
1

Parallel Simulations of Underground Flow in Porous and Fractured Media

A. Beaudoina, J.R. De Dreuzyb, J. Erhela and H. Mustaphaa

aIrisa-Inria, Campus of Beaulieu, 35042 Rennes Cedex, France.

bGéosciences Rennes, Campus de Beaulieu, 35042 Rennes cedex, France.

Abstract

In this paper, we present a parallel software for solving linear flow equations in two kinds of
subsurface media, a 2D highly heterogeneous porous medium and a 3D fracture network. Paral-
lel computing allows us to solve very large linear systems improving the realism of simulations.
For these two applications, we perform a scalability analysis of two parallel solvers : HYPRE and
PSPASES. HYPRE is a parallel iterative solver based on a V-cycle multi-grid algorithm. PSPASES
is a parallel direct solver based on the Cholesky factorization.

1. Introduction

The prediction of natural underground flow circulation has brought up the concern of medium
heterogeneity. Geological heterogeneity in porous media occurs on a large range of scales, that goes
from the mineral scale (of the order of the millimeter) to the formation scale (that can be larger than
a kilometer). Similarly, rock solid masses are in general fractured and fluids can percolate through
networks of interconnected fractures, which are also heterogeneous and multi-scale. Because of the
difficulty in reaching the natural medium, the numerical approach seems to be the best solution to
study the influence of these two kinds of heterogeneity on the underground flow circulation. The
numerical simulations are obtained by performing three main phases : generation of a linear system,
solution of the linear system and evaluation of the flow. The first phase is obtained by discretizing
the governing equations which are the mass conservation equation and Darcy’s law for steady-state,
incompressible and single-phase flow in porous media. We use a Mixed Finite Element method to
discretize the equations, because it conserves fluxes locally and globally, uses unstructured meshes
well-suited to complex geometries and allows heterogeneous and anisotropic permeability tensors.
The mesh of the 2D medium is a regular triangular grid, hence Mixed Finite Element method is
equivalent to a Finite Difference method. On the other hand, the mesh of the 3D fracture network
is rather complex, with interconnected 2D triangular meshes in each fracture. The discrete problem
to solve is linear, with a sparse symmetric positive definite matrix. The very strong variability of
hydraulic properties leads to an ill-conditioned matrix. For the second phase, we can use direct or
iterative methods. The third phase is performed by evaluating Darcy’s law. The numerical study
of the influence of these two kinds of heterogeneity on the underground flow circulation needs to
generate a large number of realistic numerical simulations leading to very large sparse linear systems.
In order to reach this objective, we have to overcome two main problems : memory size to generate
very large linear systems and run time to solve a large number of linear systems. High performance
computing is thus mandatory in this framework. This paper is organized as follows : in Section 2, a
description of the parallel algorithms used to generate and solve the large linear systems is given. In
Section 3, an analysis of performances of parallel linear solvers applied to two media is presented.
Finally, a short summary and our future work are presented in Section 4.

391

2

one dimensional decomposition

overlapping processor regions individual processor regions

processor 0 processor 1 processor 2

Figure 1. Example of an one-dimensional domain decomposition of 2D highly heterogeneous porous
medium (top picture : heterogeneous hydraulic conductivity field and bottom picture : mesh).

2. Parallel Computing

2.1. Parallel matrix generation
In the case of 2D medium, the computational domain is a regular triangular grid on which a

random hydraulic conductivity field K is generated. This random hydraulic conductivity field K
follows a stationary log-normal probability distribution Y = ln(K), which is defined by a mean
mY and a covariance function CY . The porous medium is assumed to be isotropic. The covariance
function is then defined by CY (r) = σY

