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Abstract

We consider flow in Discrete Fracture Networks made of 2D domains
in intersection and solved with a Mixed Hybrid Finite Element Method
(MHFEM). The discretization within each fracture is performed in two
steps: first, borders and intersections are discretized, second, based on
these discretizations, a 2D mesh is built. Independent meshing process
within each subdomain is of interest for practical use since it makes it
easier to refine the chosen subdomains and to perform parallel computa-
tion. This paper shows how MHFEM is well adapted for integrating a
Mortar method to enforce the continuity of the fluxes and heads at the
non-matching grids. Some numerical simulations are given to show the
efficiency of the method in the case of a preferential orientation of the
fractures where a comparison with the 2D solution is possible.
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1 Introduction

Studying flow in fractured networks is of interest for many applications from
water resources to pollutant dissemination and oil prospecting. The major diffi-
culty of such a medium is its heterogeneity at various scales. A classical approach
is to generate Discrete Fracture Networks (DFNs) and to simulate flow through
the fractures. Fractures are commonly modeled as 2D domains whose parame-
ters follow given probability distributions so as to take uncertainty into account
[1]. Intensive numerical simulations with various configurations of DFNs are
then required for upscaling the permeability as well as the flow organization.
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Suppose a stochastic DFN is generated. Let us consider steady-state flow
and assume that the rock matrix is impervious; we also assume that there
is no longitudinal flow in the intersections between fractures. Thus, physical
model is governed by Poiseuille’s law and mass conservation in each fracture,
with continuity of hydraulic head and of transversal flux in each intersection.
Spatial discretization is necessary to solve the partial differential equations.
Finite Element methods make it easier to deal with irregular geometries by using
a triangular mesh in 2D domains. However, DFNs are complex 3D structures
with 2D domains intersecting each other. A challenge comes with the meshing
of such networks, where the mesh must be of good quality and must not contain
too many cells. In [2], a method to generate a mesh of good quality has been
developed. It is based on a conforming discretization of intersections, in the sense
that each intersection has a unique 3D discrete representation. It also relies on
a unique mesh step for all fractures. However, the number of cells can be large,
especially if the network contains large fractures as well as small fractures.

This paper addresses this difficulty by introducing non-matching discretiza-
tions of intersections. The idea is to generate a 2D mesh in each fracture with
possibly different mesh steps from one fracture to another and to apply inter-
face conditions using a mortar method. The mortar method was born with the
works of Bernardi et al. [3], [4] to connect subdomains with finite elements on
one side and spectral elements on the other side. Next it has known a spectacu-
lar growth as it is attested by the amount of publications (see the references in
[5]). It is also widely used to deal with non-matching grids between subdomains.
Especially, it has been studied in details by Arbogast et al. [6].

We use a mixed hybrid finite element method which allows to eliminate
the flux unknowns and to consider a system with only trace of hydraulic head
unknowns and mean hydraulic head unknowns [2], [7], [8], [9] . It appears that
this method is well adapted for integrating a mortar method.

In section 2, we recall the physical model, with the geometry and the equa-
tions. In section 3, we recall the formulation of a mixed hybrid finite element
method applied to fractured media in the matching grids case. This is the basis
of our method in 3D networks. In section 4, we describe our mortar method
applied to 3D fracture networks with non-matching grids and the assumption
that intersections do not cross nor overlap. Interface conditions are written by
defining master intersection sides along with slave intersection sides. We derive
the algebraic form of these conditions as well as the algebraic form of laws in
each domain. It is then possible to eliminate flux unknown as in the classical
mixed hybrid approach and to get a system with only trace of hydraulic head
at edges of the mesh and mean hydraulic head. We show good properties of the
matrix of the system. In section 5, we apply our mortar method and compare it
with the method using matching grids. We use an example of network where a
comparison with a corresponding 2D solution is possible. Results show a fairly
good accuracy of the mortar method.
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2 Governing equations

Consider a cubic domain where there are Nf intersecting fractures that form a
computational domain Ω. The boundary of Ω is composed of the borders of the
fractures, which may be truncated by the edges of the cube (Figure 1).

