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This paper considers the mathematical framework of a sliced-time computation method
for explosive solutions to systems of ordinary differential equations: Y (t) ∈ R

k: dY
dt = F (Y ),

0 < t, Y (0) = Y0, that have finite or infinite explosion time. The method used generates
automatically a sequence of non-uniform slices {[Tn−1, Tn] | n � 1} determined by an end-
of-slice condition that controls the growth of the solution within each slice. It also uses
rescaling of the variables, whereas: t = Tn−1 + βns and Y (t) = Y (Tn−1) + Dn Zn(s), Dn ∈
R

k×k , and βn being respectively an invertible diagonal matrix and a rescaling time factor.
Thus, the original system is transformed into a sequence of slices-dependent initial-value
shooting problems: dZn

ds = Gn(Zn), 0 < s � sn , Zn(0) = 0, ‖Zn(s)‖ � S and ‖Zn(sn)‖ = S ,
where S is a threshold value and ‖.‖ is the infinity norm on R

k . A suitable selection of
βn and Dn leads the rescaled systems to satisfy a concept of uniform similarity, allowing
to disable the extreme stiffness of the original ODE problem. Then, on each time slice,
the uniformly rescaled systems are locally solved using a 4th order explicit Runge–Kutta
scheme, within a computational tolerance of εloc . The sequential implementation of the
local solver on a total of N slices leads to approximating the solution Y (t) of the original
system within a global tolerance εglob.
The proper definition of uniform similarity leads to deriving, under a stability assumption,
a relationship between εloc , εglob and N . Such relation does not appear to be a sharp one
particularly for the case when the existence time is infinite. In fact, numerical experiments
conducted for infinite and finite times explosive discrete reaction diffusion problems attest
for better estimates and for efficiency of the method in terms of stability and accuracy.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Position of the problem. Time slicing and rescaling

In solving time-dependent initial value systems, challenging computational problems occur when the solution has an
explosive behavior. In the past two decades, several authors have dealt with such issue. The idea of rescaling time-dependent
partial differential equations problem has appeared in [1,7] and [5]. In [2] and [3], perturbation of the time-dependent
partial differential equation in view of solving a non-explosive solution was successfully pursued.

In this paper the idea of rescaling is being considered on the basis of a method introduced in [8] to solve semi-discrete
diffusion reaction partial differential equations. Such method has proved to be extremely efficient and was successfully
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used to solve a membrane second order ordinary differential equation in [9]. Our intention is to provide a mathematical
framework that justifies the efficiency of the method and conduct experiments that justify the obtained theoretical results.

To start, we consider the problem of numerically integrating systems of ordinary differential equations, where one seeks
Y : [0, T ) → R

k , such that:

dY

dt
= F (Y ), 0 < t � T � ∞, Yi(0) = Y0,i > 0, ∀i, (1)

where the function F : R
k → R

k ∈ C1 is locally Lipschitz Continuous and the solution Y (t) has strictly positive components, a
monotonously increasing l∞ norm and an explosive behavior, i.e.:

∀t � 0, ∀i, Yi(t) � γ0 > 0,
∥∥Y (t)

∥∥ increasing and lim
t→T �∞

∥∥Y (t)
∥∥ = ∞, where ‖.‖ = ‖.‖∞. (2)

Remark 1. This assumption makes the results of this paper restricted to non-oscillatory blow-up problems although the
proposed numerical method has been extended to oscillatory blow-up problems as shown in [9].

As for the location of the blow-up, we assume that ∃i0 ∈ {1,2, . . . ,k} such that for t sufficiently large:

Yi0(t) = ∥∥Y (t)
∥∥; (3)

i0 could be unique (blow-up in one point) or could occur for all i (blow-up every where).
Furthermore, the existence interval [0, T ]:

may be finite, T < ∞ (local existence) or infinite T = ∞ (global existence). (4)

Globally adaptive numerical integration is obtained by breaking (1) into a sequence of initial value shooting problems. Such
time slices computations result from the introduction of an end-of-slice function that controls the growth of the solution
Y (t).

Specifically, let S be a positive number. We then introduce the first slice as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dY

dt
= F (Y ), 0 < t < T1 (5.1)

Y (0) = Y0 (5.2)

‖Y (T1) − Y0‖
‖Y0‖ = S and

‖Y (t) − Y0‖
‖Y0‖ < S, 0 < t < T1 (5.3)

(5)

Subsequently Y1 = Y (T1) becomes the initial condition for a 2nd slice. . . and more generally for n > 1, Yn−1 the initial
condition for the nth slice. Thus, a recurrence definition can be established to obtain any slice n.

Given Y (t) on the first n − 1 slices (and henceforth {Y1 = Y (T1), . . . , Yn−1 = Y (Tn−1)}), the nth slice is defined through
the Initial Value Shooting Problem (IVSP):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dY

dt
= F (Y ), Tn−1 < t < Tn (6.1)

Y (Tn−1) = Yn−1 (6.2)

En
(
Y (Tn)

) = 0 and En
(
Y (t)

)
< 0, Tn−1 < t < Tn (6.3)

(6)

where:

En
(
Y (t)

) = ‖Y (t) − Yn−1‖
‖Yn−1‖ − S,

is the end-of-slice function (6.3) is referred to as the end-of-slice condition (EOS). Such approach allows to break (5) into
a sequence of Initial Values Shooting Problems, whereas the value Yn−1 of the solution at end-of-slice n − 1, becomes the
initial value of the solution at beginning of slice n, ∀n = 1,2, . . . , N .

This clearly leads to a coarse grid generation: {(0 = T0 < T1 < · · · < Tn < · · ·)} with a corresponding sequence of vectors
{Yn = Y (Tn) | n = 0,1, . . .}.

