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We study diffusion in heterogeneous multifractal continuous media that are characterized by the second-
order dimension of the multifractal spectrumD2, while the fractal dimension of order 0,D0, is equal to the
embedding Euclidean dimension 2. We find that the mean anomalous and fracton dimensions,dw andds, are
equal to those of homogeneous media showing that, on average, the key parameter is the fractal dimension of
order 0D0, equal to the Euclidean dimension and not to the correlation dimensionD2. Beyond their average,
the anomalous diffusion and fracton exponents,dw and ds, are highly variable and consistently range in the
interval [1,4]. dw can be consistently either larger or lower than 2, indicating possible subdiffusive and
superdiffusive regimes. On a realization basis, we show that the exponent variability is related to the local
conductivity at the medium inlet through the conductivity scaling.
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I. INTRODUCTION

Diffusion in disordered media pertains to a large range of
phenomena, including for example fluid flow and electrical
conductivity, and has been an active field of research in the
past decades[1–3]. Diffusion has been mostly studied in
archetypal deterministic and random fractal media like the
Sierpinski gasket[4–6], the percolation cluster at threshold
[1,7], and the percolation cluster at threshold with long-range
correlations[8–10]. Such fractals are discontinuous media
characterized by a binary conductivity distribution: a unit
homogeneous conductivity on the fractal and zero conductiv-
ity outside. Some studies have addressed the problem of
fractal media having a heterogeneous distribution of conduc-
tivities on the percolation cluster near the percolation thresh-
old [11,12]. One recent study handled diffusion in nonfractal
continuous media with long-range correlations generated by
a fractional Brownian motion[13]. Whatever the fractal
structure, diffusion has been found to be anomalously slow
[2]. The classical measure of the anomalous diffusion is the
exponentdw characterizing the evolution of the mean square
radius of diffusionkR2stdl with the timet as: kR2stdl, t2/dw.
The anomalously slow diffusion is traduced by values ofdw
larger than 2. Diffusion in homogeneous media is recovered
for dw=2.

In this paper, we study diffusion in bidimensional con-
tinuous media having long-range correlations without limits
outside the system cutoffs. Practically continuous media will
be simulated by a regular square grid. The physical param-
eter is the conductivityK distributed over the grid. The di-
mension of the support is the fractal dimension of order 0,
D0, and is equal to the embedding Euclidean dimensiond.
The dimension of correlation of the conductivity field, equal
to the second-order dimension of the multifractal spectrum
D2 [14], is lower than the Euclidean dimension and more
precisely in the rangefd−1,df. Because the zero and
second-order fractal dimensions are different, these media
are multifractal. We call them continuous multifractals. On
one hand, continuous multifractals, like fractals, have long-

range spatial correlations, but they differ from fractals by
their continuity. On the other hand, multifractals are different
from classical correlated media used, for example, in hydro-
geology [15,16] because their correlation pattern does not
have any characteristic scale outside its endmost cutoffs. The
interest for these continuous multifractals is double. First,
they are a typical kind of continuous structure without ho-
mogenization scale. Second, they begin to be observed in
natural underground media[17–19]. Permeability distribu-
tion has been found to be multifractal in highly documented
alluvial and glacial outwash aquifers on scale ranges varying
from one to two orders of magnitude[17]. The fracture ap-
erture distribution linked to the fracture permeability has also
been observed to be multifractal on borehole televiewer im-
ages[19]. The understanding of the transient diffusion re-
sponse is important in groundwater hydrology as it is used to
extract permeability values from transient well tests[20].

The class of multifractals studied here is characterized by
a continuous field and by the second-order dimensionD2 of
the multifractal spectrum.D2 basically defines the autocorre-
lation scaling of the multifractal measure. The generation of
the multifractals is based on a multiplicative cascade process
[21,22]. Diffusion is simulated numerically using the back-
ward differentiation method[23] which proves to be efficient
for stiff problems. Because of the widely scattered range of
the diffusion-time scales between realizations, we calculate
the anomalous diffusion exponentdw and the fracton dimen-
sionds for each realization and analyze their resulting distri-
butions. The fracton dimension characterizes the evolution
with time of the probability of return to the originds=2/dw
[2,24].

We found that the mean anomalous and fracton dimen-
sions are equal to those of homogeneous media showing that,
on average, the key parameter is the fractal dimension of
order 0,D0, equal to the Euclidean dimension and not to the
correlation dimensionD2. Beyond their average, the expo-
nents are highly variable between realizations. The anoma-
lous diffusion and fracton exponentsdw andds range in the
interval [1,4]. dw can be consistently either larger or lower
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than 2, indicating possible subdiffusive and superdiffusive
regimes[25].

