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Anomalous diffusion exponents in continuous two-dimensional multifractal media
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We study diffusion in heterogeneous multifractal continuous media that are characterized by the second-
order dimension of the multifractal spectruny, while the fractal dimension of order @, is equal to the
embedding Euclidean dimension 2. We find that the mean anomalous and fracton dimefjsmndd, are
equal to those of homogeneous media showing that, on average, the key parameter is the fractal dimension of
order 0D, equal to the Euclidean dimension and not to the correlation dimeisioBeyond their average,
the anomalous diffusion and fracton exponeus,andds, are highly variable and consistently range in the
interval [1,4]. d,, can be consistently either larger or lower than 2, indicating possible subdiffusive and
superdiffusive regimes. On a realization basis, we show that the exponent variability is related to the local
conductivity at the medium inlet through the conductivity scaling.

DOI: 10.1103/PhysRevE.70.016306 PACS nunmerd7.55.Mh, 47.53tn, 66.30—h

I. INTRODUCTION range spatial correlations, but they differ from fractals by
their continuity. On the other hand, multifractals are different
Diffusion in disordered media pertains to a large range ofrom classical correlated media used, for example, in hydro-
phenomena, including for example fluid flow and electricalgeology [15,16 because their correlation pattern does not
conductivity, and has been an active field of research in th@aye any characteristic scale outside its endmost cutoffs. The
past decade$l-3. Diffusion has been mostly studied in interest for these continuous multifractals is double. First,
archetypal deterministic and random fractal media like thehey are a typical kind of continuous structure without ho-
Sierpinski gaskef4—6], the percolation cluster at threshold mogenization scale. Second, they begin to be observed in
[1,7], and the percolation cluster at threshold with long-rangenatural underground medigl7-19. Permeability distribu-
correlations[8-1(. Such fractals are discontinuous mediation has been found to be multifractal in highly documented
characterized by a binary conductivity distribution: a unitalluvial and glacial outwash aquifers on scale ranges varying
homogeneous conductivity on the fractal and zero conductivfrom one to two orders of magnitudé7]. The fracture ap-
ity outside. Some studies have addressed the problem efrture distribution linked to the fracture permeability has also
fractal media having a heterogeneous distribution of conducheen observed to be multifractal on borehole televiewer im-
tivities on the percolation cluster near the percolation threshages[19]. The understanding of the transient diffusion re-
old [11,12. One recent study handled diffusion in nonfractal sponse is important in groundwater hydrology as it is used to
continuous media with long-range correlations generated bgxtract permeability values from transient well tef26].
a fractional Brownian motion13]. Whatever the fractal The class of multifractals studied here is characterized by
structure, diffusion has been found to be anomalously slovg continuous field and by the second-order dimen§igrf
[2]. The classical measure of the anomalous diffusion is thgne multifractal spectrunD, basically defines the autocorre-
exponentd,, characterizing the evolution of the mean squareiation scaling of the multifractal measure. The generation of
radius of diffusion(R(t)) with the timet as:(R¥(t))~t?*.  the multifractals is based on a multiplicative cascade process
The anomalously slow diffusion is traduced by valueslpf  [21,22. Diffusion is simulated numerically using the back-
larger than 2. Diffusion in homogeneous media is recoveredvard differentiation methof23] which proves to be efficient
for d,,=2. for stiff problems. Because of the widely scattered range of
In this paper, we study diffusion in bidimensional con- the diffusion-time scales between realizations, we calculate
tinuous media having long-range correlations without limitsthe anomalous diffusion exponeaj, and the fracton dimen-
outside the system cutoffs. Practically continuous media willsion d, for each realization and analyze their resulting distri-
be simulated by a regular square grid. The physical paranutions. The fracton dimension characterizes the evolution
eter is the conductivitK distributed over the grid. The di- with time of the probability of return to the origid,=2/d,,
mension of the support is the fractal dimension of order 0]2,24].
Do, and is equal to the embedding Euclidean dimension We found that the mean anomalous and fracton dimen-
The dimension of correlation of the conductivity field, equal sions are equal to those of homogeneous media showing that,
to the second-order dimension of the multifractal spectrunon average, the key parameter is the fractal dimension of
D, [14], is lower than the Euclidean dimension and moreorder 0,D,, equal to the Euclidean dimension and not to the
precisely in the ranggd-1,d[. Because the zero and correlation dimensiorD,. Beyond their average, the expo-
second-order fractal dimensions are different, these mediaents are highly variable between realizations. The anoma-
are multifractal. We call them continuous multifractals. Onlous diffusion and fracton exponends, and ds range in the
one hand, continuous multifractals, like fractals, have longinterval [1,4]. d,, can be consistently either larger or lower
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than 2, indicating possible subdiffusive and superdiffusive
regimes[25].