2 exp
(
− |r|2

λY

)
where σY

2 is the variance of the log hydraulic
conductivity and λY denotes the correlation length scale. To generate the random hydraulic field,
a spectral simulation based on the FFT method (Fast Fourier Transform method) is used [11] [10].
The evaluation of Fourier transform in the FFT method has been performed with the FFTW library
(Fast Fourier Transform in the West). This FFTW library allows to calculate the Fourier transform
on a cluster of processors. Data is then distributed across the processors [4]. The computational grid
is divided according to the columns. Thus each processor gets a subset of columns of the computa-
tional grid using a one dimensional distribution along the columns. For the flow problem, we have
decided to keep this one dimensional decomposition in the y direction. Each processor generates the
sub-matrix corresponding to its sub-domain. In order to evaluate the element matrices which are on
the boundary of a processor domain, we include one boundary layer of ghost cells that overlaps each
sub-domain. These ghost cells are used for temporary storage of grid quantities from neighboring
processors. It allows to reduce the communications between the processors during the assembly of
linear system (see Figure 1). The 3D fracture network is generated by using a stochastic approach.
The network is included in a cube of size L, fractures are ellipses and fracture length is modeled
by a random power-law distribution. Eccentricity, orientation and position are also randomly dis-
tributed. The density of the network is a parameter of the network generation [2]. The linear system
is obtained by discretizing the flow equation on a global mesh of the network. In a first step, all the
fracture intersections and boundaries are discretized. A 2D mesh of each fracture is then generated

392

3

by using the Emc2 software [6]. It ensures that the intersections are equally discretized in common
fractures and that the flux is conserved across the fractures. A similar method is developed in [9], but
with non-matching discretized intersections and an adapted nonconforming Mixed Finite Element
Method. The equations are then approximated by using the mesh and lead to a linear system of
equations. In order to get a symmetric positive definite matrix, a hybrid approach is used [7]. The
order of the matrix is the number of edges in the network mesh. The parallel mesh generation relies
on a data distribution of fracture structures. In order to get a static balanced task scheduling, we im-
plement a variant of the bin packing algorithm [1]. The mesh generation is embarrassingly parallel,
communications occur only to attribute global numbers to mesh edges. Then we infer the data dis-
tribution of the mesh and the matrix structures from the parallel mesh generation. Therefore matrix
generation is done in parallel with the same distribution. All fracture intersections are processed by
one unique processor, which collects matrix data related to intersections from other processors (see
Figure 2).

Figure 2. Example of mesh and flow computation of 3D fracture network (left picture : mesh and
right picture : flow computation).

2.2. Parallel linear solving
For both 2D highly heterogeneous porous medium and 3D fracture network, the linear system

obtained from the discretization of equations with the Mixed Finite Element method is characterized
by a sparse symmetric positive definite matrix. For solving these systems, we have investigated both
direct and iterative methods. The direct method is based on the Cholesky factorization A = LLT

which is accurate and robust. We use the PSPASES solver, which is an efficient parallel sparse di-
rect solver for symmetric positive definite matrices. Parallelism is based on a distributed-memory
paradigm and communications are handled by the MPI library. A slight drawback is that the num-
ber of processors must be a power of two, and that there is no sequential version of PSPASES [5].
Because of fill-in in the Cholesky factor L, memory requirements may be a bottleneck for very large
linear systems, so it may be necessary to switch to an iterative method. Preconditioned conjugate
gradient can be efficient, provided the preconditioner is powerful. For the 2D medium, we have cho-
sen a multi-grid solver which is well adapted to solve linear systems arising from finite difference,
finite volume or finite element discretizations of partial differential equations on regular grids. We
use the HYPRE library which contains a parallel V-cycle multi-grid algorithm called SMG (Struc-
tured Multi-Grid). As the PSPASES library, the HYPRE library uses MPI for the communications

393

4

between the processors [3]. Once the linear system has been solved, we compute the hydraulic head
and the flux on each element of the computational grid. As for the hydraulic conductivity, the hy-
draulic head is distributed across all processors. Each processor has the value of hydraulic head on
its computational sub-domain.