We show that the exponent variability is linked to the
local conductivity at the medium inlet. Long-range correla-
tions induce a broad conductivity distribution from which the
conductivity at the medium inlet is drawn. Depending on the
value of the conductivity at the inlet compared to the mean
conductivity, diffusion samples a medium of increasing or of
decreasing conductivity inducing a superdiffusive or a sub-
diffusive behavior. Fractal correlations ensure a regular and
consistent conductivity scaling of exponentu0 with
kKsrdl, r−u0. When conditioning the simulations by the inlet
conductivity, we find general relations first between the inlet
conductivity and the exponent of the conductivity scaling,u0,
and secondly betweenu0 and the anomalous diffusion expo-
nent:dwsu0d=s2−D2d+s2−u0d. The exponentsdw andds de-
pend thus on a realization characteristic, the conductivity at
the medium inlet, and are only very slightly dependent on the
multifractal spectrum.

In Sec. II, we describe the multifractal models and the
numerical tools used for the simulation of diffusion and the
exponent calculation. In Sec. III, we show the results for
bidimensional continuous multifractal media and conclude
on the independence of the mean exponents on the correla-
tion dimensionD2 and the large variability of the exponents.
By conditioning the simulations by the conductivity at the
medium inlet, we explain the anomalous diffusion and frac-
ton exponent variability.

II. MODEL AND METHODS

A. Characterization and generation of bidimensional
continuous multifractals

A multifractal object is characterized by the infinite set of
generalized dimensionsDq, with D0ùD1ùD2ù . . .ùD`,
called the multifractal spectrum[14,26]. By definition, the
multifractal spectrum is related to a measure(here the con-
ductivity s ) on a support(the object itself). For the bidimen-
sional continuous multifractal handled here,D0=2 and D2
define the scaling of the correlation functionCsrd,

Csrd =
1

V
E

V

ssr + r8dssr8ddV, rD2−d,

whered is the embedding Euclidean dimension.
To generate a continuous bidimensional multifractal, we

have implemented a method fully described in Ref.[27] and
based on a multiplicative cascade process[21,22]. The prin-
ciple of the multiplicative cascade process is a recursive op-
eration of fragmentation of a generic shape inn subdomains.
Then a probabilityPi, with i =1, . . . ,n, is attributed to each
subdomain. The fragmentation cascade can be iterated at in-
finity (practically set to five iterations); at each stage of the
fragmentation process, a fragment takes one of then prob-
abilities Pi multiplied by the probability of the parent do-
main.

The set of probabilitiesPi defines the multifractal spec-
trum of the generated probability field. In theory, ifl is the
scale ratio of the elementary fragmentation process(i.e., ratio

between the size of the parent domain and of each frag-
mented subdomains, practically equal to 3 here), the dimen-
sionsDq of the eventual probability field are related to the set
hPiji=1,. . .,n by [26]

if i Þ 1o
i=1

n

Pi
q = S1

l
Dsq−1dDq

,

if i = 1o
i=1

n

Pi lnsPid = − D1 ln sld. s1d

The method is flexible and allows generating a large range of
multifractal fields.

We choose a model with a fragmentation in nine blocks of
identical size[l =3 in Eq. (1)] and to place the inlet at the
center of the grid in order to inject the diffusion pulse at the
center of the multifractal pattern. We fix the dimensionD2
[q=2 in Eq. (1)] as the main characteristic of the generated
probability field, but we let the other dimensionsD1 and
hDqjq.2 undetermined, which means that they can take what-
ever value between 1 and 2. Also we choose an isotropic
fragmentation process, meaning that the probabilities
hPiji=1,. . .,9 are randomly permuted before being mapped on
the subdomains.

In practice, the multiplicative cascade process is iterated
four or five times so that the multifractal structure is defined
from a minimal scalelmin set equal to the unit reference and
equal to the mesh size, up to the medium size equal to
L=81lmin=34lmin or L=249lmin=35lmin (Fig. 1). Note that be-
low the mesh scalelmin, the medium is homogeneous. The
conductivity K is obtained from the probabilityP by a
simple multiplication bysL / lmind2Kunit, whereKunit is the unit
conductivity. AsSP=1, kKl remains equal toKunit whatever
the system sizeL.

FIG. 1. (Color online) Example of a continuous multifractal of
sizeL=243lmin generated forD2=1.5. Conductivity increases from
blue to red.
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B. Simulation of diffusion

The classical diffusion equation]P/]t= = sK¹Pd with
Psr ,td the unknown was discretized on the grid with a finite
volume method using a two-steps centered scheme in space
and a multistep scheme in time. The advantage of the nu-
merical scheme over exact enumeration and random-walk
techniques[2] relies on the possibility of dealing with media
having a broad-range distribution of conductivity. The inter-
mesh conductivity was taken as the harmonic mean of the
neighboring mesh conductivities[28]. The widely scattered
heterogeneity produces a stiff numerical problem for which
multistep schemes like the backward differentiation formula
are well suited[29]. We have chosen to use the free package
called LSODE [23], which implements an implicit BDF
scheme. It has a number of features which guarantee effi-
ciency and accuracy, such as a varying order(from 1 to 5),
an adaptative step size, and a sparse linear solver. Solving on
a grid of sizeL=243lmin takes around half an hour on a
personal workstation. For each set of parameters, Monte
Carlo simulations are made up of at least 100 grids.