We use the following notations within each fracture f :

• We denote by Ωf the f-th fracture domain less the intersection, f =
1, ..., Nf , ∂Ωf = Γf ∪ Σf ;

• Let Γf be the border of the fracture f (which may be truncated by the
edges of the cube);

• Let Σf be the set of all intersections within the fracture f (for the sake
of simplicity in the writing of the mathematical part, we assume that
meas(Γf ∩ Σf ) = 0);

Figure 1: Example of a domain with 30 fractures in intersections

Classical laws governing the flux, mass conservation and Poiseuille’s law, are
assumed in each fracture and there are also conditions at the intersections of
fractures: continuity of the hydraulic head and of the transversal flux at each
intersection. We assume there is no longitudinal flux within the intersections.
See [10] for equations in case of a non null longitudinal flux in the intersections.

Boundary conditions are imposed on the cube edges. Let us denote by ΓN

the boundaries of the cube with Neumann boundary conditions and ΓD the
ones with Dirichlet boundary conditions (ΓD 6= 0). Recall the rock matrix
is supposed impervious so for each fracture f , one imposes a homogeneous
Neumann Boundary condition on Γf\{(Γf ∩ ΓD) ∪ (Γf ∩ ΓN )}.
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Let Ni be the number of intersections of fractures. Let us denote by Σk

the k-th intersection, k = 1, ..., Ni, and Fk the set of fractures with Σk on the
boundary.

Consider the coordinates x = (x, y), local to the fracture f . For the unknown
hydraulic head scalar function p(x) and the flux per unit length function u(x)
(corresponding to the velocity multiplied by the aperture of the fracture), we
have:

∇ · u(x) = f(x), for x ∈ Ωf , (1a)
u(x) = −T (x)∇p(x), for x ∈ Ωf , (1b)

p(x) = pD(x), on ΓD ∩ Γf , (1c)
u(x).ν = qN (x), on ΓN ∩ Γf , (1d)

u(x).µ = 0, on Γf\{(Γf ∩ ΓD) ∪ (Γf ∩ ΓN )}, (1e)

where ν (respectively µ) denotes the outward normal unit vector of the border
ΓN ∩Γf (respectively Γf\{(Γf ∩ΓD)∪ (Γf ∩ΓN )} ) with respect to the fracture
f . The parameter T (x) is a given transmissivity field (unit [m2.s−1]). The
function f(x) ∈ L2(Ωf ) represents the sources/sinks.

Continuity conditions in each intersection are written as [2], [11]:

pk,f = pk, on Σk, ∀f ∈ Fk, (2a)∑
f∈Fk

uk,f .nk,f = 0, on Σk, (2b)

where pk,f is the trace of hydraulic head on Σk in the fracture f , pk is the
unknown hydraulic head on the intersection Σk and uk,f .nk,f is the normal
flux through Σk coming from the fracture Ωf , with nk,f the outward normal
unit vector of the intersection Σk with respect to the fracture Ωf . Equations
(2a) − (2b) express the continuity of p and the mass balance of u across the
intersections between fractures (what is the outflow from one fracture must be
the inflow into the neighboring ones).

3 Matching grids and mixed hybrid formulation

Let us first recall the mixed hybrid weak formulation for fractured media in case
of matching grids at the fracture intersections. We assume (1a−1e) hold within
each fracture, together with the additional continuity conditions (2a − 2b) at
each intersection.

The boundary of Ω and the set of all intersections ∪Nf

f=1Σf are discretized at
first, with matching grids at the intersections. Based on these discretizations,
each fracture Ωf is meshed with triangular elements, to form a 2D mesh Th,f .
The total mesh is called Th = ∪Nf

f=1Th,f .
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We define:

• Eh,f,in: ”inner” edges in Ωf ∪ Γf ;

• Eh,f,Σ: intersection edges in Σf ;

• Eh,Σ = ∪Nf

f=1Eh,f,Σ: all intersection edges;

• Eh,in : ∪Nf

f=1Eh,f,in: all inner edges;

• Eh,f = Eh,f,in ∪ Eh,f,Σ: all edges within the fracture f ;

• Eh = ∪Nf

f=1Eh,f : all edges;

• Eh,D = {E ∈ Eh, E ∈ ΓD} and Eh,N = {E ∈ Eh, E ∈ ΓN}.

