
1

A parallel software for a saltwater intrusion problem ∗

É. Canota, C. de Dieuleveultb, J. Erhelb

aCNRS – IRISA, Campus de Beaulieu, 35042 Rennes

bINRIA – IRISA, Campus de Beaulieu, 35042 Rennes

Abstract

In this paper we present a parallel implementation of a 2D numerical model for the solution
of a transient density driven flow in porous media. The physical processes involved are multi-
scale, therefore computation time are usually long, thus a special effort has been made to speed-up
computations by using parallel architectures.

As most of the CPU time is spent in solving large sparse linear systems, it is important to choose an
efficient linear solver which can deal with symmetric and non-symmetric sparse matrices. Accord-
ingly, the parallel direct linear solver MUMPS is used for solving both transport and flow. However,
scalability is not completely achieved. Therefore, parallelism is generalised to all computations.
Matrices and data are distributed thanks to the partitioning of the METIS package instead of central-
ising on one processor. Actually, each processor treats its own spatial sub-domain and transfers data
to the other ones when necessary.

The resulting software is tested on a standard benchmark : the Henry test case. We use a homo-
geneous parallel cluster of PCs interconnected by a fast network. Investigation on the network and
on the MUMPS options are carried out in order to obtain good performances.

1. Introduction

Many areas of the world use groundwater as their main source of freshwater supply. In the
particular case of coastal aquifers, one of the major concerns is the seawater intrusion. Moreover,
effective management demands a thorough understanding of the variable density groundwater flow
system. Numerical simulations help in this sustainable management but they require high perfor-
mance computing resources.

Generally, transport of solute by groundwater flow does not affect fluid properties, but in the par-
ticular case of seawater intrusion it does. The resulting problem becomes difficult to solve because
it is highly nonlinear. Indeed transport of saltwater modifies the basic flow by density variations
whereas the Darcy velocity calculated by flow, is required to solve advection.

Many numerical models, adapted for this particular case, have been developed : for example,
FEFLOW[7], HST3D [13], MOCDENSE [14], SUTRA [17], SWIFT [15] or UG [11].

We present here a parallel program dealing with this topic. The original sequential software
TVDV-2D (Transport with Variable Density and Viscosity [2]) has been developed at IMFS in Stras-
bourg, using robust numerical methods well adapted to density driven flow [18].

Our goal has been to get good performances thanks to parallelism and to allow large scale simula-
tions. Validations of our software are mainly based on a test case, the Henry problem [10] (saltwater
front in a confined aquifer initially charged with freshwater).

∗This work has been supported by a french government grant, the ACI GRID project called HYDROGRID.

2

2. Model of saltwater intrusion problem

The model of the TVD2D software is first presented. It is described in [2,18,1]. The governing
equations of variable density groundwater flow and solute transport are described in detail by Bear
and Bachmat [6].

These equations include, classically, fluid and solute mass balances, generalised Darcy’s law and
equations of state for the liquid density and viscosity.

2.1. Mathematical model
2.1.1. Fluid equations

The generalised Darcy law can be written as a function of h, the hydraulic head defined by h =
P/ρ0g + z, where P is the pressure, ρ0 is the density of pure water, g is the gravity acceleration and
z is the vertical coordinate. This leads to the following equation :

εv = −
kρ0g

µ

(

∇h +
ρ − ρ0

ρ0

∇z

)

.

where ε is the porosity, v is the fluid velocity, k is the permeability tensor of the porous medium,
µ is the dynamic viscosity of the fluid, and ρ is the mass density of the fluid.

Then, conservation of mass gives:

∂(ερ)

∂t
+ ∇.(ρεv) = ρQ,

where Q is a source term.
Most models assume that the effect of temperature can be neglected, porosity is only a function of

pressure whereas density and viscosity are functions of pressure and solute mass fraction. Moreover,
in our case, we assume that ε and k are constants like fluid viscosity and fluid density is independent
of pressure but a linear function of the solute mass fraction.

