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[1] We determine the asymptotic dispersion coefficients in 2D exponentially correlated
lognormally distributed permeability fields by using parallel computing. Fluid flow is
computed by solving the flow equation discretized on a regular grid and transport
triggered by advection and diffusion is simulated by a particle tracker. To obtain a well-
defined asymptotic regime under ergodic conditions (initial plume size much larger than
the correlation length of the permeability field), the characteristic dimension of the
simulated computational domains was of the order of 103 correlation lengths with a
resolution of ten cells by correlation length. We determine numerically the asymptotic
effective longitudinal and transverse dispersion coefficients over 100 simulations for a
broad range of heterogeneities s2 2 [0, 9], where s2 is the lognormal permeability
variance. For purely advective transport, the asymptotic longitudinal dispersion coefficient
depends linearly on s2 for s2 < 1 and quadratically on s2 for s2 > 1 and the asymptotic
transverse dispersion coefficient is zero. Addition of homogeneous isotropic diffusion
induces an increase of transverse dispersion and a decrease of longitudinal dispersion.
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1. Introduction

[2] The determination of the large-scale dispersion coef-
ficients has been widely debated in the last twenty years
[Dagan, 1989; Gelhar, 1993]. The classical case is the
lognormal permeability field with an exponential correlation
function such as:

C rð Þ ¼ s2 exp � rj j
l

� �
ð1Þ

where s2 is the lognormal permeability variance, jrj is the
distance between two points and l is the correlation length.
Solute transport processes are advection and homogeneous
isotropic diffusion. We look at the asymptotic dispersion
coefficient for large heterogeneity corresponding to a2 2 [1,
9]. Numerical simulations did not previously lead to
definitive solutions because of the large times and
equivalent domain dimensions required for the convergence
to the asymptotic regime.
[3] Two types of numerical simulations have been per-

formed according to the derivation method of the velocity
field. The velocity field is classically computed either
directly from discretizing and solving the flow equation or
from the first-order approximation of the flow equation. The

computational domain is of dimensions Lx and Ly in the two
spatial dimensions x and y. Lx and Ly are counted in terms of
correlation length. The correlation length l is counted in
terms of grid cells. If we note lm the dimension of the grid
cell, the ratios Lx/l, Ly/l and l/lm should be as large as
possible. Discretizing the flow equation yields a linear
system of order proportional to the number of grid cells
whatever the finite difference or finite element scheme
[Bellin et al., 1992; Cvetkovic et al., 1996; Hassan et al.,
2002; Salandin and Fiorotto, 1998; Trefry et al., 2003]
(Details of numerical simulations are given in Table 1). It
explains why the direct solving of the flow equation has
been limited to some 105 cells number. It corresponds to
some tens of exploitable correlation lengths that turn out to
be not enough for determining directly the asymptotic
dispersion coefficient. Convergence to the asymptotic regime
is slow requiring very large simulations [Bellin et al., 1992].
This study also shows a pronounced realization effect also
obtained in [Trefry et al., 2003]. The realization effect
consists first in large dispersion coefficient variations and
secondly in deviations from the mean behavior. It has two
implications. First, the second-order moment of the solute
plume requires a large number of Monte-Carlo realizations
and particles to achieve convergence. Secondly, it empha-
sizes the problem of the relevance of the mean behavior to
natural cases which are inherently single realizations requir-
ing conditioning on measurements and the use of an inverse
problem methodology.
[4] The other simulation method consists in deriving the

velocity field from the first order approximation of the flow
equation and performing subsequently a particle tracking
[Bellin et al., 1992; Dentz et al., 2002; Rubin, 1990;
Schwarze et al., 2001] (Table 1). This methodology does
not require a grid and shortcuts the linear system solving
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step. Very long particle paths can be simulated and the
asymptotic coefficients can be determined. In practice the
average particle path length reached by this method is
around hundred times larger than that obtained by the
previous direct simulation method with a resolution five
times finer (Table 1). However, this methodology is limited
to the validity domain of the first-order approximation
(s2 < 1). For larger heterogeneities, deviations of the
velocity field from the normal behavior are non negligible
and increase with s2 [Salandin and Fiorotto, 1998]. The
longitudinal velocity distribution becomes asymmetrical and
is between the normal and lognormal distributions. The
transverse velocity distribution becomes flatter with larger
tails than that of the normal distribution. The first-order
approximation of the velocity field does not capture these
effects. Moreover, the use of first-order approximated ve-
locity field may lead to erroneous numerical results. In fact,
for even not too large heterogeneity (s2 = 1), the first-order
approximation produces closed streamlines in which par-
ticles can enter either by advection or by diffusion increasing
artificially dispersion [Dentz et al., 2003].
[5] Neither the direct solution nor the first-order approx-

imation of the flow simulation have led to direct numerical
estimates of the asymptotic transverse and longitudinal
dispersion coefficients for broad heterogeneous permeabil-
ity fields (s2 > 1). The only numerical estimate is provided
by Salandin and Fiorotto [1998] and concerns the depen-
dency of the asymptotic longitudinal dispersion coefficient
DLA on s2. They assume that the Lagrangian integral scale
lux is independent of s2 and estimate numerically the
Lagrangian velocity variance uxx(0). As DLA � lux � uxx
(0) in the asymptotic regime, they found DLA / sbwith b =
2.06, 2.19, 2.29, and 2.35 respectively for s2 in the intervals
[0.05, 1], [1, 2], [2, 3] and [3, 4].
[6] Analytical estimates of the dispersion coefficient

come from first-order and second-order approximations of
the flow and transport equations. First-order approximations
yield a linear dependence of the asymptotic longitudinal
dispersion coefficient DLA on s2 and a zero asymptotic
transverse dispersion coefficient DTA for purely advected
solutes [Gelhar, 1993]:

DLA ¼ u � l � s2 and DTA ¼ 0 ð2Þ

where u is the mean velocity. Adding diffusion slightly
reduces the asymptotic dispersion coefficient DLA for
isotropic diffusion and Pe larger than 10 [Fiori, 1996].
Second-order approximation of the transport equation has
been taken into account and confirms the zero asymptotic
transverse dispersion coefficient [Hsu et al., 1996]. For the
longitudinal dispersion coefficient and values of s2 larger
than 1 (s2 = 1.6 in [Bellin et al., 1992]), first-order
approximations of the flow and transport equations remain
very close to numerical results [Dagan et al., 2003]. Adding
a second-order term does not improve the approximation of
the longitudinal dispersion coefficient but on the contrary
deteriorates it. It has thus been deduced that the independent
linearizations of flow and transport induce opposite
deviations from linear theoretical results that partly cancel
out each other. These conclusions concerning both the zero
asymptotic transverse dispersion coefficient and the perfor-
mance of the first-order approximation were confirmed on
slightly different heterogeneous media consisting in sphe-
rical inclusions in a homogeneous medium [Dagan et al.,
2003; Jankovic et al., 2003]. Other theoretical frameworks
have been used to estimate the 2D asymptotic transverse
dispersion coefficient DTA. Using volume averaging, DTA is
null like with the first-order approximation [Attinger et al.,
2004], whereas DTA is not null by using the conjecture of
Corrsin [Dentz et al., 2002].
[7] In this article, we compute the effective asymptotic

longitudinal and transverse dispersion coefficients for large
heterogeneities (a2 2 [0.25, 9]) both for pure advection and
homogeneous isotropic diffusion cases. To reach the asymp-
totic regime, we use very large computational domains
(100 times larger than the largest previously studied) under
ergodic conditions (large plume sizes compared to the
correlation length of the permeability field). We compare
our results to the previous numerical results and analytical
predictions.

2. Numerical Methods

2.1. Assumptions and Notations

[8] We study 2D heterogeneous permeability field fol-
lowing a lognormal exponentially correlated distribution as
stated in the introduction (Equation (1)). We perform the
study on a large range of s2 values (a2 2 [0.25, 9]) first

Table 1. Characteristics of 2D Flow and Transport Simulationsa

FCM TP TCM s2 l/lm Lx/lm Ly/lm Nm MC PT

[Rubin, 1990] 1st A PT 0.79 300
[Bellin et al., 1992] full A PT [0, 1.6] 8 36 18 4 104 MC � PT = 1500
[Cvetkovic et al., 1996] full A PT [0, 4] 4 24 18 7 103 500–1000 1
[Salandin and Fiorotto, 1998] full A PT [0.05, 4] 2, 4, 8 64 64 2.6 105 500 40
[Schwarze et al., 2001] 1st AD PT [0.1, 1] 50 5000 3200 1
[Hassan et al., 2002] full A PT [0.25, 2.25] 5 50 25 3 104 2000–3000
[Dentz et al., 2002] 1st AD PT [0.1, 2] 20 1500 2000 100
[Trefry et al., 2003] full Aa NS [0.25, 4] 82 256–1024 64–256 106 1
this study full AD PT [0.25, 8] 10 819–1638 819 7 107–1.4 108 100 2000

aFCM stands for flow computation method. It can be 1st order when flow is obtained by first order approximation of the flow equation or full when flow
is obtained by solving directly the full discretized flow equation. TP is the transport processes accounted for (A for advection, D for diffusion, a for
dispersion). TCM stands for transport computation method (PT for particle tracking, NS for numerical scheme). Nx and Ny are the number of correlation
lengths within the domain respectively in the main direction of flow and perpendicularly to it. Nm is the total number of cells (Nm = Lx Ly/lm

2). MC
realizations is the number of Monte-Carlo realizations per parameter set. PT trajectories is the total number of analyzed trajectories per realization when
particle tracking is used.
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because broad-range heterogeneities have been observed in
the field (for example s2 
 5 for the Columbus site
[Rehfeldt et al., 1992]) and secondly to test theoretical
predictions. Solutes are transported by advection and diffu-
sion. Diffusion is homogeneous with a diffusion coefficient
noted d, the Peclet number Pe expressing the ratio between
advection and diffusion is equal to Pe = (l � u)/d, where u is
the mean velocity.
[9] As seen in introduction, discretizing and solving the

flow equation for obtaining the velocity field computation is
necessary for large heterogeneities (s2 > 1). From previous
simulation results obtained by using the first-order approx-
imated velocity field (Table 1), the necessary domain
dimensions to asymptotic regime is around a thousand of
correlation lengths with a resolution of around 10 cells by
correlation length [Ababou et al., 1989] leading to a number
of cells of the order of 108. Such large domains require
parallel computing.