Define the Raviart-Thomas (RT) spaces, for K ∈ Th:

RT 0(K) = {s ∈ (P1(K))2 such that s = ( a+ b x, c+ b y), a, b, c ∈ R}

RT 0(Th,f ) = {φ ∈ L2(Ωf ) such that φ|K ∈ RT 0(K),∀K ∈ Th,f}
(3)

where Pd(K) denotes the space of polynomials of total degree d defined on K.

One also needs a space M0(Th,f ) defined as:

M0(Th,f ) = {ϕ ∈ L2(Ωf ) such that ϕ|K ∈ P0(K),∀K ∈ Th,f} (4)

3.1 Discrete mixed hybrid weak formulation

Within each fracture f , we look for uh,f in the space RT 0(Th,f ). The hydraulic
head in the fracture f is approximated by a piecewise constant function ph,f in
M0(Th,f ).

We define the space N 0(Eh,f ) of functions constant on edges in Eh,f .

N 0(Eh,f ) = {µh ∈ L2(Eh,f ) such that µh|E ∈ P0(E), ∀E ∈ Eh,f}

N 0
pD,D(Eh,f ) = {µh ∈ N 0(Eh,f ) such that

∫
E

(µh − pD)dl = 0, ∀E ∈ Eh,D ∩ Eh,f}.

(5)

If pD ≡ 0 on ΓD ∩ Γf , we obtain the space N 0
0,D(Eh,f ).
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One also needs to define:

N 0(Eh) = {µh ∈ L2(Eh) such that µh|E ∈ P0(E), ∀E ∈ Eh}

N 0(Eh,Σ) = {µh ∈ N 0(Eh) such that µh|E = 0, ∀E /∈ Eh,Σ}

N 0(Eh,f,Σ) = {µh ∈ N 0(Eh,f ) such that µh|E = 0, ∀E /∈ Eh,f,Σ}

N 0
0,D(Eh,f,in) = {µh ∈ N 0

0,D(Eh,f ) such that µh|E = 0, ∀E /∈ Eh,f,in}.

(6)

A new degree of freedom λh,f is introduced that approximates, in the frac-
ture f , the traces of hydraulic head on the edges of the mesh Th,f . We also
consider the unknown λΣ ∈ N 0(Eh,Σ) that approximates the traces of hydraulic
head on the intersections Σ. This allows to consider the general case where an
intersection edge may involve a varying number of fractures. The discrete mixed
hybrid weak formulation reads as:

For each fracture f ,

Find (uh,f , ph,f , λh,f ) ∈ RT 0(Th,f ) x M0(Th,f ) x N 0
pD,D(Eh,f ) such that:

∑
K∈Th,f

(∫
K

T −1uh,f .χh,fdx +
∫

∂K

λh,fχh,f .νK,fdl −
∫

K

ph,f∇ · χh,fdx
)

= 0,

∀χh,f ∈ RT 0(Th,f ),
(7a)∑

K∈Th,f

(∫
K

∇ · uh,f .ϕh,fdx−
∫

K

fϕh,fdx
)

= 0,∀ϕh,f ∈M0(Th,f ), (7b)

∑
K∈Th,f

(∫
∂K

uh,f .νK,fµh,fdl −
∫

∂K∩ΓN

qNµh,fdl

)
= 0, ∀µh,f ∈ N 0

0,D(Eh,f,in),

(7c)

Nf∑
f=1

∑
K∈Th,f

(∫
∂K

uh,f .νK,fµh,Σdl

)
= 0, ∀µh,Σ ∈ N 0(Eh,Σ), (8a)

Find λΣ ∈ N 0(Eh,Σ) such that,
for each fracture f ,∫

Σf

λh,fµh,Σdl =
∫

Σf

λΣµh,Σdl, ∀µh,Σ ∈ N 0(Eh,f,Σ), (8b)

with νK,f the outward normal unit vector to the considered border ∂K of the
element K in Th,f .