On the basis of assumption (2), the sequence {‖Yn‖} satisfies the following property:
For all S > 0:⎧⎪⎨

⎪⎩
‖Y0‖ < ‖Y1‖ < · · · < ‖Yn‖ < · · · (7.1)

limn→∞ ‖Yn‖ = ∞ (7.2)

Y > 0, ∀i,n (non-zero condition) (7.3)

(7)
n,i
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An alternative definition for the end-of-slice function can be defined, specifically:

E1
n

(
Y (t)

) = max
i

{ |Yi(t) − Yn−1,i|
|Yn−1,i|

}
− S = max

i

∣∣∣∣ Yi(t)

Yn−1,i
− 1

∣∣∣∣ − S, (8)

so that another coarse grid generation may be obtained through the sequence of problems (9):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dY

dt
= F (Y ), Tn−1 < t < Tn (9.1)

Y (Tn−1) = Yn−1 (9.2)

E1
n(Yn) = 0 and E1

n

(
Y (t)

)
< 0, Tn−1 < t < Tn (9.3)

(9)

Given the explosive behavior of the solution, a first element of uniformity is introduced by rescaling each of the initial value
shooting problems (9) on the basis of a change of variables whereby the rescaled time variable s and rescaled solution Zn(s) are
set to zero at the onset of every slice. Specifically, for t ∈ [Tn−1, Tn] and for every n, let:{

t = Tn−1 + βns, (10.1)

Y (t) = Yn−1 + Dn Zn(s) = Dn
(
e + Zn(s)

)
(10.2)

(10)

where βn > 0 is the slice time scale; e ∈ R
k is a vector which all components are equal to 1 and Dn is the diagonal matrix

associated with vector Yn−1:

Dn,i,i = Yn−1,i > 0; Dn,i, j = 0, i 	= j.

In scalar form (10.2) is equivalent to:

Yi(t) = Yn−1,i
(
1 + Zn,i(s)

)
, i = 1, . . . ,k, Tn−1 � t � Tn; 0 � s � sn.

Notation. For W ∈ R
k , W i 	= 0, we let D(W ) and D−1(W ) ∈ R

k×k be the diagonal matrices which elements are:

∀i,
(

D(W )
)

ii = W i,
(

D−1(W )
)

ii = W −1
i .

In that context Dn = D(Yn−1).

Remark 2. In case Y (t) may have some zero-components, the change of variables can still be Y (t) = Yn−1 + Dn Zn(s), as
given in (10.2), but Dn is then defined as a diagonal invertible matrix, depending solely on the starting value Yn−1, as
follows:

Dn,i,i =
{

Yn−1,i if Yn−1,i 	= 0,

1 if Yn−1,i = 0.
(11)

This case has been tested on an application problem in [6].

The Initial Value Problem (1) is now equivalent to a sequence of rescaled Initial Value Shooting Problems in which one
seeks on each nth slice, the pair: {sn, Zn : [0, sn] → R

k} such that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dZn

ds
= Gn(Zn), 0 < s < sn (12.1)

Zn(0) = 0 (12.2)

Hn
(

Zn(sn)
) = 0 and Hn(Zn(s)) < 0, 0 < s < sn (12.3)

(12)

where:

Gn(Zn) = βn D−1
n F (Yn−1 + Dn Zn)

and Hn : R
k → R is derived from either the function En(.) (or E1

n(., .)) through the change of variables (10). Note that in the
case when the end-of-slice condition function is (8), then the functions {Hn} are uniformly independent from n, specifically:

Hn
(

Zn(s)
) = H

(
Zn(s)

) = max
i

{∣∣Zn,i(s)
∣∣} − S = ∥∥Zn(s)

∥∥ − S.
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1.1. Application problem

In this paper, our method is illustrated on the system of ODE’s resulting from the semi-discretization of a reaction-
diffusion Partial Differential Equation model. Specifically, let Ω be an open rectangular space. One seeks {u(x, t) |
x ∈ Ω, t � 0} that satisfies:⎧⎨

⎩
∂u

∂t
= �um + aup, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t � 0, u(x,0) = u0(x) > 0,

(13)

where a > 0, p � 1 and 0 < m � 1 are constants.
Equivalently if v = um and q = 1

m , then the PDE in (13) is equivalent to:

∂v

∂t
= 1

q
v1−q�v + a

q
v pq−q+1. (14)

In particular when m = 1, (13) reduces to the classical semi-linear parabolic equation:

∂v

∂t
= �v + av p. (15)

Note also that the linear case is obtained when m = p = 1.
Leroux and Maingé (1996) [4], have shown explosive positive behavior of the unique solution to (13) under restrictive

conditions on u0. Semi-discretization of (13) using a Finite Difference approach leads to the Initial Value Problem:

dY

dt
= F (Y ) = −D1(Y )AY + φ(Y ), t > 0, Y (0) = Y0, (16)

where A is a positive definite matrix that discretizes −�, D1(Y ) and φ(Y ) are respectively, a diagonal matrix discretizing
1
q v1−q and a vector function discretizing a

q v pq−q+1.
This Initial Value Problem has then been rescaled using the end-of-slice condition (8) and the change of variables (10).
The remaining part of this paper is divided as follows. In Section 2, we present the concept of uniform similarity be-

tween the rescaled Initial-Shooting Value problem systems (12). Based on additional assumptions on Y (t), assumptions (17)
and (18), we prove Theorem 1 that provides a justification for a selection of the time scale parameter βn . We also show
the validity of those assumptions in a case of the application problem (16). This is followed in Section 3 by introducing
first the local explicit solver for (12) followed by the global solver for the solution Y (t) of (1). Local and global estimates
are then stated, particularly the global estimate of Theorem 3 based on a stability assumption (38). Also, an estimate on
the total number of slices is given. In Section 4, proof of Theorem 3 is provided and the paper is completed by a section
on numerical experiments conducted on a linear problem with infinite explosive time and a semi-linear explosive one with
finite existence time. In the first one, knowledge of the exact solution allows to test the validity of the estimates being
obtained, while tests conducted on the second one confirm the power of the method in reaching accurately blow-up times.

2. Uniform similarity. Additional assumptions and main results

Criteria for uniform similarity for (12) are given in what follows with c < C , generic constants independent from n.