2.2. Permeability Field Generation

[10] The software must be fully parallelized as the com-
putational domain itself cannot be stored on a unique
processor. The computational domain is distributed from
the beginning to the end of the simulation, according to a
domain decomposition in vertical slices (Figure 1). Each
processor owns a well-defined part of the array corre-
sponding to a sub-domain and keeps in local memory
one layer of cells surrounding its sub-domain. These cells
called ‘‘ghost cells’’ are necessary for the determination of
the inter-cell permeability on sub-domain boundary cells.
The additional cost of memory use is negligible and the
communication cost between neighboring processors is
reduced.
[11] The generation of the correlated lognormal field is

performed via a Fourier transform [Gutjahr, 1989]. We use
the software FFTW [Frigo and Johnson, 2005]. This library
has a variety of composable solvers representing different
FFT algorithms and implementation strategies, whose
combination into a particular plan for a given size can be

determined at runtime according to the characteristics of the
machine/compiler in use. The construction of the perme-
ability field ends up with filling up the ghost cells, requiring
the management of some communication between the
processors. Permeability, velocity components and head
values are all stored on the same types of array. The
permeability field obtained from the Fourier transform
methodology gives the right correlation length. The
obtained variance is generally slightly smaller than the
targeted variance [Yao, 2004]. More precisely, the variance
is lowered by half the value of the mean. To avoid this bias
we first generate a Gaussian correlated random field with
zero mean and unitary variance. As we use a zero mean, the
output variance is equal to the input targeted one. To obtain
the right field, we first multiply the generated field by the
standard deviation and add the logarithm of the geometric
mean. We secondly take the exponential of the result. We
calculated the obtained variance and found a value close at
0, 02% to the input one for 81922 grids.

2.3. Flow Computation

[12] We discretize the classical flow equation r(Kr h) =
0 with K and h the permeability and hydraulic head and
apply permeameter-like boundary conditions consisting in
fixed head-on two opposite borders and no flow on the
perpendicular borders (Figure 1). The flow equation is
discretized according to a finite difference scheme with
harmonic inter-cell permeabilities. For regular square grids,
this scheme is equivalent to mixed hybrid finite elements
[Chavent and Roberts, 1991]. This equivalence ensures to
these finite differences the high precision of the mixed
hybrid finite elements useful for large permeability contrasts
[Mosé et al., 1994]. The discrete flow equations end up to a
linear system Ax = b, where A is a symmetric positive
definite sparse structured matrix. The order of A is equal to
the number of cells. The choice of the linear solver is
essential to achieve the CPU and memory requirements for
such large computational domains.

Figure 1. Permeability field stored on four processors, boundary conditions, injection and exclusion
zones. The characteristics of the computational domain are Lx = 2048.lm = 204, 8.l, Ly = 1024.lm = 102,
4.l, l = 10.lm and s2 = 2.25 where l is the correlation length and lm is the grid cell size. Permeability is
increasing from blue to red. Computational domains used for asymptotic dispersion determination where
4 to 8 times longer and larger than this one.
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[13] Several methods and solvers exist for these linear
systems. They can be divided into three classes: direct,
iterative and semi-iterative [Meurant, 1999; Saad, 1996].
Direct methods are highly efficient but require a large
memory space. Iterative methods of Krylov type require
less memory but need a scalable preconditioner to remain
competitive. Iterative methods of multigrid type are often
efficient and scalable, well-suited to regular grids, used by
themselves or as pre-conditioners, but are sensitive to
condition numbers [Wesseling, 2004]. The condition num-
ber is related to the heterogeneities considered and increases
very rapidly with the variance. Semi-iterative methods such
as subdomain methods are hybrid direct/iterative methods
which can be good tradeoffs [Toseli and Widlund, 2005].
For iterative and semi-iterative methods, the convergence
and the accuracy of the results depend on the condition
number which can blow up at large scale for a high variance
(s2 > 4). Because the memory space is more critical than the
CPU time, we chose an iterative multigrid method. We used
a numerical library HYPRE and more precisely Boomer-
AMG (Algebraic MultiGrid) whose advantages are to be
free, heavily used, portable and parallel [Falgout et al.,

2005].With this method, the CPU time is indeed not sensitive
to the permeability variance. For a grid of 1.3 108 nodes
with s2 = 6.25, the flow computation requires around half
an hour on a cluster of a 32 bi-processor AMD Opteron
2.2 GHz with 2 Go RAM each interfaced by Gigabit
Ethernet.

2.4. Transport Simulation

[14] Transport is simulated by a particle tracker algorithm
[Delay et al., 2005]. Particle tracking is well suited for pure
advection and advection-dominated transport processes
because it does not introduce spurious numerical diffusion.
Advection is simulated by a first order explicit scheme. We
tried higher-order schemes which led to very small differ-
ences. Under this assumption of homogeneous isotropic
diffusion, this method correctly models diffusion and does
not require any correction of the velocity term necessary for
taking into account diffusion discontinuities [Delay et al.,
2005]. Between t and t + dt, a particle moves from positions
M(t) to M(t + dt) by advection and diffusion:

M t þ dtð Þ ¼ M tð Þ þ v M tð Þ½ � � dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � d � dt

p
� Z � r

where v[M(t)] is the velocity at the position M, d is the
diffusion coefficient, Z is a random number drawn from a
Gaussian distribution of mean 0 and variance 1 and r is a
unitary vector with uniformly distributed orientation. The
time step evolves along the particle path according to the
velocity magnitude of the crossed cells. More precisely,
the time step is either proportional to the local advection
time equal to the cell size lm divided by the maximum of the
velocities computed on the cell borders noted vx+, vx�, vy+,
vy� in the x and y directions or to the diffusion time
necessary to cross the cell:

dt ¼ 1

Na
�min

lm

max vxþ; vx�; vyþ; vy�
� � ; l2m

2d

" #
:

Na is a positive integer representing the order of the time
step number performed by the particle in the cell. In the
simulations Na is set to 10, meaning that the particle makes
of the order of 10 steps to cross the cell. The velocity
v[M(t)] is obtained from a bilinear interpolation as it is the
sole interpolation method that ensures mass conservation
[Pollock, 1988]. It is important to find the exit position of
the particle from the cell in order that particles always move
in the cell with the velocity characteristics of the current cell
and not of the previous one [Pokrajac and Lazic, 2002].
The exit point and time from the cell are found by linear
interpolations. Diffusion is simulated by adding a random
displacement of length proportional to the square root of
time and of the diffusion coefficient [Tompson and Gelhar,
1990].
[15] To avoid border effects, particles are introduced at a

distance 0.05 Lx from the left border (input border) of the
computational domain (Figure 1) corresponding for Lx =
8192 lm and Ly = 16384 lm and l = 10 lm (10 cells by
correlation length) to respectively 40 and 80 correlation
lengths downstream from the fixed head boundary. Particles
are stopped when arriving at the same distance upstream