Equation (7c) expresses the continuity of the normal component of uh,f

across the interelement boundaries.
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Equations (8a) and (8b) are valid in the matching grids case. Equation (8a)
imposes the continuity of the flux at the intersections and equation (8b) the
continuity of the hydraulic head at the intersections. It should be noted that
an intersection edge may belong to more than 2 fractures.

3.2 Global basis functions

The finite dimensional space RT 0(Th,f ) is spanned by linearly independent
vector basis functions wK,Ei , i = 1, 2, 3, Ei ∈ ∂K, K ∈ Th,f , such that
supp(wK,Ei

) ⊆ K and∫
Ej

wK,Ei .νK,Ejdl = δEi,Ej , Ei, Ej ⊂ ∂K. (9)

A function uh,f ∈ RT 0(Th,f ) has three degrees of freedom per element which
are the fluxes across the element edges:

uh,f =
∑

K∈Th

∑
Ei⊂∂K,i=1,2,3

qK,EiwK,Ei . (10)

The two spacesM0(Th,f ) and N 0(Eh) are spanned, respectively, by linearly
independent scalar basis functions ϕK , K ∈ Th,f and µE , E ∈ Eh, such that

ϕK = δK,K′ , K,K
′
∈ Th,f ,

µE = δE,E′ , E,E
′
∈ Eh.

(11)

The hydraulic head ph,f ∈ M0(Th,f ) has one degree of freedom pK,f per
element K ∈ Th,f , λh,f ∈ N 0

pD,D(Eh,f ) has one degree of freedom λE,f per edge
E ∈ Eh,f and λΣ ∈ N 0(Eh,Σ) has one degree of freedom λE,m per edge E ∈ Eh,Σ

such that:

ph,f =
∑

K∈Th,f

pK,fϕK ,

λh,f =
∑

E∈Eh,f

λE,fµE ,

λΣ =
∑

E∈Eh,Σ

λE,mµE .

(12)

3.3 Derivation of the linear system

Here we follow the methodology presented in [2] and [7].

We denote by Pf the vector of cell hydraulic head for all K in Th,f , by Λf =
(λE,f )E∈Eh,f

the vector of trace of hydraulic head unknowns on edges in Eh,f

and by Λm = (λE,m)E∈Eh,Σ
the vector of additional unknowns on intersection

edges (edges in Eh,Σ).
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The vector Λf contains the trace of hydraulic head unknowns for the inner
edges Λin,f = (λE,f )E∈Eh,f,in

and for the intersection edges Λm,f = (λE,f )E∈Eh,f,Σ

in the fracture f :

Λf =
(

Λin,f

Λm,f

)
. (13)

We introduce Λin = (Λin,f )f , the vector containing all trace of hydraulic
head unknowns on inner edges within the system and P = (Pf )f the vector
containing all mean hydraulic head unknowns in the system.

It is well known [7] that, locally on each triangle K in Th,f , the equation
(7a) leads to:

BKQK = pK,fe−ΛK, (14)

with QK and ΛK three dimensional vectors containing respectively the fluxes
qK,Ei

, i = 1, 2, 3 and the traces of hydraulic head λEi,f , i = 1, 2, 3 on each
Ei ⊂ ∂K, and e =

(
1 1 1

)T
.

We assume that the local transmissivity TK is symmetric positive definite.
Then the matrix BK is a 3x3 symmetric positive definite matrix with elements:

(BK)Ei,Ej =
∫

K

wK,EiT −1
K wK,Ejdx. (15)

We define QE,f the jump of flux through the edge E in the fracture f by:

QE,f =
∑

K∈Th,f ,∂K⊃E

qK,E . (16)

We have from (7c) the relation [7]:

QE,f =


0, if E ∈ Eh,f,in\ΓN

qN
E , if E ∈ ΓN .