Definition 1. The rescaled systems are said to be uniformly similar if the selection of {βn} is such that {Zn(s), Gn(Zn(s)), sn}
in (12) satisfy:

1. ∀n, ∀s � sn: ‖Gn(Zn(s))‖ � c,
2. ∀n, ∀s � sn: ‖Gn,Z (Zn)‖ � c,
3. ∀n: c0 � sn ,
4. ∀n: sn � c1,

where c0 and c1 are positive constants independent from n.

Additional assumptions on Y (t) and F (Y (t)) are needed in order to have the rescaled systems satisfy these properties.
Specifically, there exists a constant γ � 1, independent from n, such that:

As n → ∞ and ∀t ∈ [Tn−1, Tn], one has:⎧⎪⎪⎨
⎪⎪⎩

c
∥∥Y (t)

∥∥γ �
∥∥F

(
Y (t)

)∥∥ � C
∥∥Y (t)

∥∥γ
, i.e.

∥∥F
(
Y (t)

)∥∥ is Θ
(∥∥Y (t)

∥∥γ )
(17.1)

c
∥∥Y (t)

∥∥γ −1 �
∥∥D−1

n F
(
Y (t)

)∥∥ � C
∥∥Y (t)

∥∥γ −1
, i.e.

∥∥D−1
n F

(
Y (t)

)∥∥ is Θ
(∥∥Y (t)

∥∥γ −1)
(17.2)∥∥D−1 F

(
Y (t)

)
D

∥∥ � C
∥∥Y (t)

∥∥γ −1
i.e.

∥∥D−1 F
(
Y (t)

)
D

∥∥ is O
(∥∥Y (t)

∥∥γ −1)
(17.3)

(17)
n Y n n Y n
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Also, at any blow-up location i0 as given in (3), we assume that:

As n → ∞, ∀t ∈ [Tn−1, Tn], (
Yn−1,i0(t)

)−1(
F
(
Y (t)

))
i0

� c
∥∥Y (t)

∥∥γ −1
. (18)

Theorem 1. Let S > 0. If ∀n � 1 we select:

βn = 1

‖D−1
n F (Yn−1)‖

, (19)

then, under assumptions (17.2) and (17.3), the rescaled problems (12) satisfy properties 1, 2 and 3 of Definition 1. Furthermore, on the
basis of (18), property 4 of that definition is also satisfied.

The proof of Theorem 1 is done through a sequence of lemmas.

Lemma 1. For βn = 1
‖D−1

n F (Yn−1)‖ and under assumption (17.2) on F (.), one has:

∀n, ∀s � sn:
∥∥Gn

(
Zn(s)

)∥∥ � c(1 + S)γ −1.

Proof. Since Gn(Zn(s)) = βn D−1
n F (Dn(e + Zn(s))) = 1

‖D−1
n F (Yn−1)‖ D−1

n F (Dn(e + Zn(s)), then one writes:

∥∥Gn
(

Zn(s)
)∥∥ = 1

‖D−1
n F (Yn−1)‖

∥∥D−1
n F

(
Dn

(
e + Zn(s)

))∥∥.

Hence using (17.2) and knowing that ‖Dn‖ = ‖Yn−1‖ one has:

∥∥Gn
(

Zn(s)
)∥∥ � c

(‖Dn(e + Zn(s))‖
‖Yn−1‖

)γ −1

� c(1 + S)γ −1. �
In a similar way we bound the Jacobian Gn,Z (.). Specifically, we show now:

Lemma 2. For βn = 1
‖D−1

n F (Yn−1)‖ and under assumptions (17.2) and (17.3), the k × k matrix Gn,Z (Zn(s)) satisfies:

∀n, ∀s � sn:
∥∥Gn,Z

(
Zn(s)

)∥∥ � c(1 + S)γ −1.

Proof. Since Gn,Z (Zn(s)) = βn D−1
n FY (Dn(e + Zn(s)))Dn = 1

‖D−1
n F (Yn−1)‖ D−1

n FY (Dn(e + Zn(s)))Dn , one has:

∥∥Gn,Z
(

Zn(s)
)∥∥ = 1

‖D−1
n F (Yn−1)‖

∥∥D−1
n FY

(
Dn

(
e + Zn(s)

))
Dn

∥∥.

Hence using (17.2) and (17.3), one deduces:

∥∥Gn,Z
(

Zn(s)
)∥∥ � c

(‖Dn(e + Zn(s))‖
‖Yn−1‖

)γ −1

� c(1 + S)γ −1. �
Thus Lemmas 1 and 2 lead to uniform similarity properties 1 and 2 given in Definition 1. We turn now to prove proper-

ties 3 and 4. The first is a direct consequence of Lemma 1. Specifically:

Lemma 3. Under the assumptions of Lemma 1, the sequence {sn} is such that:

c0 = S

c(1 + S)γ −1
� sn.

Proof. This follows from:

Zn(s) =
s∫

0

Gn
(

Zn
(
s′))ds′, ∀s � sn

which leads to:
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∀s,
∥∥Zn(s)

∥∥ �
s∫

0

∥∥Gn
(

Zn
(
s′))∥∥ds′ � c(1 + S)γ −1s.

This yields at s = sn:

S � c(1 + S)γ −1sn ⇐⇒ S

c(1 + S)γ −1
� sn.

We finally handle Property 4 of the Uniform Similarity.

Lemma 4. Under assumptions (17.2) and (18), one has:

sn � S

c
= c1.

Proof. Consider the scalar function:(
Gn

(
Zn(s)

))
i0

= βn
(
Y −1

n−1,i0

)
(F

(
Dn

(
e + Zn(s)

))
i0
.

From assumption (18), one has for large n:(
Gn

(
Zn(s)

))
i0

� cβn
∥∥Y (t)

∥∥γ −1 = cβn
(
Yi0(t)

)γ −1
.

Having also from assumption (17.2):

βn = 1

‖D−1
n F (Yn−1)‖

� c

‖Yn−1‖γ −1
= c

(Yn−1,i0)
γ −1

,

one deduces for large n and t ∈ [Tn−1, Tn]:(
Gn

(
Zn(s)

))
i0

� c

(Yn−1,i0)
γ −1

(
Yi0(t)

)γ −1 = c

(Yn−1,i0)
γ −1

(Yn−1,i0

(
1 + Zn,i0(s)

)γ −1 = c
(
1 + Zn,i0(s)

)γ −1
,

and since Zn,i0 (s) � 0, because of the monotone increase of ‖Y (t)‖ = Yi0(t), it follows:(
Gn

(
Zn(s)

))
i0

� c.