Figure 2. (a) Longitudinal and (b) transverse dispersion
coefficients as functions of time for increasing particle
numbers with s2 = 9, l = 10 lm and Lx = 819,2.l and Ly =
819,2.l (pure advection case).
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from the right border (output border). For all simulations,
the injection window is a thin line perpendicular to the mean
flow direction of length equal to 3277 lm (i.e., 0.4 Ly or
around 328 correlation lengths for l = 10 lm). Particles are
injected with a uniform distribution within the injection
window. The extension of the injection window is large
enough to ensure a broad sampling of the velocity field but
narrow enough to prevent particles from sampling the zones
close to the no-flow boundary conditions [Salandin and
Fiorotto, 1998]. The number of particles approaching the
no-flow border of the domain by less than 15% of the
domain dimension (120 correlation lengths) is recorded and
found to be null. This ‘‘exclusion zone’’ close to the no-flow
boundaries is shown on Figure 1. The particle-tracking
algorithm has been adapted for parallel simulations with
the domain stored on the different processors [Beaudoin et
al., 2007]. The time necessary for the simulation transport

was at most equal to the time required for the computation
of flow.

3. Dispersion Computation, Convergence and
Validation

[16] Simulations give the first two moments of the
particle plume distribution hx(t)ii and hx2(t)ii, here
expressed in the longitudinal direction x:

< xk tð Þ >i¼
1

Np

XNp

j¼1

xj tð Þk ð3Þ

with i the simulation number, xj(t) the abscissa of the
particle j, k the moment order (1 or 2), and Np the number of
particles. We compute a normalized dispersion coefficient
by using the classical formula

Di
L tð Þ ¼ 1

ul
1

2

d < x2 tð Þ >i � < x tð Þ >2
i

� �
dt

ð4Þ

and discretize it on the successive time steps. The normal-
ization factor ul is logical in terms of dimension to obtain a
non-dimensional result. It is further justified for s2 < 1 by
the first-order longitudinal dispersion coefficient linear in

Figure 3. Asymptotic longitudinal (a) and transverse
(b) dispersion coefficients as functions of the particle
number Np for Lx = 1638, 4 l and Ly = 819, 2 l. In this
figure as well as in the following figures, the term advection
in the legend refers to the pure advection case without
diffusion and the legend is the same for both graphs.

Figure 4. (a) Asymptotic longitudinal dispersion coeffi-
cient and (b) standard deviation of the dispersion coefficient
at a given time tN = 600 as functions of the number of
simulations for Lx = 1638, 4 l and Ly = 819, 2 l. In (a), the
dispersion coefficient DL for tN = 600 has been added for
the pure advection cases. tN = 600 is taken in the second
half of the signal as the full signal length is around tN =
1000.

XXXXXX DE DREUZY ET AL.: 2D ASYMPTOTIC DISPERSION

5 of 13

XXXXXX



ul (Equation (2)). In the following, the term dispersion
coefficient will refer to this normalized dispersion coeffi-
cient. We normalized the time t as well by the characteristic
time l/u needed for the flux to cross a correlation length and
denote it tN = ut/l.

3.1. Asymptotic Dispersion Coefficient

[17] We determine the asymptotic dispersion coefficient
DLA
i from the time derivative signal (3) according to the two

following methods. Both methods rely on the late time
behavior of the dispersion coefficient DL

i (tN). The first
method consists in averaging DL

i (tN) over the time range
[0.5tfb, tfb [ over which DL

i (tN) is observed to have reached
its asymptotic limit, where tfb is the first breakthrough time
(time for which the first particle arrives at a distance of
0.05Lx from the output border). The asymptotic dispersion
coefficient is the average noted DL

i (av). The second method
is a simple fit of DL

i (tN) over the whole time range by the
exponential function

Di
L tNð Þ � Di

LA fitð Þ � 1� exp �tN=t
i
N0

� �� �
ð5Þ

where DLA
i (fit) is the asymptotic dispersion coefficient. tN0

i is
a characteristic convergence time to the asymptotic regime.
For the transverse dispersion coefficient, we derived the

realization-based coefficient DT
i (tN) by using the same

methodology applying Equation (3) where we replace x
by y. Because of the absence of any systematic time
evolution, we determine the asymptotic dispersion coeffi-
cient by averaging over the second part of the time range
[0.5tfb, tfb] like for the longitudinal dispersion coefficient.
Whatever the method, the key point is to simulate transport
in a sufficiently large domain to observe the stabilization of
dispersion on a time range long enough. The relevance of
the asymptotic dispersion coefficient depends on the
domain dimensions counted in terms of correlation length
Lx/l and Ly/l.
[18] The mean and standard deviations of the dispersion

coefficients as a function of time DL(tN) = hDL
i (tN)ii=1..NS

and s [DL(tN)] = [hDL
i (tN)