3. Results and performances

3.1. Tests and architecture
The study of the performance of our parallel software is realized in three tests. In the two first

tests, we analyze the complexity and the scalability of the direct solver PSPASES. In the third test,
we compare the direct solver PSPASES with the iterative solver HYPRE. This last test is only applied
to 2D medium. All tests are performed on a SUN cluster composed of two nodes of 32 computers
each. Each computer is a 2.2 Ghz AMD Opteron bi-processor with 2 Go of RAM. Inside each
node, computers are interconnected by a Gigabit Ethernet Network Interface, and the two nodes
are interconnected by a Gigabit Ethernet switch (CISCO 3750). The characteristic bi-processors of
cluster is not used.

3.2. Complexity analysis with a direct solver
The study of complexity is performed by analyzing the CPU time and memory requirements of

our two applications. The algorithm is decomposed into three phases: matrix generation, linear
solving and flow computation. Figure 3 shows the CPU time of each phase, obtained with two
processors, with respect to N , the size of the linear system. We take parallel run times for two
processors because the parallel solver PSPASES requires at least two processors. We can observe
that the most time consuming phase is the linear solver. Moreover, a complexity analysis shows that
the first and third phases have a linear behavior, with a CPU time proportional to the matrix size N .
For the fracture network, at least for these experiments, the factorization step is almost linear with
N . In contrary, the factorization step has a nonlinear complexity, with a CPU time proportional to
Nα, where α is about 1.5 for the 2D grid. For both applications, the main memory requirements
are to store the matrices A and L. The memory requirements are measured by counting the number
of non-zeros in the sparse matrices A and L (in a sparse storage compressed scheme, only nonzero
coefficients are stored in 64 bit words). On Figure 4, these two numbers, noted nz(A) and nz(L),
are reported for N ranging from 0.5e+06 to 6.0e+06. For 2D grids as well as for fracture networks,
nz(A) is roughly 5N , whereas nz(L) is roughly 5Nlog5N . The analysis of CPU time and memory
requirements show that it is necessary to use parallel algorithms to solve large linear systems.

3.3. Scalability analysis with a direct solver
On Figure 5, the total time of a single run for a linear system of size N = 4.2e + 06 is reported

with respect to the number of processors P ranging from 2 to 64. We can observe that the total
runtime is reduced as P increases for both applications. We can also notice that it is sufficient to
take 32 processors for the case of 2D medium, whereas for the case of 3D fracture network, we
can use effectively 16 processors. In order to understand the parallel performances of PSPASES,
we analyze the scalability which refers to the capacity of the algorithm-architecture combination
to effectively utilize an increasing number of processors P . The scalability can be evaluated by
studying the efficiency E or the speedup S [8]. An algorithm architecture is considered scalable if
the efficiency E is fixed when the size of linear system N increases proportionally to the number of
processors P . The efficiency E is defined as the ratio of the serial runtime to the parallel runtime.
For the linear solving phase, the sequential runtime is unknown because PSPASES uses a number of

394

5

matrix generation time

flow computation time

linear solving time

matrix generation time

flow computation time

linear solving time

N

t

N

t

 500000 1.5e+06 2.5e+06 3.5e+06 4.5e+06 5.5e+06
 0

 20

 40

 60

 80

 100

 120

 140

 180

 160

 400

 350

 300

 250

 200

 50

 100

 150

 0
 500000 1.5e+06 2.5e+06 3.5e+06 4.5e+06

2D medium 3D fracture network

Figure 3. CPU time of three phases (matrix generation, linear solving and flow computation), ob-
tained with two processors, with respect to the size of linear system N for both two applications.

A

L

A

L

 1.5e+08

 1e+08

 5e+07

 0

 2e+08

 2.5e+08

 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 0
NN

nz nz

2D medium 3D fracture network

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0
 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 0

Figure 4. Number of nonzero coefficients nz in the matrices A and L with respect to the size of
linear system N for both 2D medium and 3D fracture network.

 0 10 20 30 40 50 60 70

 300

 250

 200

 150

 100

 50

 0

 300

 250

 200

 150

 100

 50

 0
 0 10 20 30 40 50 60 70

2D medium 3D fracture network

P P

t t

Figure 5. Total run time of a single realization for N = 4.2e + 06 with respect to number of
processors P for both 2D medium and 3D fracture network.