Thus, by integration:

Zn,i0(s) =
s∫

0

Gn,i0

(
Zn

(
s′))ds′ � cs, ∀s � sn.

At s = sn at which Zn,i0 (s) = S , one has then: S � csn ⇐⇒ sn � S
c .

Hence the result of Lemma 4.
The above lemmas provide and end the proof of Theorem 1. �
As a consequence of Theorem 1 and knowing that:

Tn =
n∑

i=1

βi si,

one has the following result.

Corollary 1. If the rescaled systems (12) are uniformly similar then the blow-up time is finite if and only if :

∞∑
n=1

βn < ∞.

Proof. This result follows from the inequality:

c0

n∑
i=1

βi � Tn � c1

n∑
i=1

βi

and the finite time blow-up occurring if and only if limn→∞ Tn < ∞. �
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2.1. Validity of assumptions (17) and (18) in a case of the application problem (13)

We only consider in this paper the reaction–diffusion problem (13) with m = 1, p � 1, its semi-discretization using
finite-difference approximations yielding the following system of ODE’s:

dY

dt
= F (Y ) = −AY + φ(Y ), (20)

where the matrix A discretizes Laplace’s operator. Let:

∀i ∈ {1,2, . . . ,k}, N(i) = { j | j 	= i and Aij 	= 0}
be the set of “neighboring” nodes to each node i ∈ {1,2, . . . ,k}, then the matrix A satisfies the following properties:

• Sparsity: card(N(i)) � l 
 k,
• Diagonal dominance:

Aii �
∑

j∈N(i)

|Aij| > 0, ∀i ∈ {1,2, . . . ,k}, (21)

• with:

Aij < 0 ∀ j ∈ N(i). (22)

As for φ(Y (t)), it is component-wise given by:

∀i ∈ {1,2, . . . ,k}, (
φ
(
Y (t)

))
i = a

(
Yi(t)

)p
,

where the positive constant a is assumed to satisfy:

a > max
i

{Aii} = a0. (23)

Let i0 be the component(s) at which the blow-up is occurring, i.e. for n sufficiently large and ∀t ∈ [Tn−1, Tn], Yi0(t) = ‖Y (t)‖.

2.2. Validity of assumption (17.1)

From (20) one deduces:∥∥F
(
Y (t)

)∥∥ = ∥∥−AY (t) + φ
(
Y (t)

)∥∥ � ‖A‖∥∥Y (t)
∥∥ + a

∥∥Y (t)
∥∥p

,

with p � 1, yielding:

‖F (Y (t))‖
‖Y (t)‖p

� ‖A‖
‖Y (t)‖p−1

+ a � ‖A‖
‖Y0‖p−1

+ a = constant. (24)

On the other hand, since (−AY (t))i = −Aii Yi(t) − ∑
j∈N(i) Aij Y j(t), one gets:

(
F
(
Y (t)

))
i = a

(
Yi(t)

)p − Aii Yi(t) +
∑

j∈N(i)

|Aij|Y j(t) � a
(
Yi(t)

)p − Aii Yi(t).

Hence, using (23) one gets for all i ∈ {1,2, . . . ,k}:∥∥F
(
Y (t)

)∥∥ �
(

F
(
Y (t)

))
i � a

(
Yi(t)

)p − a0Yi(t).

In particular, this inequality holds for i = i0 where Yi0(t) = ‖Y (t)‖ and yields:∥∥F
(
Y (t)

)∥∥ � a
∥∥Y (t)

∥∥p − a0
∥∥Y (t)

∥∥.

Since a0 < a, then there exists δ1 > 0 such that for n sufficiently large and ∀t ∈ [Tn−1, Tn]:
‖F (Y (t))‖
‖Y (t)‖p

� δ1 = constant. (25)

Together, (24) and (25) validate assumption (17.1).
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2.3. Validity of assumption (17.2)

Note that:(
D−1

n F
(
Y (t)

))
i = a

(Yi(t))p

Yn−1,i
− Aii

Yi(t)

Yn−1,i
− 1

Yn−1,i

∑
j∈N(i)

Aij Y j(t), (26)

implying, since Y j(t) > 0, ∀ j and Aij < 0, ∀ j ∈ N(i):

(
D−1

n F
(
Y (t)

))
i � a

(Yi(t))p

Yn−1,i
− Aii

(
1 + Zn,i(s)

)
,

(
D−1

n F
(
Y (t)

))
i �

(
1 + Zn,i(s)

)(
a
(
Yi(t)

)p−1 − Aii
)
. (27)

Hence:∥∥D−1
n F

(
Y (t)

)∥∥ �
(

D−1
n F

(
Y (t)

))
i �

(
1 + Zn,i(s)

)(
a
(
Yi(t)

)p−1 − Aii
)
.

For i = i0 where 0 � Zn,i0 � S , one gets:∥∥D−1
n F

(
Y (t)

)∥∥ � a
(
Yi0(t)

)p−1 − Ai0i0 ,

yielding:

‖D−1
n F (Y (t))‖

‖Y (t)‖p−1
� a − a0

‖Y (t)‖p−1
,

‖D−1
n F (Y (t))‖

‖Y (t)‖p−1
� a − a0

‖Y (t)‖p−1
.

Then, there exists δ2 > 0 such that for n sufficiently large and ∀t ∈ [Tn−1, Tn]:
‖D−1

n F (Y (t))‖
‖Y (t)‖p−1

� δ2 = constant. (28)

On the other hand, one has:

D−1
n F

(
Y (t)

) = −D−1
n AY (t) + D−1

n φ
(
Y (t)

) = −D−1
n ADn

(
e + Zn(s)

) + a
(

D
(
Y (t)

))p−1(
e + Zn(s)

)
.