2ii=1.NS
�hDL

i (tN)ii=1.NS

2]1/2 and
the mean of the asymptotic dispersion coefficients DLA =
hDLA

i i i=1.NS
are thereafter determined over NS different

realizations. The parameters controlling the determination
of the asymptotic dispersion coefficients are the domain
dimensions Lx/l and Ly/l, the number of particles Np and
the number of simulations NS. First simulations have shown
that domains should be of dimensions (Lx/l, Ly/l) equal to
(820, 820) and (1640, 820) for respectively s2 � 4 and s2 �
6.25 to have a long enough signal. We use these values to
study the convergence with Np and NS and verify after that
these dimensions are indeed large enough. We study suc-
cessively the convergence as functions of the number of
particles Np and of the number of simulations NS. Two
averaging methods are possible leading respectively to the
effective and ensemble dispersion coefficients. The effective
dispersion is obtained by first computing the derivative of
the standard deviation of the plume concentration within a
simulation and secondly by averaging the computed stan-
dard deviations over the NS simulations. The ensemble
dispersion is obtained by first computing the two first
moments of the plume concentrations over the NS simula-
tions and by secondly computing the derivative of the
standard deviation from the previous moments. The ensem-
ble dispersion is larger than the effective dispersion as it
measures the plume dispersion with respect to the plume
position averaged over all simulations whereas the effective
dispersion measures the plume dispersion in each simula-
tion with respect to the simulation mean plume position
[Dentz et al., 2000].

3.2. Convergence With the Number of Particles Np

[19] Figure 2 displays the dispersion coefficients DL
i (tN)

and DT
i (tN) for number of particles Np ranging from 100 to

10,000. We choose an example in the most heterogeneous
case (s2 = 9) without diffusion (pure advection). For Np =
100 (crosses), the dispersion coefficients are much more
variable than for Np = 1000 (stars). Increasing the number of
particles over 1000 does not change the global tendencies of
the dispersion coefficients. Finally between 5000 and
10000, differences are very small. At a given time, the
dispersion coefficient can be well approached with Np =
10,000 particles. We computed also the asymptotic disper-
sion coefficients DLA

i (av) and DTA
i (av) according to the

number of particles Np in the most heterogeneous cases
(s2 = 6.25 and 9) for Peclet numbers Pe ranging from 100 to
1. Pe = 1 corresponds to the pure advection case (without
diffusion) (Figure 3). For Np � 2000, DLA

i (av) and DTA
i (av)

do not vary much with the number of particles. More

Figure 5. (a) Asymptotic transverse dispersion coefficient
and (b) standard deviation of the dispersion coefficient at a
given time tN = 600 as functions of the number of
simulations. Same parameters as in Figure 6.
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precisely, they vary respectively by less than 5% and 10%
whatever the case. There is no systematic tendency either
with the number of particles or with the Peclet number. We
kept for the pure-advection case 10,000 particles and for the
advection-diffusion case 2000 particles. As convergence is
not faster without diffusion as shown by Figure 3, this
choice does not advantage the pure advection case more
than the 5% and 10% precisions previously found. The
global number of particles can be converted into number of
particles by correlation length at injection time. For all cases
the injection window was set to 3277 lm. For the pure-
advection case Np = 10,000, the number of particles by cell
is 3 on average and the number of particles by correlation
length is 30 on average because there are 10 cells by
correlation length (l = 10 lm). For the advection-diffusion

case Np = 2000, the number of particles by cell is 0.6 on
average and with l = 10 lm, the number of particles by
correlation length is 6 on average.

3.3. Convergence With the Number of Simulations NS

[20] We study the convergence of the average and stan-
dard deviation of the dispersion coefficients with the num-
ber of simulations NS for the most heterogeneous cases s2 =
6.25 and 9. The mean longitudinal asymptotic dispersion
coefficient is very close to the mean of the dispersion
coefficient taken at a given time tN = 600 (Figure 4a, solid
and open squares compared to thick solid and dashed grey
lines). The asymptotic dispersion coefficient converges very
rapidly for NS � 20. The largest difference between values
for 20 and 100 simulations is of the order of 2.5%. The
standard deviation of the longitudinal dispersion coefficient

Figure 6. Normalized longitudinal dispersion coefficient for single realizations DL
i (tN) (points), their

averages DL(tN) over 100 realizations (lines) and the confidence interval at 95% on the dispersion
coefficient (dashed line) (s2 = 1 and 9, pure advection case). The dashed-dotted line represents the
normalized apparent dispersion coefficient Dapp(t) = 0.5 hx2 (t)i /t. Computational domain size are for
s2 = 1 (a) Lx = Ly = 819, 2 l and for s2 = 9 (b) Lx = 1638, 4 l and Ly = 819, 2 l.
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at the same given time tN = 600 s (DL(tN = 600)) displays
relative larger variations with the number of simulations NS

(Figure 4b, lines and symbols). The maximal variation
between NS = 20 and NS = 100 is 20%. As variations are

not monotonous, the value for the largest number of
simulations cannot be more precise than 20%. We note that
both the variability of the average asymptotic dispersion
coefficients and the standard deviation of the dispersion
coefficient decrease with more diffusion (smaller Peclet
numbers). Convergence of the longitudinal dispersion co-
efficient with the number of simulations is thus faster with
more diffusion.
[21] Tendencies for the transverse dispersion coefficient

are quite different. For NS � 20, the asymptotic dispersion
coefficient is very close to zero for the pure-advection case
(Figure 5a) whereas the standard deviation of the transverse
dispersion coefficient at a given time is much larger around
0.6 (Figure 5b). More diffusion corresponding to smaller
Peclect numbers induces larger transverse asymptotic dis-
persion and standard deviation. The asymptotic transverse
dispersion coefficient (Figure 5a) converges quickly and its

Figure 7. Normalized transverse dispersion coefficient.
Same parameters as in Figure 6.

Figure 8. Velocity variance uxx and uyy as functions of s
2

obtained analytically by Rubin [1990] and numerically in
the present study and by Salandin and Fiorotto [1998].