C. Computation of the anomalous diffusion and fracton
exponentsdw and ds

The exponentsdw andds are defined by the scaling of the
mean square radius of diffusionkR2stdl= t2/dw and the prob-
ability at the grid inletP0std= t−ds/2 for a pulse injected at the
medium center[2]. Exponents are classically obtained on
kR2stdl andP0std by Monté Carlo simulations.

In the case of continuous multifractals treated here, the
exploitable time scale ranges from the time at which the
pulse leaves the inlet meshtin to the time at which the dif-
fused pulse leaves the girdtout. Practically,tin and tout have
been defined, respectively, as the time for which the radius of
diffusion is equal to the mesh size and as the time at which
2% of the diffused pulse has left the system. Between real-
izations and because of different conductivity ranges, the ex-
ploitable time range log10stout/ tind is highly variable between

2 and 4 for grids of sizeL=243lmin. The resultant radius of
diffusion and inlet probability cannot thus be averaged. Al-
ternatively, we have derived the exponents directly on each
realization, and studied their statistics over different realiza-
tions. We have validated this method on off-lattice percola-
tion clusters at threshold in two dimensions of size
L=75lmin and founddw=2.96±0.2 andds=1.38±0.2, which
are close to the known valuesdw=2.86 andds=1.326 [7].
The large error ranges come from the fitting on 2/dw and on
ds/2. To have a more precise knowledge of the fitting quality,
we have looked at the chi-square valuesx2 of the fits. Values
of x2 are in the range[0.002;0.06] and[0.02;0.1] for kR2stdl
and P0std, respectively. Examples of fits withx2 equal to
0.003 and 0.04 forkR2stdl and P0std are given by Fig. 2. In
the following, dw andds are average exponents obtained on
at least 100 grids.

III. RESULTS

A. Exponentsdw and ds as functions of the correlation
dimension D2

Results of the simulation of diffusion in grids of size
L=243lmin (Fig. 1) show thatdw andds are on average very

FIG. 2. Example of a grid for which have been calculated the
radius of diffusionR2std normalized by half of the system sizeL /2
and the probability densityP0std at the grid inlet. The dashed lines
represent the best linear fits which give:u=−0.9, dw=1.5, andds

=3.2. Oscillations inP0std are a realization effect and have not been
systematically observed.

FIG. 3. dw andds as functions ofD2. The statistics were derived
from 660 realizations for each value ofD2. The horizontal line
characterizes normal transportsdw=ds=2d.

FIG. 4. Average values ofdw obtained on 100 realizations as a
function of the inlet conductivityKin.
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close to 2 whatever the correlation dimensionD2 (Fig. 3). On
average, the dimensions obtained on continuous multifractals
are those of the homogeneous medium. The same result was
found for continuous different long-range correlated media
generated with a fractional Brownian motion characterized
by the Hurst coefficientH and having a correlation dimen-
sion D2=2+2H with H in [0,1] [13]. However, the average
does not describe fully the exponent distributions as the ex-
ponents are highly variable between realizations. The anoma-
lous diffusion and fracton exponentsdw andds range in the
interval [1,3] indicating possible subdiffusive and superdif-
fusive regimes fordw, respectively, larger and lower than 2
[25]. The absence of influence ofD2 shows that the expo-
nentsdw andds are not function of the dimension of corre-
lation D2. Are they connected to another medium character-
istic?

B. Exponentsdw and ds as functions of the inlet conductivity

We have calculated the anomalous diffusion exponentdw
as a function of the conductivity at the grid inletKin. Results
given by Fig. 4 show a very good correlation betweenKin
anddw and more precisely a systematic increase ofdw from
around 1 to 3 whatever the correlation dimensionD2 and
only slightly sensitive toD2. The following paragraphs are
dedicated to explain and quantify this correlation. We argue
that the conductivity regularly increases or decreases from

the conductivity inletKin to the large-scale average conduc-
tivity inducing, respectively, a speed up or a slow down of
diffusion. We will show, first, how conductivity evolves with
scale and, second, how the conductivity scaling and the
anomalous diffusion exponentdw are related.