It follows:∥∥D−1
n F

(
Y (t)

)∥∥ �
∥∥D−1

n ADn
∥∥(1 + S) + a‖Yn−1‖p−1(1 + S)p,

and therefore:

‖D−1
n F (Y (t))‖

‖Yn−1‖p−1
� ‖D−1

n ADn‖
‖Yn−1‖p−1

(1 + S) + a(1 + S)p . (29)

A first estimate on ‖D−1
n ADn‖ is given by:

∥∥D−1
n ADn

∥∥ �
∥∥D−1

n

∥∥ × ‖A‖ × ‖Dn‖ = 1

mini(Yn−1,i)
‖A‖ × ‖Dn‖,

implying, since mini(Yn−1,i) � γ0:

∥∥D−1
n ADn

∥∥ � 1

γ0
‖A‖ × ‖Dn‖.

Therefore, (29) yields:

‖D−1
n F (Y (t))‖

‖Yn−1‖p−1
� 1

γ0
‖A‖ × ‖Yn−1‖2−p(1 + S) + a(1 + S)p, (30)

so that if p � 2, there exists δ3 > 0 such that for n sufficiently large and ∀t ∈ [Tn−1, Tn]:
‖D−1

n F (Y (t))‖
‖Yn−1‖p−1

� δ3 = constant. (31)

In the case 1 � p < 2, a sharper estimate on ‖D−1
n ADn‖ is needed. For that purpose, we start with:
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∥∥D−1
n ADn

∥∥ = max
i

{
Aii +

∑
j∈N(i)

|Aij| Yn−1, j

Yn−1,i

}
.

Using the diagonal dominance of A yields:

∥∥D−1
n ADn

∥∥ � max
i

{
Aii

(
1 + max

j∈N(i)

Yn−1, j

Yn−1,i

)}
,

and therefore:

∥∥D−1
n ADn

∥∥ � a0

(
1 + max

j∈N(i)

Yn−1, j

Yn−1,i

)
.

So if the solution Y (t) of (16) satisfies the neighbourhood condition:

max
i, j∈N(i)

Yn−1, j

Yn−1,i
is O

(‖Yn−1‖p−1), (32)

then, for 1 � p < 2 there exists δ4 > 0 such that for n sufficiently large and ∀t ∈ [Tn−1, Tn]:
‖D−1

n F (Y (t))‖
‖Yn−1‖p−1

� δ4 = constant. (33)

It follows from (31) and (33) that if p � 2, or if 1 � p < 2 with the neighbourhood condition (32) satisfied, then one has:∥∥D−1
n F

(
Y (t)

)∥∥ is O
(∥∥Y (t)

∥∥p−1)
.

Together with (28), this implies that ‖D−1
n F (Y (t))‖ is Θ(‖Y (t)‖p−1).

Note that the neighbourhood condition (32) has been numerically tested in the experiments conducted at the end of this
paper.

2.4. Validity of assumption (17.3)

Note first that D−1
n FY (Y (t))Dn = −D−1

n ADn + ap(D(Y (t)))p−1. Hence: ‖D−1
n FY (Y (t))Dn‖ � ‖D−1

n ADn‖ + ap‖Y (t)‖p−1,
implying:

‖D−1
n FY (Y (t))Dn‖
‖Y (t)‖p−1

� ‖D−1
n ADn‖

‖Y (t)‖p−1
+ ap. (34)

In the same way than above, one deduces that ‖D−1
n FY (Y (t))Dn‖ is O(‖Y (t)‖p−1) if p � 2, or if 1 � p < 2 with the neigh-

bourhood condition (32) satisfied.

2.5. Validity of assumption (18)

Using inequality (27) at i = i0 and assumption (23) one gets:(
D−1

n F
(
Y (t)

))
i0

�
(
1 + Zn,i0(s)

)(
a
(
Yi0(t)

)p−1 − Ai0i0

)
� a

(
Yi0(t)

)p−1 − a0.

Hence:

(D−1
n F (Y (t)))i0

‖Y (t)‖p−1
� a − a0

‖Y (t)‖p−1
.

For large n, one has 1
‖Y (t)‖p−1 → 0 and therefore there exists a constant c, independent of n, such that for all t ∈ [Tn−1, Tn]:

(D−1
n F (Y (t)))i0

‖Y (t)‖p−1
� c.

3. Local and global explicit numerical solvers

Uniform similarity allows for “similar numerical simulations” on all time slices. This renders this approach a globally
adaptive numerical procedure. The control imposed on the growth of ‖Zn(s)‖ and the uniformity imposed on the governing
function Gn(.) allows to choose an accurate high order explicit numerical scheme to solve (12). In this way, one avoids
major computational issues resulting from solving directly extremely stiff and exploding systems such as (6).
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3.1. Local explicit solver

Once all slices are made uniformly similar, an explicit solver ExplicitSolveZ, can be used to discretize (12). In our
case, we have implemented a standard explicit Runge–Kutta method of order 4. Specifically, the solver can be put in the
following framework:

1. The solver is based on a routine that selects the initial time step τ0, using εtol , as a tolerance for such choice.
2. After selecting τ0, the discrete solution {z j

n | j = 0,1, . . . , l, l + 1} is advanced within a slice through the algorithm:

[zn, s] = ExplicitSolveZ(Gn):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z0
n = 0 (35.1)

z j
n = RK4

(
Gn, z j−1

n
)
, j = 1, . . . , l + 1 (35.2)∥∥z j

n

∥∥ < S, 0 < j < l and∥∥zl+1
n

∥∥ > S, sl+1 − sl � εtol (35.3)

(35)

(35.3) is a bracketing procedure meant to allow the discrete solution {zn} to reach the end-of-slice condition H(Zn) =
‖Zn‖ − S = 0 within the required tolerance.

Therefore, within a rescaled nth slice, the algorithm ExplicitSolveZ(Gn) generates:

– a slice dependent sequence of rescaled times: {s j | j = 0,1, . . . , l, l + 1} with:

0 = s0 < s1 < · · · < sl−1 < sl � sn < sl+1 (
sl ≈ sn

)
.