Figure 9. Asymptotic longitudinal dispersion coefficient
as a function of the correlation length for the pure advection
case. Lines are linear fit through 0. Same parameters as in
Figure 6.

Figure 10. Longitudinal mean dispersion coefficient as a
function of tN for the pure advection case (time in terms of
correlation scales crossed by the plume). Dashed lines
mark the asymptotic coefficients. Same parameters as in
Figure 6.
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variations for NS � 20 are less than 10% of its mean value.
The standard deviation (Figure 5b) still varies non monot-
onously and the amplitude of its variations can reach 25%
of its mean value.
[22] In the two previous sections, we have fixed the mesh

size lm and analyzed the convergence of the random walker
and the Monte-Carlo simulations. For a given simulation,
we verified numerically that the random walker converges
when we increase the number of particles. More precisely,
the dispersion coefficients DL(t) and DT(t) converge. We
can assume a convergence in an appropriate norm; in view
of the numerical results, we can also assume a uniform

convergence, independent of the simulations. For a given
number of particles, we verified numerically that the Monte-
Carlo simulations converge when we increase the number of
simulations. More precisely, we observe the convergence of
the approximate first moments of the dispersion, computed
with a given number of particles. Therefore we can assume
that, for a given mesh size lm, our numerical Monte-Carlo
simulations give an accurate estimation of the first moments
of the two dispersion functions. However, in our simula-
tions, the second moments do not converge correctly. There
may be different reasons for this lack convergence. First the
number of Monte-Carlo simulations NS may not be large
enough. Secondly dispersion coefficient may be affected by
the finite volume method used for flow computation and the
use of a bilinear interpolation for the velocity in the particle
tracker. Thirdly, it may come from the generation of the
permeability field from a truncated Fourier expansion and
the assumption of a constant permeability in each grid cell.
The same lack of convergence of the dispersion fluctuations
has already been observed and related to the finite number
of Fourier modes [Figure 5 of Eberhard, 2004].
[23] In the following, we perform 100 simulations to

ensure convergence of the first moments DLA and DTA for
each parameter set. We keep the same parameters for all
simulations. As the variations of both the longitudinal and
transverse dispersion coefficients are stronger for s2 = 9
than for s2 = 6.25, we checked that convergence is at least
as good for lower heterogeneities corresponding to s2 �
6.25.

3.4. Convergence of Dispersion Coefficients With Time

[24] The domain dimensions were chosen in order to have
a stabilization of the mean dispersion coefficient as a
function time DL(tN) over at least half the time duration of
the simulation, the maximal simulation time tfb being the
first breakthrough time (time for which the first particle
arrives at a distance of 0.05Lx from the output border). The
asymptotic regime is maintained over around 500 time units
or equivalently on a spatial range of 500 correlation lengths.
The simulations performed on domain of longitudinal
dimension Lx = 819, 2 l with l = 10 lm were large enough
for s2 � 4. For s2 = 1, the asymptotic regime is reached

Figure 11. Normalized longitudinal asymptotic effective
dispersion coefficient DLA as a function of the variance of
the log conductivity with pure advection. Vertical bars on
data points represent the standard deviation on each side of
the data point. DLA(av) and DLA(fit) are obtained respec-
tively by averaging and fitting by an exponential function.
Theoretical predictions [Gelhar, 1993] are represented by
the line. The dashed curve stands for 0.7s2 + 0.2s4. Same
parameters as in Figure 6.

Figure 12. Normalized transverse dispersion coefficient as
a function of the normalized time in the pure advection case.
Same parameters as in Figure 6.

Figure 13. Normalized transverse asymptotic dispersion
coefficient for the pure advection case.

XXXXXX DE DREUZY ET AL.: 2D ASYMPTOTIC DISPERSION

9 of 13

XXXXXX



after some tens of correlation lengths (Figure 6a). However,
for s2 � 6.25, domains had to be twice longer (Lx = 1638,
4 l) to obtain the same stabilization time range (Figure 6b).
Such long stabilization times have also been observed in

systems made of highly heterogeneous inclusions [Jankovic
et al., 2006]. Large domain dimensions are required not
only for large values of s2 but also for smaller values of s2

(values around 1), although it is not obvious on Figure 6a.
In fact we performed the same simulations for domains of
dimensions Lx = 102, 4 l by Ly = 51, 2 l and found that the
asymptotic regime is far from being reached although the
number of exploitable correlation lengths (
80) is large
enough. There may be two reasons. First the asymptotic
regime is difficult to identify over some tens of correlation
lengths. Secondly, the injection window is smaller (20
correlation lengths at Ly = 512 lm compared to 327 at Ly =
8192 lm) inducing from the beginning a lower sampling of the
velocity field and a larger convergence time to the asymptotic
regime.
[25] The mean DL(tN) and the confidence interval at 95%

derived from the mean and standard deviation are repre-
sented on Figure 6 (solid and dashed lines). DL

i (tN) displays
a large variability but no definite trend whatever s2 as
shown by Figure 6 (square and circle symbols). The average
DL(tN) of the dispersion coefficient over 100 simulations
represented by the black line smoothens the variations and
indeed reaches a constant value at small times (tN > 30) for
s2 = 1 (Figure 6a) and at larger times (tN > 400) for s2 = 9
(Figure 6b). The asymptotic regime is well approached at
least during the second half of the simulation time, i.e., in
the interval [0.5tfb, tfb[. The realization-based DT

i (t) displays
a strong variability around 0 but no trend, not even at small
times (square and circle points on Figure 7). The average
over simulations (solid line of Figure 7) does neither show
any trend whereas the standard deviation (dashed lines of
Figure 7) is large compared to the average values.
[26] We note that several studies have used the apparent

dispersion coefficient Dapp(t) = 0.5 hx2(t)i/t instead of the
derivative (4) to remove the oscillations of the time derivative
[Schwarze et al., 2001; Trefry et al., 2003]. Even thoughDapp

tends to the effective dispersion coefficient (4) for large
times, the differences between these two quantities are
important and remain for very large times especially in
the high variance case as shown by Figure 6 on the
simulation averages (dashed-dotted lines compared to solid
lines). We thus decide to determine the asymptotic disper-
sion coefficient DLA

i from the time derivative signal (4).