We show that the exponent variability is linked to the
local conductivity at the medium inlet. Long-range correla-
tions induce a broad conductivity distribution from which the
conductivity at the medium inlet is drawn. Depending on the
value of the conductivity at the inlet compared to the mean
conductivity, diffusion samples a medium of increasing or of
decreasing conductivity inducing a superdiffusive or a sub-
diffusive behavior. Fractal correlations ensure a regular and
consistent conductivity scaling of exponerf, with
(K(r))~r~%, When conditioning the simulations by the inlet
conductivity, we find general relations first between the inlet
conductivity and the exponent of the conductivity scalifg,
and secondly betweef}, and the anomalous diffusion expo-
nent:d,(6,)=(2-D,)+(2-6,). The exponents,, andd, de-
pend thus on a realization characteristic, the conductivity at
the medium inlet, and are only very slightly dependent on the
multifractal spectrum.

In Sec. Il, we describe the multifractal models and the,
numerical tools used for the simulation of diffusion and the
exponent calculation. In Sec. Ill, we show the results for ] )
bidimensional continuous multifractal media and conclude?etween the size of the parent domain and of each frag-
on the independence of the mean exponents on the correldlénted subdomains, practically equal to 3 hetiee dimen-
tion dimensiorD, and the large variability of the exponents. sionsD of the eventual probability field are related to the set
By conditioning the simulations by the conductivity at the {Pi}i-1,..n by [26]
medium inlet, we explain the anomalous diffusion and frac-
ton exponent variability.

FIG. 1. (Color online Example of a continuous multifractal of
sizeL=243,,, generated foD,=1.5. Conductivity increases from
blue to red.

" 1\ (@ 1Dq

if i = 1>, Pi= i :
Il. MODEL AND METHODS =1

A. Characterization and generation of bidimensional

continuous multifractals n

A multifractal object is characterized by the infinite set of = 12 PiIn(P) = =Dy In (1). @
generalized dimension®,, with Dy=D;=D,=...=D.,
called the multifractal spectrurfii4,2§. By definition, the
multifractal spectrum is related to a measdnere the con-
ductivity o) on a supportthe object itself. For the bidimen-
sional continuous multifractal handled hei2y=2 andD,
define the scaling of the correlation functi@ir),

The method is flexible and allows generating a large range of
multifractal fields.

We choose a model with a fragmentation in nine blocks of
identical size[l=3 in Eq.(1)] and to place the inlet at the
center of the grid in order to inject the diffusion pulse at the

1 center of the multifractal pattern. We fix the dimensiDn
C(r) = \—/f o(r +1")a(r')dV ~ P9, [g=2 in Eq.(1)] as the main characteristic of the generated
v probability field, but we let the other dimensiols and
whered is the embedding Euclidean dimension. {Dg}q>2 undetermined, which means that they can take what-