– {z j
n | j = 0,1, . . . , l} the sequence of rescaled approximations to: {Zn(s j) | j = 0,1, . . . , l},

with {sn, Zn(.)} solving the continuous rescaled system (12). Thus applying (35) on (12), one reaches the following estimates:

⎧⎪⎨
⎪⎩

sl+1 − sl � εtol, sl � sn < sl+1 (36.1)

max1� j�l
{∥∥Zn

(
s j

) − z j
n

∥∥}
� εloc (36.2)

0 � sn − sl � εtol and
∥∥Zn(sn) − zl

n

∥∥ � εloc (36.3)

(36)

where εloc is the resulting maximum absolute error on all rescaled slices, with εloc = cεtol . Note here that as S = O (1),
absolute error estimates are equivalent to relative error estimates on Zn(sn) − zl

n . Such is not the case if one is computing
directly the solution Y (t) of (6). Evidently, in such a case, the magnitude of ‖Y (t)‖ would then impose use of relative errors.

Consequently, assuming that the initial value Yn−1 is exact, i.e. Yn−1 = Y (Tn−1) at the onset of an nth slice and once zn

is obtained using the local solver (35), one “reconstitutes” approximations yn to the solution Y (t) of (6) by letting:

1. sn ≈ sa
n = sl (end-slice value of the rescaled time variable s at the nth slice),

2. t j = Tn−1 + βns j , j = 1, . . . , l and y j
n = Dn(e + z j

n) ≈ Y (t j) = Dn(e + Zn(s j)), j = 1, . . . , l.

Then, on the basis of solver (35) that provides approximation to Zn(s) on the nth slice, we construct the routine:

[sa
n, za

n, Y a
n , T a

n ] = ExplicitSolveY(Yn−1, Tn−1, F , S, εtol)

Step 1: Determine βn and Gn(.).
Step 2: Apply ExplicitSolveZ(Gn). Obtain {zn} and the discrete mesh {s j | j = 0,1, . . . , l}.
Step 3: Let sa

n = sl and za
n = zl

n .

Step 4: Reconstitute {y j
n = Dn(e + z j

n) | j = 1, . . . , l} and {t j = Tn−1 + βns j | j = 1, . . . , l}.
Step 5: Obtain Y a

n = Dn(e + za
n) and T a

n = Tn−1 + βnsl .

Thus, sa
n ≈ sn , T a

n ≈ Tn , za
n ≈ Zn(sn) and Y a

n ≈ Yn = Y (Tn). These errors are governed by the local error generated by the
algorithm ExplicitSolveZ, stated as follows:
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Proposition 1. If the rescaled systems (12) satisfy the properties of Uniform Similarity in Definition 1, one has:

1.
max j {‖Y (t j)−y j

n‖}
‖Yn‖ � max j {‖Zn(s j) − z j

n‖} � εloc (implying ‖Yn−Y a
n‖

‖Yn‖ � εloc),

2. 0 � Tn−T a
n

Tn
� cεloc.

Proof. From:

y j
n = Dn

(
e + z j

n
) ≈ Y

(
t j) = Dn

(
e + Zn

(
s j)), j = 1, . . . , l,

one has:

Y
(
t j) − y j

n = Dn
(

Zn
(
s j) − z j

n
)
, j = 1, . . . , l,

and therefore:

max
j

{∥∥Y
(
t j) − y j

n

∥∥}
�

(
max

j

{∥∥Zn
(
s j) − z j

n

∥∥})‖Yn−1‖,

so that:

max j {‖Y (t j) − y j
n‖}

‖Yn‖ � max
j

{∥∥Zn
(
s j) − z j

n

∥∥}
� εloc.

and consequently:

‖Yn − Y a
n‖

‖Yn‖ � εloc.

On the other hand, using uniform similarity c0 � sn , one has:

0 � Tn − T a
n

Tn
= βn

Tn

(
sn − sa

n

)
� εloc

c0
. �

3.2. Determining the total number of slices N

On the basis of the machine capacity being used, whereas realmax is the maximum number that can be reached and
also given that any algorithm must evaluate F (.), which satisfies (17.1), one has from the end-of-slice condition:

∀n, ∀i,
|Yi(t) − Yn−1,i|

Yn−1,i
� S,

and therefore:

∀n, ∀i,
Yi(t)

Yn−1,i
� 1 + |Yi(t) − Yn−1,i|

Yn−1,i
� 1 + S.

This leads to:

‖Yn‖ � (1 + S)‖Yn−1‖ � (1 + S)n‖Y0‖.
Thus one obtains the following estimate on the maximum number of slices.

Theorem 2. If F (.) satisfies (17.1), then the maximum number of slices satisfies N � Nmax where:

Nmax = �M�,
where:

M = ln( realmax
c‖Y0‖γ )

ln(1 + S)γ
.

Proof. It follows from use of the inequalities:

(
(1 + S)Nmax‖Y0‖

)γ � realmax

c
<

(
(1 + S)Nmax+1‖Y0‖

)γ
. �

Note that the number of slices decreases with S increasing.
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3.3. Resulting globally explicit adaptive solver

On the basis of a slice solver ExplicitSolveY based on an εtol accuracy, we may then define a Globally Adaptive
solver for (1) that would generate an approximation to Y (t) in the following way:

[{sc
n}, {zc

n}, {Y c
n}, {T c

n}] = GlobalExplicitAdaptiveSolver(Y0, T0 = 0, F , S, εtol)

Base step: [sc
1, zc

1, Y c
1, T c

1] = ExplicitSolveY(Y0, T0 = 0, F , S, εtol),

yielding an approximation to Y (t) on a first slice and at its end, the pair {Y c
1, T c

1},

with:
|T1−T c

1|
T1

� cεloc and
‖Y1−Y c

1‖
‖Y1‖ � εloc .

Inductive step: [sc
n, zc

n, Y c
n, T c

n] = ExplicitSolveY(Y c
n−1, T c

n−1, F , S, εtol),

reaching an approximation {T c
n, Y c

n} of {Tn, Y (Tn)}, at the end of the nth slice,

within the tolerance: εn = max { |Tn−T c
n |

Tn
,

‖Yn−Y c
n‖

‖Yn‖ }.