1. Relation between the inlet conductivity Kin and the conductivity
scaling exponentu0

The multifractal conductivity pattern has two key charac-
teristics: it is correlated over all scales and it has a large
distribution of conductivities. In fact the conductivity distri-
bution spans several orders of magnitude as shown in Fig. 5.
The conductivity at the inlet of the grid is randomly drawn
from this conductivity distribution whereas the large-scale
conductivity is on average equal to the unit conductivityKunit
according to the generation procedure. Conductivity can thus
increase or decrease from its value at the grid inlet to its
large-scale averaged value. To quantify the conductivity scal-
ing, we have computed the mean conductivitykKl on rings
of evolving radii r (Fig. 6). The multifractal nature of the
correlation pattern warrants the regular and consistent evolu-
tion of kKl with scale such askKsrdl~r−u0. Knowing thatkKl

FIG. 5. Distribution of the logarithm of conductivity.

FIG. 6. Example of a grid for which has been calculated the
conductivity scaling against the radius from the inlet. The dashed
line is the best linear fit on the log-log data.

FIG. 7. Relation betweenu andu0.

FIG. 8. dw function of u0+D2−2 where u0 is defined by
kKsrdl~r−u0. The linedw=2−u0+D2−2 is the theoretical prediction
of Ref. [4].
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is equal toKin at the system inlet and toKunit at the system
size, the exponentu0 is given by

u0 = −
log10 Kunit − log10 Kin

log10 L − log10 lmin
s2d

whatever the correlation dimensionD2, which is confirmed
by numerical simulations. Note that we verified onD1 [de-
fined by Eq.(1)] that the conditioning by the inlet conduc-
tivity Kin does not fix the other multifractal dimensions.

2. Relation between the conductivity scaling exponentu0 and
the anomalous diffusion and fracton exponents dw

and ds

The conductivity increase or decrease characterized byu0
is a sampling effect of the conductivity distribution that in-
duces, respectively, a speed up or a slow down of diffusion
characterized bydw. On the percolating cluster at threshold
as well as on the Sierpinski gasket, the fractal structure in-

duces a decrease of the equivalent conductivityK̂srd with

scale characterized by the exponent −usK̂srd~r−ud and an
anomalously slow diffusion of exponentdw [1,4]. Both ex-
ponents are related by

dw = 2 +u s3d

with u=0.878 for the percolation cluster at threshold[30]
and u=0.32 for the Sierpinski gasket[4]. The equivalent

conductivityK̂srd is derived from the total integral resistance
derived in radial flow conditions(by the equivalence be-
tween the electrical conductivity and diffusion problems) [4].
According to this definition,u integrates the flow conditions
within the medium whereasu0 is a simple geometrical aver-
age. For continuous multifractals, numerical simulations
show first thatu andu0 are simply related whenK decreases
with scalesu0.0d (Fig. 7)

u = u0 + D2 − 2 s4d

and secondly that the relation established for the Sierpinski
gasketdw=2+u still holds (Fig. 8). WhenK increases with
scalesu0,0d, the equivalent conductivity like an in-series
system is dominated by the lowest conductivity which is the

conductivity at the origin.u remains slightly larger than 0
(Fig. 7) and the relation(3) is no longer verified. However,
dw remains related tou0 in the same way as foru0.0 (Fig.
8).

We have numerically verified that the relationdw=2+u is
also relevant to “homogeneous” annular media whose con-
ductivity is defined byKsrd=r−u0 and u=u0 (Fig. 9). For
“heterogeneous” media having the same conductivity scaling
on averagekKsrdl~r−u0, diffusion is slower for smaller val-
ues ofD2 with dw=2+u0+2−D2. Heterogeneity induces thus
a slower diffusion quantified by an increase of the exponent
dw by 2−D2.

The validity of the framework established for the Sierpin-
ski gasket[4] is enhanced by the relation between the fracton
and anomalous diffusion exponentsds anddw obtained for a
fractal dimension equal to 2(Fig. 10):

ds/2 = 2/dw. s5d

IV. CONCLUSION

The anomalous diffusion and fracton exponents when av-
eraged over all possible configurations are not function of the
correlation dimension. However, beyond the average, the ex-
ponent range is very large and extends practically from 1 to
4. The large exponent variability can be explained by a local
property: the conductivity at the grid inlet. In fact the multi-
fractal correlation and the large conductivity distribution cre-
ate a conductivity upscaling or down-scaling from the inlet
conductivityKin to the large-scale average conductivityKunit.
The resulting conductivity scaling induces an anomalous dif-
fusion of exponentdw given from Eqs.(2) and (3) by

dwsKind = 4 −D2 −
log10sKunit/Kind
log10slmin/Ld ,

where lmin and L are the mesh and grid sizes. The fracton
dimensionds remains linked to the anomalous diffusion ex-
ponentdw by the classical relation(5).

FIG. 9. dw function ofu0 for annular media whose conductivity
is defined byKsrd=r−u0. FIG. 10. ds function ofdw for different values of the conductiv-

ity at the system inletKin. The dashed lineds/2=2/dw comes from
Ref. [4] with a fractal dimension equal to the Euclidean dimension
2.
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