To generate a continuous bidimensional multifractal, weever value between 1 and 2. Also we choose an isotropic
have implemented a method fully described in R2#] and  fragmentation process, meaning that the probabilities
based on a multiplicative cascade procg22. The prin-  {Pili=1,... o are randomly permuted before being mapped on
ciple of the multiplicative cascade process is a recursive opthe subdomains.
eration of fragmentation of a generic shapaisubdomains. In practice, the multiplicative cascade process is iterated
Then a probabilityP;, with i=1, ... n, is attributed to each four or five times so that the multifractal structure is defined
subdomain. The fragmentation cascade can be iterated at iffom a minimal scalé,, set equal to the unit reference and
finity (practically set to five iterationsat each stage of the equal to the mesh size, up to the medium size equal to
fragmentation process, a fragment takes one ofrtipgob-  L=81n=3" i, or L=2491,=3, (Fig. 1). Note that be-
abilities P; multiplied by the probability of the parent do- low the mesh scaléy, the medium is homogeneous. The
main. conductivity K is obtained from the probability? by a

The set of probabilitie®; defines the multifractal spec- Simple multiplication by(L/Iin)*Kyni, WhereKq; is the unit
trum of the generated probability field. In theory/lifs the  conductivity. AsXP=1, (K) remains equal t&,; whatever
scale ratio of the elementary fragmentation progess ratio  the system sizé.
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FIG. 2. Example of a grid for which have been calculated the  FIG. 3. d,, andd; as functions oD,. The statistics were derived

radius of diffusionR?(t) normalized by half of the system sité2  from 660 realizations for each value @&,. The horizontal line
and the probability densitf(t) at the grid inlet. The dashed lines characterizes normal transpdd,=ds=2).

represent the best linear fits which give=-0.9,d,,=1.5, anddg
=3.2. Oscillations irPy(t) are a realization effect and have not been

systematically observed. 2 and 4 for grids of sizé. =243,,;,. The resultant radius of

diffusion and inlet probability cannot thus be averaged. Al-
ternatively, we have derived the exponents directly on each
realization, and studied their statistics over different realiza-
The classical diffusion equatiodP/dt=V(KVP) with  tions. We have validated this method on off-lattice percola-
P(r,t) the unknown was discretized on the grid with a finitetion clusters at threshold in two dimensions of size
volume method using a two-steps centered scheme in spaé& 79 min and foundd,,=2.96+0.2 andls=1.38+0.2, which
and a multistep scheme in time. The advantage of the niare close to the known value,=2.86 andds=1.326[7].
merical scheme over exact enumeration and random-walkhe large error ranges come from the fitting orig and on
techniqueg2] relies on the possibility of dealing with media ds/2. To have a more precise knowledge of the fitting quality,
having a broad-range distribution of conductivity. The inter-we have looked at the chi-square valyésf the fits. Values
mesh conductivity was taken as the harmonic mean of th€f x* are in the rang¢0.002;0.06 and[0.02;0.7 for (R?(1))
neighboring mesh conductivitig@8]. The widely scattered and Po(t), respectively. Examples of fits witly? equal to
heterogeneity produces a stiff numerical problem for which0.003 and 0.04 fotR?(t)) and Py(t) are given by Fig. 2. In
multistep schemes like the backward differentiation formulathe following, d,, and ds are average exponents obtained on
are well suited29]. We have chosen to use the free packageat least 100 grids.
called LSODE [23], which implements an implicit BDF
scheme. It has a number of features which guarantee effi-
ciency and accuracy, such as a varying ordesm 1 to 5),
an adaptative step size, and a sparse linear solver. Solving on A, Exponentsd,, and ds as functions of the correlation
a grid of sizeL=243,,, takes around half an hour on a dimension D,
personal workstation. For each set of parameters, Monte
Carlo simulations are made up of at least 100 grids.