395

6

P N Tp R

2 262144 5.60 11977373
8 1048576 11.33 11844656

32 4194304 25.70 10443374
4 262144 2.92 11502234

16 1048576 6.06 11079774
64 4194304 13.08 10535895

P N Tp R

2 262144 13.10 10006
8 1048576 22.06 5942

32 4194304 38.41 341
4 262144 7.94 16508

16 1048576 16.05 4083
64 4194304 no value no value

Table 1
Values of the parameter R for various values of (P , N) and for both two applications (left : 2D
medium and right : 3D fracture network).

processors which has to be a power of two. But we know that this sequential runtime is proportional
to Nα where α is about 1.5 for the 2D grid and 1 for the 3D fracture network. The efficiency is
thus proportional to R = (Nα/(PTp)), where Tp denotes the parallel runtime for the linear solving
phase. In order to test the scalability of PSPASES, we have evaluated the parameter R by increasing
the number of processors P and the size of linear system N with a coefficient equal to 4. The
numerical values of R are reported in Table 1 for both applications. From these results, we can
conclude that the parallel solver PSPASES is scalable in the problem of 2D medium, as predicted
by the theory and observed in [5]. However, it does not appear to be scalable in the problem of
3D fracture network. For the problem of 2D medium, the efficiency E is fixed if the ratio of N to
P is maintained constant. Another analysis relies on the speedup S. Since there is no sequential
version of PSPASES, the speedup is given by S = 2T2/TP where T2 and Tp are respectively the
linear solving times obtained with 2 and P processors. Figure 6 shows the speedup S with respect to
the number of processors P for three values of N and for both applications. We can observe that the
problem of 2D medium gives values of S larger than those of the problem of 3D fracture network
and that the values of S are equivalent for three values of N in the case of 3D fracture network.
These two behaviors can be explained by the total parallel overhead To which is defined as the total
time of the overhead due to parallel processing and is equal to PTp − Ts, where Ts is the serial
runtime. The speedup S can then be given by S = P/(1+To/Ts). From [5], we can deduce that the

ratio To/Ts is proportional to
√

P/N for 2D medium. This is in good agreement with our numerical
values of speedup S. We can also notice that the speedup S decreases at P = 32 for N = 1e + 06
in the case of 2D medium, probably because the total parallel overhead To (including reordering and
triangular solving) increases faster than P . An algorithm architecture is considered scalable if the
speedup S increases proportionally to the number of processors P when the problem size increases
proportionally to P . For the problem of 3D fracture network, the speedup S remains constant when
N increases, so that PSPASES is not scalable, probably because the ratio To/Ts is independent of N .
In this case, parallel computing is used to speedup computations up to eight processors and mainly
to increase the memory capacity with more processors.

3.4. Comparison between a direct and an iterative solver
In the case of 2D medium, the parallel direct solver PSPASES gives good performances. But the

memory requirements for the matrix L increase faster than the size N of the linear system. The
fill-in of matrix L can saturate available memory. As our main objective is to solve large linear
systems, we use also a parallel iterative solver, called HYPRE, in order to overcome this difficulty.
On Figure 7, the parallel runtime of linear solving phase has been reported with respect to the
number P of processors. We can observe that PSPASES gives better performances than HYPRE for

396

7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35

N = 4194304

N = 2359296

N = 1048576

N = 4194304

N = 2359296

N = 1048576

 0 10 20 30 40 50 60 70
 0

 5

 10

 15

 20

 25

 30

 35

P

3D fracture network2D medium

S

P

S

Figure 6. Speed-up S of linear solving with respect to the number of processors P for three values
of N and for both 2D medium and 3D fracture network.

N = 16.8e+06

N = 4.2e+06

N = 0.3e+06

 10 20 30 40 50 60 70 0

 1000

 100

 10

 1

N = 16.8e+06

N = 4.2e+06

N = 0.3e+06

 1000

 100

 10

 1
 0 10 20 30 40 50 60 70

t

HYPRE PSPASES

t

PP

Figure 7. Linear solving time with respect to the number of processors P for N fixed and both
PSPASES and HYPRE.

