx = 672 cells
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Fig. 21 Concentration profile of total dissolved concentration C2
at t = 10.T for the dispersive 1D easy test case: from Fig. 20,
zoom on the local minimum for three spatial grids

on a posteriori error estimation could be very useful
in order to reduce computational cost and to preserve
accuracy.

After these comments on the data expressed as
functions of time, we comment on the data expressed
as functions of space. In Fig. 20, we plot the concentration
profile of the total dissolved concentration C2 and we
enlarge the grey area in Fig. 21, corresponding to the
spatial interval [0 : 0.5]. We choose this zone because
convergence is slower here. Locally, the distance
between two curves does not decrease regularly when
we refine the mesh. Some error estimation could be
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Fig. 22 Concentration profile for dispersive easy test case 1D for
concentration of fixed component s at t = 10.T. for nx = 672 cells

Table 5 cpu time obtained for different mesh sizes for the disper-
sive test case in time units with blas function (Ublas) and in time
units without blas function (Uno blas)

Mesh size cpu time (in Ublas) cpu time (in Uno blas)

42 1,403 71
84 2,582 131
168 10,772 545
336 32,340 1,636
672 122,416 6,193
1,344 672,350 34,013

useful here to analyse in more detail the convergence
behaviour.

Finally, results for the fixed component s are shown
in Fig. 22. Here, the first peak in the space domain
[0; 0.25] is not correctly captured if the mesh is too
coarse.

Now, we discuss computational requirements for
this dispersive test case. The cpu times obtained for
different mesh sizes are given in Table 5 with the same
units as for the advective test case.

The observed cpu complexity is about in O(nx
2.4),

with a higher exponent than in the advective case. We
must further analyse this computational complexity. In
particular, we must analyse the frequency of Jacobian
updates.

4.4 Discussion

We have presented results as suggested in the
benchmark definition. They are in good agreement with
those of other participants in the benchmark study [4,
16, 19, 22].

In both advective and dispersive test cases, we
observe convergence of the concentrations when we
refine the mesh. However, locally, around some sharp
fronts, for example, convergence is slower than in other
areas and the distance between the values does not
seem to decrease in a monotone way. Also, for the
two transport conditions, we observe oscillations in
the concentrations of some chemical species. Since a
refinement of the mesh clearly reduces these oscillations,
we can assume that they are related to the numerical
scheme. Moreover, these oscillations are more important
for advection-dominated test cases. We suspect that
the first-order upwind advection scheme induces
numerical dispersion. The reactive transport model is
not a classical advection–diffusion equation because
of the coupling with chemistry. Here, it is nonlinear
and couples the time derivative ∂T

∂t with the transport
operator L (C) through the chemistry algebraic
equations. Thus, the classical properties of the first-
order upwind scheme for advection and the centered
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scheme for diffusion are probably no longer true. In
particular, it seems that the global method is not a tvd
scheme.

For the same number of cells, the dispersive test case
requires more cpu time than the advective test case. On
the other hand, a coarse mesh yields enough accuracy
in the dispersive case. We need to further analyse the
computational complexity. Also, we plan to reduce the
size of the linear systems by substitution in order to
reduce the cost of the direct sparse linear solver. We
choose to present accurate results where most of the
oscillations are removed. Therefore, we use a sufficiently
refined mesh and sufficiently small tolerances in the
DAE solver. As a result, cpu requirements are quite
high for these 1D test cases. In order to reduce cpu
time, we have developed a second version where it is
possible to locally refine the mesh. Preliminary results
where we refine locally around medium B are quite
satisfactory. We get accurate results with a smaller
number of cells, thus, with a reduced cpu time.
Adaptive mesh refinement would be very useful for
these test cases.

5 Conclusion

In this paper, a global method based on a method of
lines and a system of dae has been defined and used
for reactive transport problems. In a first step, spatial
discretisation leads to a discrete system of dae. In a
second step, implicit time discretisation is applied. At
each time step, nonlinear equations are solved by a
modified Newton-LU method. The dae solver includes
an adaptive time step and a strategy to update the
Jacobian only when necessary.

Our global method is applied on the 1D easy test
case proposed in the MoMas benchmark. This test case
is representative of the difficulties arising in reactive
transport simulations: strongly nonlinear systems with
sharp fronts and stiff reactions. We experimentally
checked convergence of numerical results by refining
the mesh. For both transport conditions defined in
the benchmark, we observe oscillations. Since they are
damped by refining the mesh, we assume that these
oscillations are due to numerical dispersion. Indeed, it
is not clear whether the coupled numerical scheme is
monotone.

We present results with high cpu requirements
because our tolerance thresholds in the dae solver are
very small and because we use a fine mesh in order to
get accurate results. We could already reduce the time
by refining the mesh only locally, without loosing too
much accuracy. We plan to further cut down the time

by applying a substitution approach at the linear level,
which reduces the matrix size.

Currently, our method has been applied to specific
geochemistry systems. We reckon that it is not difficult
to introduce kinetic reactions and activity coefficients.
It is harder to deal with minerals, since the nonlinear
system becomes non-differentiable. We plan to use
semismooth Newton methods for solving these
problems.
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