B. Simulation of diffusion

Ill. RESULTS

Results of the simulation of diffusion in grids of size
L=243,,, (Fig. 1) show thatd,, andd are on average very

C. Computation of the anomalous diffusion and fracton

D=L5
exponentsd,, and dg 4

D175
D=1.25 v
Dj1.125
Df19

The exponents,, andd, are defined by the scaling of the
mean square radius of diffusigiR?(t))=t*% and the prob- 34
ability at the grid inletPy(t)=t%/2 for a pulse injected at the
medium centef{2]. Exponents are classically obtained on
(RA(t)) and Py(t) by Monté Carlo simulations. ~ 2 .
In the case of continuous multifractals treated here, the . o
exploitable time scale ranges from the time at which the 14
pulse leaves the inlet medf to the time at which the dif-
fused pulse leaves the gitg,. Practically,t;, andt,, have 0
been defined, respectively, as the time for which the radius of 4 2 0 2
diffusion is equal to the mesh size and as the time at which log K.
2% of the diffused pulse has left the system. Between real-
izations and because of different conductivity ranges, the ex- FIG. 4. Average values dl,, obtained on 100 realizations as a
ploitable time range log(t,./tin) is highly variable between function of the inlet conductivity;,.
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FIG. 5. Distribution of the logarithm of conductivity. .
FIG. 7. Relation betweend and 6.

close to 2 whatever the correlation dimensin(Fig. 3). On
average, the dimensions obtained on continuous multifractale conductivity inletk;, to the large-scale average conduc-
are those of the homogeneous medium. The same result wasity inducing, respectively, a speed up or a slow down of
found for continuous different long-range correlated mediadiffusion. We will show, first, how conductivity evolves with
generated with a fractional Brownian motion characterizedscale and, second, how the conductivity scaling and the
by the Hurst coefficienH and having a correlation dimen- anomalous diffusion exponed, are related.

sion D,=2+2H with H in [0,1] [13]. However, the average
does not describe fully the exponent distributions as the ex-
ponents are highly variable between realizations. The anoma:
lous diffusion and fracton exponentls, and ds range in the
interval [1,3] indicating possible subdiffusive and superdif-
fusive regimes fod,,, respectively, larger and lower than 2

[25]. The absence of influence &f; shows that the expo- distribution of conductivities. In fact the conductivity distri-

nentsd,, anddg are not function of the dimension of corre- . : -

. . bution spans several orders of magnitude as shown in Fig. 5.
lation D,. Are they connected to another medium character- " . L
o The conductivity at the inlet of the grid is randomly drawn
istic? . L S

from this conductivity distribution whereas the large-scale

conductivity is on average equal to the unit conductity;;

B. Exponentsd,, and ds as functions of the inlet conductivity according to the generation procedure. Conductivity can thus
increase or decrease from its value at the grid inlet to its
large-scale averaged value. To quantify the conductivity scal-
ing, we have computed the mean conductivi) on rings

of evolving radiir (Fig. 6). The multifractal nature of the
correlation pattern warrants the regular and consistent evolu-
tion of (K) with scale such agK(r))~r~%. Knowing that(K)

Relation between the inlet conductivity,Kand the conductivity
scaling exponentf,

The multifractal conductivity pattern has two key charac-
teristics: it is correlated over all scales and it has a large

We have calculated the anomalous diffusion expomgnt
as a function of the conductivity at the grid inl¢},. Results
given by Fig. 4 show a very good correlation betwdép
andd,, and more precisely a systematic increase pfrom
around 1 to 3 whatever the correlation dimensy and
only slightly sensitive toD,. The following paragraphs are
dedicated to explain and quantify this correlation. We argue
that the conductivity regularly increases or decreases from

-2 -1 0 1
log, r 6,+D,-2

FIG. 6. Example of a grid for which has been calculated the FIG. 8. d,, function of §,+D,-2 where 6, is defined by
conductivity scaling against the radius from the inlet. The dashedK(r))~r~%. The lined,,=2-6,+D,-2 is the theoretical prediction
line is the best linear fit on the log-log data. of Ref. [4].

016306-4



ANOMALOUS DIFFUSION EXPONENTS IN CONTINUOUS.