Figure 14. Standard deviation of (a) the longitudinal and
(b) transverse dispersion coefficients in the pure advection
case.

Figure 15. Characteristic convergence time to the asymp-
totic regime tN0.

Figure 16. Longitudinal dispersion coefficient as a
function of normalized time for s2 � 4.
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3.5. Validation

[27] We validate the numerical procedures by comparing
them to theoretical and other numerical existing results. First,
for s2 < 1, we compare numerical results to first-order
theoretical results of the correlation functions of the longitu-
dinal and transverse velocity fields [Rubin, 1990, Equations 9
and 10] and of the asymptotic dispersion coefficients. The
velocity correlation function is highly close at less than 5%
to the first-order prediction for s2 < 1 and is close at less
than 1.5% to the results of Salandin and Fiorotto [1998] for
1 < s2 < 4 (Figure 8).
[28] For the asymptotic longitudinal dispersion coeffi-

cient, the normalization by lu enables a direct compar-
ison of DLA numerical results with s2 for s2 < 1 with
equation (14). The agreement is very good as, for s2 =
0.25, Equation (15) and numerical simulations give respec-
tively 0.25 and 0.26. We compare also our results of
longitudinal asymptotic dispersion coefficient in the interval
1 < s2 < 4 to the variation of DLA with s obtained by
Salandin and Fiorotto [1998]. Salandin and Fiorotto
[1998] found DL / sb with b = 2.06, 2.19, 2.29 and
2.35 respectively for s2 in the intervals [0.05, 1], [1, 2],
[2, 3] and [3, 4]. We find b = 2.07, 2.37 and 2.62 for s2 in the
intervals [0.05, 1], [1, 2.25], and [2.25, 4]. We find a close
agreement in the first interval but a faster increase of the
asymptotic dispersion coefficient for s2 > 1. This could be
linked to the number of correlation lengths limited to 20 in
Salandin and Fiorotto [1998]. For advective-diffusive trans-
port, we validate the algorithm against the classical analyt-
ical solution obtained in the homogeneous medium case.

4. Results of Asymptotic Dispersion Coefficients

4.1. Pure Advection (Pe = 111111)

[29] We determine the effect of the resolution scale
defined by the number of cells by correlation length l/lm.
We perform the simulations at l/lm = 5, 10 and 20 where
previous simulations used a maximum of 8 cells per
correlation length (Table 1). We verify that the asymptotic
longitudinal dispersion coefficient depends linearly on l for
all values of s2 (Figure 9) justifying furthermore the
normalization of the dispersion coefficients by lu. It also
shows the weak dependency of the asymptotic dispersion
coefficient on the resolution of the discretization even for
high heterogeneities. 10 cells by correlation length give very
similar results as 5 or 20 cells by correlation length.
[30] The asymptotic regime has been reached and main-

tained over at least 500 correlation lengths whatever the
value of s2 (Figure 10) and the asymptotic values of the
dispersion coefficients have been computed according to
the procedure described in the previous section (Figure 11).
Both methodologies of exponential fitting and averaging
lead to similar results within an interval of 0% to 3%. The
first-order estimate of the dispersion coefficient (2) remains
close to the numerical value even for s2 = 1 and 2.25 where
it is lower by respectively 10% and 25%. This good
performance of first-order results for values of s2 signifi-
cantly larger than 1 has been previously observed and
explained [Bellin et al., 1992; Dagan et al., 2003]. The
independent linearizations of flow and transport induce
opposite deviations from linear theoretical results and may
partly cancel out each other. This conclusion was confirmed

on slightly different heterogeneous media consisting of
spherical inclusions in a homogeneous medium [Dagan et
al., 2003]. For larger heterogeneity, the departure from the
first-order results increases with s2. Numerical results are
respectively 50%, 90% and 150% larger than the linear
estimates for s2 = 4, 6.25 and 9. DLA(av) is well represented
by the approximate function 0.7 s2 + 0.2s4 for large
heterogeneities (s2 > 1) (dashed curve on Figure 11).
[31] For transverse dispersivity, numerical results show

some variability around 0 without any systematic trend
neither for the realization-based result nor for the average
(Figures 7 and 12). The similar transverse dispersion
evolution with time for s2 = 6.25 and 9 comes from the
fact that realizations are performed with the same set of
seeds for the random generator. The correlation patterns are
thus identical while the magnitude of the heterogeneity
changes. The asymptotic dispersion coefficients computed
by averaging over the second half of the time chronicle
DTA(av) are close to zero without being systematically
positive or negative (Figure 13) and the magnitude of the
standard deviation is much larger than the average. These
results lead us to conclude that the asymptotic transverse
dispersion coefficient is zero on average whatever s2. This
confirms theoretical conclusions obtained by volume aver-
aging [Attinger et al., 2004].
[32] Figures 6 and 7 show a large variability around the

average both for the longitudinal and transverse dispersion
coefficients whatever the heterogeneity represented by the
value of s2. The standard deviation of the transverse
dispersion coefficient converges (Figure 14b) within the
computation time, whereas the convergence is not obvious
for the standard deviation of the longitudinal dispersion
coefficient (Figure 14a). The apparent increase of the
longitudinal dispersion coefficient remains limited to at
most 30% in the time interval [tfb/2, tfb], which is close to
the imprecision of 20% obtained in Section 3.3 because of
the use of a limited number of simulations (NS). Conver-
gence would require both more realizations and longer
systems. As the increase remains limited and as s(DL(tN))
is not the main objective of the study, we did not go further
on its characterization.
[33] Finally, we derive from the exponential fit of the

longitudinal dispersion coefficient the characteristic conver-
gence time to the asymptotic regime tN0 (Figure 15). tN0
does not have an absolute meaning as it depends on the
width of the injection window. We rather use tN0 to compare
convergence time between different values of s2 in the same
conditions. tN0 increases exponentially with the permeabil-
ity variance contrarily to the first-order theory prediction
according to which tN0 does not depend on the medium
heterogeneity s2.