(17)

On the intersections, the conditions to apply (corresponding to (8a) and (8b)
respectively) are:

∀E ∈ Eh,Σ,
∑

f

QE,f = 0, (18a)

λE,f = λE,m,∀f, ∀E ∈ Eh,f,Σ, (18b)

The condition (18b) allows to substitute Λm,f by Λm. We can now write
the equations with P, Λin and Λm.

Using (18b) and inverting the matrix BK in (14), the mass conservation
equations (7b) write:
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D P −
(

Rin Rm

)( Λin

Λm

)
= F, (19)

where D is a card(Th)xcard(Th) diagonal matrix and F is a vector of dimen-
sion card(Th), which corresponds to the source/sink function as well as to the
imposed hydraulic head given by the Dirichlet boundary conditions.

Again, by inverting the matrix BK in (14) and using (18b), we eliminate the
flux unknowns in (17). We get:

RT
in P −

(
Min Mm

)( Λin

Λm

)
+ Vin = 0, (20)

where Rin is a sparse matrix of dimension card(Th)xcard(Eh,in), Min is a sparse
matrix of dimension card(Eh,in)xcard(Eh,in), Mm is a sparse matrix of dimen-
sion card(Eh,in)xcard(Eh,Σ) and Vin is a card(Eh,in)-dimensional vector corre-
sponding to the Dirichlet and Neumann Boundary conditions.

Following the same procedure in condition (18a), we get:

RT
m P −

(
MT

m Bm

)( Λin

Λm

)
+ Vm = 0, (21)

with Rm a sparse matrix of dimension card(Th)xcard(Eh,Σ), Bm a square matrix
of dimension card(Eh,Σ)xcard(Eh,Σ) and Vm is a card(Eh,Σ)-dimensional vector
corresponding to the Dirichlet Boundary conditions.

Finally, we obtain the following system:


D P −

(
Rin Rm

)( Λin

Λm

)
= F,

(
Min Mm

MT
m Bm

)(
Λin

Λm

)
−
(

RT
in

RT
m

)
P−

(
Vin

Vm

)
= 0.

(22)

We use the notations:

M =
(

Min Mm

MT
m Bm

)
, Λ =

(
Λin

Λm

)
, V =

(
Vin

Vm

)
, R =

(
Rin Rm

)
(23)

Proposition 3.1 Assuming the transmissivity is locally symmetric positive def-
inite, the matrix

J =

 D −R

−RT M

 (24)

is symmetric and positive definite with the presence of Dirichlet boundary con-
ditions within at least one fracture.
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Proof 3.1 For any non zero vector

 P
Λin

Λm

 of size card(Th)xcard(Eh,in)xcard(Eh,Σ),

we have

(
PT ΛT

in ΛT
m

)
J

 P
Λin

Λm


= PT DP − 2PTRinΛin − 2PTRmΛm

+ ΛT
inMinΛin + ΛT

inMmΛm

+ ΛT
mMm

TΛin + ΛT
mBmΛm

=
Nf∑
f=1

(
ΛT

f MfΛf + PT
f DfPf − 2PT

f RfΛf

)
=

Nf∑
f=1

(
PT

f ΛT
f

)
Jf

(
Pf

Λf

)
,

(25)

with Mf , Df and Rf the matrices containing the contributions associated to
the triangles K in Th,f and

Jf =

 Df −Rf

−RT
f Mf

 (26)

We get a system within each fracture involving the matrix Jf which is positive
definite in presence of Dirichlet boundary conditions and provided the transmis-
sivity is locally symmetric positive definite [7]. At least, one fracture must have
Dirichlet boundary conditions to satisfy the property for the matrix J .

To solve the system, the Schur complement matrix S = M − RT D−1 R is
computed and the Schur complement system becomes S Λ = RT D−1 F + V,

D P = R Λ + F.
(27)

Using the positive definiteness of J , S is proved to be positive definite in
presence of Dirichlet Boundary conditions. After solving the linear system in Λ,
the cell hydraulic head P is derived from the second equation in (27). Finally
the three dimensional vector QK containing the fluxes qK,Ei , i = 1, 2, 3 on each
triangle K ∈ Th, are derived using (14), for each K ∈ Th.
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4 Non-matching grids and mixed hybrid formu-
lation with mortar conditions

The MHFEM described above assumes matching grids at the intersections be-
tween fractures.