44 ]
4246, o
31 il
~ i
2- pre
,.
1 3l
.-
R 0 1 2
8

FIG. 9. d,, function of ¢, for annular media whose conductivity
is defined byK(r)=r"‘,

is equal toK;, at the system inlet and t§,,; at the system
size, the exponent, is given by

_ 10910 Kynit = 10930 Kin
o =
log;o L = 1010 min
whatever the correlation dimensi@y, which is confirmed
by numerical simulations. Note that we verified B [de-

fined by Eq.(1)] that the conditioning by the inlet conduc-
tivity K;, does not fix the other multifractal dimensions.

2

2. Relation between the conductivity scaling expondgtand
the anomalous diffusion and fracton exponents,d
and d;

The conductivity increase or decrease characterizeé, by
is a sampling effect of the conductivity distribution that in-

PHYSICAL REVIEW E 70, 016306(2004)

D125
DF15
D175
D=19
--df2=(d 2y’

4hpeon

ll4--"

3 H \ i -

FIG. 10. d, function ofd,, for different values of the conductiv-
ity at the system inleK;,. The dashed linés/2=2/d,, comes from
Ref. [4] with a fractal dimension equal to the Euclidean dimension
2.

conductivity at the origin.# remains slightly larger than 0
(Fig. 7) and the relation(3) is no longer verified. However,
d,, remains related t@, in the same way as faofl,>0 (Fig.
8).

We have numerically verified that the relatidp=2+8 is
also relevant to “homogeneous” annular media whose con-
ductivity is defined byK(r)=r"% and 6=6, (Fig. 9. For
“heterogeneous” media having the same conductivity scaling
on averaggK(r))~r~%, diffusion is slower for smaller val-
ues ofD, with d,,=2+6,+2-D,. Heterogeneity induces thus
a slower diffusion quantified by an increase of the exponent
dW by 2_D2.

The validity of the framework established for the Sierpin-

duces, respectively, a speed up or a slow down of diffusiorj gaske{4] is enhanced by the relation between the fracton

characterized byl,,. On the percolating cluster at threshold

and anomalous diffusion exponemtsandd,, obtained for a

as well as on the Sierpinski gasket, the fractal structure infractal dimension equal to @&ig. 10):

duces a decrease of the equivalent conductii@i(y) with
scale characterized by the exponer(K{(r)~r% and an
anomalously slow diffusion of exponendy, [1,4]. Both ex-
ponents are related by

d,=2+6 (3)

with #=0.878 for the percolation cluster at threshdRD]
and #=0.32 for the Sierpinski gaskd#]. The equivalent

conductivityk(r) is derived from the total integral resistance

derived in radial flow conditiongby the equivalence be-
tween the electrical conductivity and diffusion probler¥g.

According to this definitiong integrates the flow conditions
within the medium whereag, is a simple geometrical aver-
age. For continuous multifractals, numerical simulation

with scale(6,>0) (Fig. 7)

0:00+D2_2 (4)

dJ2 = 2/d,. (5)

IV. CONCLUSION

The anomalous diffusion and fracton exponents when av-

eraged over all possible configurations are not function of the
correlation dimension. However, beyond the average, the ex-

ponent range is very large and extends practically from 1 to

4. The large exponent variability can be explained by a local

property: the conductivity at the grid inlet. In fact the multi-

fractal correlation and the large conductivity distribution cre-
ate a conductivity upscaling or down-scaling from the inlet
conductivityK;, to the large-scale average conductivily.

SThe resulting conductivity scaling induces an anomalous dif-
show first thatd and ¢, are simply related wheK decreases f WHing Ietvity ng Incu us d

usion of exponent,, given from Eqgs(2) and(3) by

dW(Kin):4_D - )
’ |0910(|min/ L)

and secondly that the relation established for the Sierpinski
gasketd,, =2+ still holds (Fig. 8). WhenK increases with  wherel,,, and L are the mesh and grid sizes. The fracton
scale(6,<0), the equivalent conductivity like an in-series dimensionds remains linked to the anomalous diffusion ex-
system is dominated by the lowest conductivity which is theponentd,, by the classical relatio(b).
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