4.2. Advection and Diffusion (Pe <<<<<<<< 111111)

[34] We computed the dispersion coefficient DL(tN) for
the two Peclet number Pe = 100 and 1000. DL(t) reaches its
asymptotic regime whatever the value of s2 (Figure 16).
The time to reach the asymptotic dispersion tN0 is smaller
than in the pure-advection regime even if tN0 values are
highly dispersed. Diffusion modifies only slightly the
asymptotic longitudinal dispersion coefficient DLA for
s2 � 1 and let it decrease for s2 > 1 (Table 2). For
small values of s2(s2 � 1), the influence of diffusion is
negligible as previously found [Fiori, 1996]. For s2 = 1, the
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additional dispersion induced by diffusion is not significant
because the asymptotic dispersion coefficient for Pe = 1
(larger than 1) is ten times larger than 1/Pe. For s2 > 1, the
asymptotic dispersion coefficient decreases surprisingly
with more diffusion. More diffusion induces less dispersion.
The decrease can be significant. For s2 = 6.25, DLA is 25%
lower at Pe = 100 than its value at Pe =1 (pure advection).
For large heterogeneities, diffusion reduces the global
dispersion. This behavior was expected by Gelhar [1993]
(pages 221–222) and de Arcangelis et al. [1986] and may
be explained by the following argument also invoked for
percolation systems [Koplik et al., 1988]. Large dispersion
is induced by the widely scattered velocity distribution.
Diffusion introduces a cut-off to this distribution thus
narrowing it and letting in turn the dispersion coefficient
decrease. In other words, diffusion extracts particles from
the very slow velocity zones and restricts the dispersion of
particle in the medium. The transverse asymptotic disper-
sion coefficient DTA keeps a more classical behavior by
increasing with more diffusion (Table 2). However, the
increase of DTA can be much larger than the sole diffusion
contribution 1/Pe. For large heterogeneities s2 = 6.25 and
for Pe = 100, DTA is 20 times larger than 1/Pe. The effect of
diffusion and advection cannot be simply superposed but
interact to produce a larger transverse dispersion.

5. Conclusion

[35] We determine the asymptotic dispersion coefficients
for 2D exponentially correlated lognormal permeability
fields on a broad range of lognormal permeability variance
s2 (s2 2 [0.25, 9]). We use parallel computing for simulat-
ing fluid flow and particle transport on large domains of
typical dimension from 800 to 1600 correlation lengths with
a resolution of 10 cells by correlation length, where lm is the
cell characteristic dimension. Such large domains turned out
to be necessary to observe the asymptotic regime on a
sufficiently long time range for determining unambiguously
the asymptotic dispersion coefficients. The asymptotic lon-
gitudinal and transverse dispersion coefficient DLA and DTA

have been estimated on a realization basis by averaging over
a traveled distance of at least 400 correlation lengths. We
have tested an alternative derivation methodology for the
asymptotic longitudinal dispersion coefficient DLA by fit-
ting the dispersion coefficient by an exponential function.
Estimates of DLA by both methodologies lead to very
similar values. The characteristic time given by the expo-

nential fit gives an estimate of the convergence speed to the
asymptotic regime. Simulations show that it increases
exponentially with the heterogeneity s2 and decreases with
diffusion.
[36] For pure advection (Pe = 1), the asymptotic longi-

tudinal dispersion DLA is larger than the first-order estimate
for high heterogeneity. More precisely, for s2 equal to 4,
6.25 and 9, DLA is larger by respectively 50%, 90% and
150% than the linear estimates. For s2 > 1, DLA is well fitted
by the function 0.7s2 + 0.2s4 showing a quadratic evolution
in s2 for large heterogeneities. This departure from the first-
order theory is probably related to the extreme flow chan-
neling observed for high heterogeneity [Le Borgne et al.,
2007; Moreno and Tsang, 1994; Salandin and Fiorotto,
1998]. Whatever the heterogeneity level, the asymptotic
transverse dispersion coefficient is always zero as predicted
by first-order theory for low heterogeneity and by volume
averaging [Attinger et al., 2004].
[37] The addition of diffusion to advection leads to two

very different behaviors for longitudinal and transverse
dispersions. For large heterogeneities (s2 > 1), diffusion
induces a significant longitudinal dispersion decrease and a
transverse dispersion increase larger than expected. At most,
for a Peclet number of 100 (advection on average hundred
times larger than diffusion) and a permeability variance s2 =
9, the longitudinal dispersion decreases by a factor of 2 and
the transverse dispersion is 7.5 times larger than the local
diffusion.
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Rennes 1, 35042 Rennes cedex, France. (aupepin@univ-rennesl.fr)

J. Erhel, IRISA/INRIA of Rennes, Campus de Beaulieu, 35042 Rennes
cedex, France.

XXXXXX DE DREUZY ET AL.: 2D ASYMPTOTIC DISPERSION

13 of 13

XXXXXX