We suppose now that, for each fracture f , the border ∂Ωf is discretized
with a mesh step that may be different from the one chosen for the other frac-
tures. Based on this discretization, a 2D mesh is built within each fracture
f . An important feature is that now, a given intersection may have a different
discretization from one fracture to another.

We make the following assumption:

∀(k1, k2),Σk1 ∩ Σk2 = ∅, (28)

that is, we suppose that intersections do not cross nor overlap. Then each
intersection Σk involves only two fractures. Then for each index k, one associates
a unique couple (f, f

′
) of fracture numbers. For each intersection Σk, we choose

one fracture that is master for this intersection and the other one will be slave.
Without loss of generality, suppose f is master for the intersection Σk and f

′
is

slave. Notice a fracture may contain some intersections for which it is master
and other intersections for which it is slave. We now denote a so-called master
discretization Σk,m that is the discretization of Σk within the fracture f and
a slave discretization Σk,s, discretization of Σk within the fracture f

′
. In the

following, we will use the subscript s to refer to the slave side and m to the
master side. We denote by Nk,m (respectively Nk,s) the number of edges in

Σk,m (respectively Σk,s) and Ns =
Ni∑

k=1

Nk,s, Nm =
Ni∑

k=1

Nk,m.

4.1 Mixed hybrid formulation with mortar conditions

The weak formulation in case of non-matching grids includes equations (7a−7c)
but equations at intersections have to be rewritten to ensure the continuity of the
fluxes and hydraulic heads at the non-matching intersections. Here we do not
introduce another unknown for the intersection trace because each intersection
involves only two fractures.

We need the following spaces:

N 0(Σk,m) = {µh ∈ L2(Σk), such that µh ∈ P 0(E), ∀E ∈ Σk,m}

N 0(Σk,s) = {µh ∈ L2(Σk), such that µh ∈ P 0(E), ∀E ∈ Σk,s}.
(29)

The continuity of the flux for each intersection Σk writes:
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∑
K ∈ Th,f ,
meas(∂K ∩ Σk) 6= 0

∫
∂K∩Σk

uh,f .νK,fµhdl

+
∑

K
′
∈ Th,f ′ ,

meas(∂K
′
∩ Σk) 6= 0

∫
∂K′∩Σk

uh,f ′ .νK′ ,f ′µhdl = 0, ∀µh ∈ N 0(Σk,m).

(30)
The continuity of the hydraulic head for each intersection Σk writes:∫

Σk,s

λh,f ′µhdl =
∫

Σk,m

λh,fµhdl,∀µh ∈ N 0(Σk,s), (31)

which defines the L2 projection from the master side to the slave side.

4.2 Derivation of the linear system

We still denote by Pf the vector of cell hydraulic head for all K in Th,f , P =
(Pf )f and by Λf the vector of trace of hydraulic head unknowns λE,f on edges
in Eh,f .

Relations (14) and (17) stay the same.

Since the meshes do not coincide at the intersections, the interface conditions
(18a) and (18b) have to be rewritten. On an intersection Σk = Ω̄f ∩ Ω̄f ′ , (with
f the master fracture and f

′
the slave one for Σk), we define (QE,f )E∈Σk,m

(respectively (QE,f ′ )E∈Σk,s
) the vector of jump of flux through the edges of

Σk,m (respectively Σk,s). Relations (30) and (31) write:

(QE,f )E∈Σk,m
+ Ck

T (QE,f ′ )E∈Σk,s
= 0, (32a)

(λE,f ′ )E∈Σk,s
= Ck(λE,f )E∈Σk,m

, (32b)

with Ck a matrix of size Nk,sxNk,m that represents the L2-projection from
the master side to the slave side. Its coefficients Cln, l ∈ {1, ..., Nk,s}, n ∈
{1, ..., Nk,m}, are the ratio between the intersection lengths of a slave edge El

and a master edge En and over the length of El:

Cln =
(
|En ∩ El|
|El|

)
, (33)

where the notation |E| stands for the length of the edge E.