Thus, unlike the first slice where one starts the slice with the exact initial value Y0, the starting value on the nth slice
(n > 1) is Y c

n−1 ≈ Yn−1. In such context, the governing rescaled system on the nth slice, n > 1, is not (12), but:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dZ c
n

ds
= Gc

n

(
Z c

n

)
, 0 < s � sc

n (37.1)

Z c
n(0) = 0 (37.2)∥∥Z c

n

(
sc

n
) = S and

∥∥(
Z c

n(s)
)‖ < S, 0 < s < sc

n (37.3)

(37)

with Gc
n(W ) = βc

n F
(

Dc
n(e + W )

); βc
n = 1

‖Dc
n F (Y c

n−1)‖
,

and Dc
n the diagonal matrix associated with Y c

n−1.

3.4. Stability assumption

Letting:

sn = max
{

sn, sc
n
}
,

and extending Zn(.) and Z c
n(.) on [0, sn], we make the following assumptions on (12) and (37):

For S > 0, there exists a constant K (S) independent from n, such that the solutions of (12) and (37) satisfy the stability
property:{

maxs�sn

∥∥Zn(s) − Z c
n(s)

∥∥ � Kεn−1 (38.1)∣∣sn − sc
n

∣∣ � Kεn−1 (38.2)
(38)

with K a generic constant independent from n and depending on S and F (.). Letting:

εglob = max
1�n�N

εn,

we then prove in Section 4:

Theorem 3. Let N be the total number of slices. Then under the assumptions of Theorem 1 and the stability assumption (38), one has:

max
1�n�N

{‖Yn − Y c
n‖

‖Yn‖
}

� εglob = εN � (1 + S + K )N cεloc.

3.5. Steps for validating the stability property (38)

Verifying (38) starts by proving first that:

∀W ∈ R
k, ‖W ‖ � S, one has:

∥∥Gn(W ) − Gc
n(W )

∥∥ � Kεn−1. (39)

Once such estimate obtained, (38) is then proved by using the integral equation:
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Zn(s) − Z c
n(s) =

s∫
0

(Gn
(

Zn(s)
) − Gc

n

(
Z c

n(s)
)

ds.

Appropriate estimates derived from this last identity using (39) and the uniform property on Gn(.) (parts 1 and 2 of
Definition 1) would then lead to (38).

As for verifying (39), one starts with the identity Dc
n = Dn(I +Λn), I being the identity matrix and Λn a diagonal matrix

such that ‖Λn‖ = εn−1. This is followed by obtaining an expression of Gn(W )−Gc
n(W ) that can be estimated in terms of Λn .

Such validation have been carried for the cases of reaction–diffusion problem on which we have conducted numerical tests
in Section 5.

4. Proof of Theorem 3

Consider then the sequence {(T c
n, Y c

n) | n = 1,2, . . . , N} obtained from the global solver defined in (3.3). One has T c
0 = 0,

Y c
0 = Y0 and from Theorem 1:

‖Y c
1 − Y1‖
‖Y1‖ � ε1 = cεloc and

|T1 − T c
1|

T1
� ε1 = cεloc.

On the other hand, for n � 1, the pair (T c
n, Y c

n) is given through the function:[
sc

n, zc
n, Y c

n, T c
n

] = ExplicitSolveY
(
Y c

n−1, T c
n−1, F , S, εtol

)
,

so that:

T c
n = T c

n−1 + βc
nsc

n; Y c
n = Dc

n

(
e + zc

n

)
,

with the pair (Tn−1, Yn−1) satisfying:

‖Y c
n−1 − Yn−1‖
‖Yn−1‖ � εn−1 and

|Tn−1 − T c
n−1|

Tn−1
� εn−1.

To obtain estimates on ‖Y c
n−Yn‖
‖Yn‖ and |Tn−T c

n |
Tn

and therefore a relationship between εn and εn−1, we start with:

Y c
n = Dc

n

(
e + zc

n

) ≈ Yn = Dn
(
e + Zn(sn)

)
,

and obtain the identity:

Yn − Y c
n = Yn−1 − Y c

n−1 + Dn Zn(sn) − Dc
nzc

n,

and consequently:

Yn − Y c
n = (

Yn−1 − Y c
n−1

) + Dn
(

Zn(sn) − Z c
n

(
sc

n
)) + Dn

(
Z c

n

(
sc

n
) − zc

n

) + (
Dn − Dc

n

)
zc

n,

where Z c
n(.) solves (37). Using triangle inequality, one obtains:∥∥Yn − Y c

n

∥∥ �
∥∥Yn−1 − Y c

n−1

∥∥ + ‖Dn‖.
∥∥Zn(sn) − Z c

n

(
sc

n
)∥∥ + ‖Dn‖.

∥∥(
Z c

n

(
sc

n
) − zc

n

)∥∥ + ∥∥Dn − Dc
n

∥∥.
∥∥zc

n

∥∥. (40)

Note that the first and last terms on the right-hand side of (40) are easily estimated:∥∥Yn−1 − Y c
n−1

∥∥ � εn−1‖Yn−1‖ � εn−1‖Yn‖ and∥∥Dn − Dc
n

∥∥.
∥∥zc

n

∥∥ � S
∥∥Yn−1 − Y c

n−1

∥∥ � Sεn−1‖Yn−1‖ � Sεn−1‖Yn‖.
We focus now on the second and third terms on the right-hand side of (40). For the second term, we derive the following
lemma:

Lemma 5. Under assumption (38) and the uniform similarity properties of the rescaled systems (12) and (37), one has:∥∥Zn(sn) − Z c
n

(
sc

n
)∥∥ � Kεn−1. (41)

K generic constant independent form n.

Proof. As both solutions to (12) and (37) are extended on [0, sn], note then that:

Zn(sn) − Z c
n

(
sc

n
) = (

Zn(sn) − Zn
(
sc

n
)) + (

Zn
(
sc

n
) − Z c

n

(
sc

n
))

.