N = 1048576

N = 2359296

N = 4194304

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 0
 0

 50

 100

 150

 200

 250

 300

 4.5e+06 3.5e+06 2.5e+06 1.5e+06 500000
N

Serial run time

S

P

Ts

Figure 8. Serial runtime Ts of linear solving phase with respect to the size of linear system N and
speedup S with respect to the number of processors P for three values of N obtained with HYPRE.

397

8

N = 0.3e + 06. For N = 4.2e + 06, the two parallel solvers give roughly the same performance.
The performance of HYPRE is better than the performance of PSPASES for N = 16.8e+06. Figure
8 shows the serial runtime Ts of linear solving phases for values of N ranging from 0.3e + 06 to
4.5e + 06 and the speedup S with respect to the number P of processors for three values of N .
Speedups are not as important as with PSPASES, but they increase also with N . Therefore we can
conclude that HYPRE is somehow scalable for the 2D medium problem. It is necessary to pursue
theoretical and practical investigations to measure the isoefficiency function.

4. Summary

In this paper, we have analyzed the performance of a parallel software that solves linear flow
equations in 2D porous media or in 3D fracture networks. The scalability study shows that the
parallel direct solver PSPASES is scalable in the case of 2D medium, contrary in the case of 3D
fracture network. In the 3D fracture network, parallel computing improves the memory capacity,
whereas it improves also the linear solving time in the case of 2D medium. However PSPASES can
saturate the available memory because of fill-in of matrix L for large linear systems. In order to
overcome this problem, the use of parallel iterative solver HYPRE seems to be a good solution. The
comparison between the two parallel solvers, shows that HYPRE is efficient for large linear systems.
In a future work, we will use HYPRE in the case of 3D fracture network. We will also realize a 3D
extension of our parallel software for the case of 2D porous media. Finally, this parallel software
will be used in a transport code for simulating the solute migration.

References

[1] S. Albers and M. Mitzenmacher : Average-case analyses of fi rst fi t and random fi t bin packing. Random
structures alg. 16, 240-259, 2000.

[2] J.R. de Dreuzy, P. Davy and O. Bour. Percolation threshold of 3D random ellipses with widely-scattered
distributions of eccentricity and size, Physical Review E, vol. 62, 5948-5952, 2000.

[3] R.D. Falgout, J.E. Jones and U.M. Yang : Pursuing scalability for hypre’s coceptual interfaces. ACM
transactions on mathematical software, 2004.

[4] M. Frigo and S.G. Johnson : The Design and implementation of FFTW3. Proceedings of the IEEE, vol.
93, 216-231, 2005.

[5] A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar. PSPASES : An effi cient and scalable
parallel sparse direct solver. In parallel numerical computations with applications, T. Yang (ed.), Kluwer
international series in engineering and computer science, vol. 515, 1999.

[6] F. Hecht and E. Saltel : Emc2 : Un logiciel d’édition de maillages et de contours bidimensionnels.
Rapport technique n 118, INRIA, 1990.

[7] H. Hoteit, J. Erhel, R. Mosé, B. Philippe and P. Ackerer : Numerical reliability for mixed methods
applied to flow problems in porous media. Computational geosciences 6(2): 161-194, 2002.

[8] V. Kumar and A. Gupta : Analyzing scalability of parallel algorithms and architectures. Journal of
parallel and distributed computing, 1994.

[9] P.A. Raviart and J. M. Thomas : A mixed hybrid fi nite element method for the second order elliptic
problem. in Lectures Notes in Mathematics 606: 292-315, 1977.

[10] M.G. Trefry, F.P. Ruan and D. McLaughlin : Numerical simulations of preasymptotic transport in hetero-
geneous porous media: Departures from the Gaussian limit. Water Resources Research, vol. 39, 1063,
2003.

[11] T. Yao : Reproduction of the mean, variance and variogram model in spectral simulation. Mahematical
geology, vol. 36, 487-505, 2004.

398