We define the matrix C as an intersection-block matrix with blocks (Ck).

On a fracture f , we distinguish inner edges, slave edges and master edges,
so that the trace of hydraulic head unknowns form a vector
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Λf =

 Λin,f

Λm,f

Λs,f

 (34)

We define also two global variables Λm = (Λm,f )f and Λs = (Λs,f )f .

We substitute Λm,f , Λs,f and Λin,f by their equivalent global unknowns Λm,
Λs and Λin respectively.

Using (32b), we have the following relation:

Λs = CΛm. (35)

The mass conservation equations (7b) are written by inverting BK in (14)
and using (35):

D P −
(

Rin Rm + RsC
)( Λin

Λm

)
= F (36)

Also, by inverting the matrix BK in (14), we eliminate the flux unknowns
in (17). Using (35), we eliminate Λs, yielding:

RT
in P −

(
Min Mm + MsC

)( Λin

Λm

)
+ Vin = 0, (37)

where Rin is a sparse matrix of dimension card(Th)xcard(Eh,in) and Min a
sparse matrix of dimension card(Eh,in)xcard(Eh,in), Mm of dimension card(Eh,in)xNm,
Ms of dimension card(Eh,in)xNs and C is of dimension NsxNm .

Following the same procedure in condition (32a), one has:

(RT
m+CT RT

s ) P −
(

MT
m + CT MT

s Bm + CT BsC
)( Λin

Λm

)
+ Vm = 0.

(38)
with Rm a sparse matrix of dimension card(Th)xNm, Rs a sparse matrix of
dimension card(Th)xNs, Bs a square matrix of dimension NsxNs and Bm a
square matrix of dimension NmxNm.

The system takes the form:


D P −

(
Rin Rm + RsC

)( Λin

Λm

)
= F,

(
Min Mm + MsC
MT

m + CT MT
s Bm + CT BsC

)(
Λin

Λm

)
−
(

RT
in

RT
m + CT RT

s

)
P−V = 0.

(39)

Let us take the same notations as in (23):
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M =
(

Min Mm + MsC
Mm

T + CT Ms
T Bm + CT BsC

)
,

Λ =
(

Λin

Λm

)
, R =

(
Rin Rm + RsC

)
.

(40)

then we find a system of the same form as before.

Proposition 4.1 Assuming the transmissivity is locally symmetric positive def-
inite, the matrix

J =

 D −R

−RT M

 (41)

is symmetric and, with the presence of Dirichlet boundary conditions within at
least one fracture, it is positive definite.

Proof 4.1 The proof is similar to the one presented for the matching grids case.
We use relation (35) to introduce Λs and to identify Λf in the expression.

For any non zero vector

 P
Λin

Λm

 of size card(Th)xcard(Eh,in)xNm, we have

(
PT ΛT

in ΛT
m

)
J

 P
Λin

Λm

 = PT DP − 2PTRinΛin − 2PTRmΛm − 2 PTRsΛs

+ ΛT
inMinΛin + ΛT

inMmΛm + ΛT
inMsΛs

+ ΛT
mMm

TΛin + ΛT
s Ms

TΛin

+ ΛT
mBmΛm + ΛT

s BsΛs

=
Nf∑
f=1

(
ΛT

f MfΛf + PT
f DfPf − 2PT

f RfΛf

)
,

(42)
with Mf , Df and Rf the matrices containing the contribution associated to the
triangles K within the fracture f .