The following results from the uniform boundedness Gn(.) and from (38.2):
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∥∥Zn(sn) − Zn
(
sc

n
)∥∥ � C

∣∣sn − sc
n

∣∣ � Kεn−1,

and based on (38.1), one has:∥∥Zn
(
sc

n
) − Z c

n

(
sc

n
)∥∥ � Kεn−1. �

It follows from this lemma that: ‖Dn‖.‖Zn(sn) − Z c
n(sc

n)‖ � Kεn−1‖Yn‖.
For the third term on the right-hand side of (40), note that when applying the local solver ExplicitSolveZ, one gets:

‖Z c
n(sc

n) − zc
n‖ � εloc and |sc

n − sc
n| � cεloc , implying similarly:

‖Dn‖.
∥∥(

Z c
n

(
sc

n
) − zc

n

)∥∥ � Kεn−1‖Yn‖. (42)

Thus, one concludes from (40), (42) and Lemma 5 that:

‖Yn − Y c
n‖

‖Yn‖ � εn−1 + cεloc + (K + S)εn−1,

and gets the recurrence relation on the sequence {εn}:

εn = cεloc + (1 + S + K )εn−1, (43)

then by solving (43) with ε1 = cεloc , one achieves the proof of Theorem 3.

Remark. The theoretical estimate of Theorem 3 indicates that:
εglob

εloc
= (1 + S + K )N

varies exponentially with N . This means that the method is convenient if its implementation is done on a few number of
slices, as for example in the case of a finite existence (blow-up) time. However, even for problems with long existence time,
numerical experiments we have conducted indicate that:

1 <

(
εglob

εloc

) 1
N

< 1 + S,

which imply that the estimate of Theorem 3 is not a sharp one.

5. Numerical experiments

Two explosive cases are being considered: (i) a linear infinite time existence problem and (ii) a semi-linear finite time
blow-up one.

5.1. Linear reaction–diffusion problem

Obtained from (13) when m = p = 1:

∂u

∂t
= �u + au, x ∈ Ω, u(x, t) = 0, x ∈ ∂Ω, t � 0, u(x,0) = u0(x) > 0. (44)

A space semi-discretization of dimension k, yields then the equivalent linear initial value problem:

dY

dt
= BY , t > 0, Y (0) = Y0, (45)

where B = aI − A ∈ R
k×k , A being a sparse symmetric positive definite matrix that discretizes the operator −� and I the

identity matrix. Assuming that a > λ1, where λ1 is the smaller eigenvalue of −�, the solution of this problem is explosive in
infinite time and is analytically known to be: Y (t) = exp(Bt)Y0. Using the EOS condition (9.3) and rescaling with the critical
choice (19) for βn make solving problem (5.1) equivalent to solving, on each nth slice [0, sn], corresponding to [Tn−1, Tn],
a linear initial value shooting problem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dZn

ds
= Bn(e + Zn) = Gn(Zn), 0 < s < sn (46.1)

Zn(0) = 0, (46.2)

∀s < sn,
∥∥Zn(s)

∥∥∞ < S, and
∥∥Zn(sn)

∥∥∞ = S. (46.3)

(46)

where Bn = βn D−1
n B Dn is a matrix in R

k×k , constant on each nth slice, since Dn depends only on the starting value Yn−1 at
the nth slice. The analytic solution of the rescaled linear problem (46), on each nth slice is: Zn(s) = (exp(Bns)− I)e. Because
of the availability of an exact analytic solution, one can evaluate, at each nth slice the local and global errors, respectively:
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Table 1
Linear reaction–diffusion problem – linear case – local and global errors over the first 100 slices.

• εloc = maxl ‖Zn(sl) − zc
n‖∞ ,

• εglob = ‖Yn−Y c
n‖∞

‖Yn‖∞ .

Table 1 provides the numerical results for the case:

a = 3, S = 5, u0(x) = 1 − x2 with Ω = [−1,1] ⊂ R.
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Table 2
Semi-linear reaction–diffusion problem – blow-up in finite time – error on Tb .

Note that the results on the row that computes (
εglob
εloc

)1/N indicates that the estimate proved in Theorem 3 is not a sharp
one, as the value obtained is much less than 1 + S .

5.2. Semi-linear reaction–diffusion problem, with finite time blow-up

When m = 1 and p > 1, the resulting semi-linear reaction–diffusion problem:

∂u

∂t
= �u + aup, p > 1, x ∈ Ω, u(x, t) = 0, x ∈ ∂Ω, t � 0, u(x,0) = u0(x) > 0, (47)

is known to have a solution that is blowing up in finite time, at T = Tb .
The rescaling methodology has proved to be very efficient, in such cases, yielding a very accurate approximation of the

finite time Tb of explosion (see [8] and [9]).
Since no analytic solution is available, the error on Tb cannot be calculated. However, when taking a very small compu-

tational tolerance εtol (10−14, for example), one may consider the resulting value Tb most appropriate to use for the exact
value.

The numerical results in Table 2 give the time of explosion Tb and the values of the local and global errors, when
p = 1.2, a = 3, S = 5 and u0(x) = 1 − x2, with Ω = [−1,1] ⊂ R.

Note in this case the extreme stability of the method, particularly the uniformity of the rescaled time variables that
falls in the interval [0,1.5...] Also, the algorithm appears to be robust in allowing to reach a blow-up time for very small
computational tolerances.

6. Conclusions

Hence, we have shown that the use of an explicit numerical method to solve an explosive highly stiff problem is possible.
However, this must be done within the framework of “sliced-time computations”; the explicit scheme being implemented
on a sequence of time slices over which the original ODE system is transformed into uniformly similar systems. It appears
clear that defining such rescaled systems is tied to an appropriate specification of the end-of-slice conditions. In the case of
blowing-up solutions, keeping the rescaled solution Zn(.) within a ball B ∈ R

k = {W : ‖W ‖ � S} is the most natural end the
slice condition. Interestingly, the method can be applied for systems with finite or with infinite existence times. In the first
case, the blow-up time is computed accurately demonstrating in this case, the efficiency of time-sliced computations.
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