Then, we conclude by a same argument as in Proposition (3.1).
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5 Numerical simulations

We consider a discrete fracture network embedded in a cube of edge size 100 m
and assume that the following boundary conditions hold on the cube sides:

• Imposed Dirichlet Boundary Condition on the top and bottom sides of the
cube (Imposed hydraulic head of value 10m on top and 0m on bottom)

• Null flux on the lateral side of the cube,

We consider the geometry given on figure 2 (left) with 15 fractures and 85
intersections. Notice the preferential orientation of the fractures with respect
to the boundary conditions since for any vertical 2D slice, the associated 2D
network is given on figure 2 (right). For this 2D network, the solution is easily
derived at the intersection points and is the reference for the comparison with
the 3D computations. Indeed, due to this preferential orientation of the fractures
in 3D, one can compute the solution for the 3D network, then extract all the
values obtained on the intersection lines. For each intersection Σk, we compute
the relative error ek between the values obtained in 3D and the corresponding
value in 2D. Once those relative errors are computed for each intersection, the

global mean relative error on the intersections is: e =
1
Ni

Ni∑
k=1

ek

Figure 2: Geometry of the intersecting fractures and an associated 2D slice

We take the transmissivity tensor as equal to T =
(

10−3 0
0 10−3

)
m2.s−1.

It corresponds to a fracture aperture of 1.07 mm (for water at 20 ˚C).

We perform simulations for two different meshes of the domain:

• With matching grids at the intersections and a total edges number of
33,164 with a mesh step of 10m,

15



• With non-matching grids at the intersections and a total edges number of
23,362 with mesh steps ranging from 3m to 8m.

Figure 3: Mean hydraulic head for the matching grids case and zoom on the
mesh

On figure 3, the mean hydraulic head is shown for the matching grids case.
On the figures, the space scale is adimensionalised. The expected solution is
obtained with a global mean relative error e of 4.25x10−6 by comparison with
the 2D case. The input flux is equal to 0.08m3.s−1. The equivalent permeability
defined as the ratio between the input flux over the product of the domain length
by ∆h = 10 is equal to 8.04x10−5m.s−1. We also verify that the method does
not create any artificial flux at the intersections by summing all the fluxes on
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intersections, which gives 3x10−13m3.s−1.

For the non-matching grids case (figure 4), the global mean relative error e
obtained by comparison with the 2D case is equal to 4.25x10−6. The input flux
is equal to 0.08m3.s−1. The equivalent permeability is equal to 8.04x10−5m.s−1.
The sum of the fluxes on intersections is equal to 4x10−13m3.s−1. Results are in
agreement with what are obtained in the 2D case and with the matching grids
case.

Figure 4: Mean hydraulic head for the non-matching grids case and zoom on
the mesh

17



6 Conclusion

This article describes a mortar method combined with a mixed hybrid finite
element method applied to simulate flow in Discrete Fracture Networks. This
allows to generate non-matching grids in each fracture. We propose an algebraic
formulation of the mortar conditions to eliminate the flux unknowns, leading to
a Schur complement system of the same form as in the MHFEM with matching
grids at the intersections. Our numerical experiments show a good agreement
between matching and non matching grids. The method assumes that inter-
sections do not cross nor overlap, so that each intersection involves exactly two
fractures. The adaptation of the method for more general networks will be
presented in a forthcoming paper.

Acknowledgement

We sincerely wish to thank the reviewers for their constructive comments. This
work was supported by the French National Research Agency, with the ANR-
07-CIS-004 project MICAS.

References

[1] J.-R. de Dreuzy, P. Davy, O. Bour, Permeability of 2D fracture networks
with power law distributions of length and aperture,Water Resources Re-
search, 38, pp. 1-9, 2002.

[2] J. Erhel, J.- R. de Dreuzy, B. Poirriez, Flow simulation in three-dimensional
discrete fracture network , SIAM Journal on Scientific Computing, Vol. 31,
No. 4, pp. 2688-2705, 2009.

[3] C. Bernardi, Y. Maday and A. T. Patera, Domain decomposition by the
Mortar element method, Asymptotic and numerical methods for partial
differential equations with critical parameters (Beaune, 1992),editors: H.G.
Kaper & M. Garbey, N.A.T.O. ASI Series C 384, pp. 269-286, Kluwer Acad.
Publ., Dordrecht, 1993.

[4] C. Bernardi, Y. Maday and A. T. Patera, A new conforming approach to
domain decomposition: the mortar element method,Nonlinear partial dif-
ferential equations and their applications, Collège de France Seminar, Vol.
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