By defining

α =
1

1 − ε

∂ε

∂P
, β =

1

ρ

∂ρ

∂P
, S = α(1 − ε) + εβ,

with α the coefficient of compressibility of the porous medium, β the coefficient of compressibility
of the fluid and S the specific storativity of the porous medium, the mass conservation law can be
written as

ρ0ρgS
∂h

∂t
+ ε

∂ρ

∂C

∂C

∂t
+ ∇.(ρεv) = ρQ.

with C is the solute mass fraction.
In most cases, the storage term S is very small or null, therefore the discrete mass matrix can be

singular.

2.1.2. Transport equations
The solute transport is governed by a convection-diffusion process. Assuming that ερ is almost

constant, the solute mass conservation equation can be written as :

∂C

∂t
+ v∇C = ∇.(D∇C),

where D is the dispersion tensor defined by

D = Dc + DmI,
Dc = ‖v‖(αLE(v) + αT (I − E(v))), Ei,j(v) =

vivj

‖v‖2 ,

3

where Dm is the molecular diffusion coefficient, αL is the longitudinal dispersivity, and αT is the
transverse dispersivity.

2.2. Numerical discretisation
The global system is discretised both in space and time. For the transport equation, operator

splitting is applied, thus allowing adaptive numerical schemes. The convective part of the transport
is spatially discretised by a Discontinuous Finite Element scheme (DFE) stabilised with a slope
limiter, whereas the dispersive term in the transport equation is spatially discretised by a Mixed
Finite Element scheme (MFE). A MFE scheme is also used in the flow equations, in order to get an
accurate fluid velocity.

After space discretisation, a fully coupled stiff system of differential algebraic equations is ob-
tained, which is discretised in time by an implicit Euler scheme, excepted in the convective part
where the mass fraction is explicit in time.

Finally, at each time step, a system of nonlinear equations is solved by using a fixed-point scheme,
more precisely a nonlinear Gauss-Seidel iterative method. This allows to separate transport equa-
tions from flow equations. The stopping criterion is based on the maximum differences between the
heat and the concentration on the edges at iteration k and k +1. As far as we know, there is no proof
of convergence for this specific nonlinear system but in practice, we get convergence by reducing
the time step.

Roughly, each time step can be written :

ρn+1 = Density(Cn+1)
Aflow(ρn+1)hn+1 = bflow(ρn+1, Cn+1, hn)
vn+1 = V elocity(hn+1)
C∗ = bconvection(vn+1, Cn)
Dn+1 = Dispersion Tensor(vn+1)
Adispersion(Dn+1)Cn+1 = bdispersion(C∗, Dn+1)

The most time-consuming parts are the linear solvers, involving large sparse matrices Adispersion

and Aflow. Other parts involve computation of the density, the velocity, the dispersion tensor but also
the convection scheme and the matrices calculation. These matrices are computed at each nonlinear
iteration since they depend respectively on the velocity and on the density. The matrix Adispersion

is symmetric positive definite whereas the matrix Aflow is non-symmetric but with a symmetric
structure (the non-symmetry comes from the density in the mass balance equation).

3. Parallel implementation

Numerical simulations for saltwater intrusion must deal with a very large number of time steps.
Moreover, 3D geometries imply a large number of cells and large linear systems. Therefore, a special
effort has been made to accelerate computations.

3.1. Parallel linear solvers
Most of the CPU time is spent in solving large sparse linear systems. Therefore, it is important to

choose an efficient linear solver which can deal with symmetric definite positive or non-symmetric
sparse matrices in order to reduce execution time.

The choice of the appropriate method is a hard task because of the variety of packages and possible
options of each solver [4]. We choose to use a direct method implemented in a parallel library. Our
choice is the direct linear solver MUMPS [5] for solving transport and flow.

4

MUMPS (Multifrontal Massively Parallel Solver) is a package using a multifrontal technique for
solving linear systems of equations of type AX=b, where the matrix A is sparse and can be either
unsymmetric like in the flow part, symmetric positive definite like in the transport part, or general
symmetric. We choose this package because it is free and is known to provide efficient results [9].

The MUMPS solver is decomposed into three steps : symbolic factorisation, numerical factorisation
and triangular solvings. The symbolic factorisation is executed only once, in the initialisation step
for the flow and in the first iteration step for the transport, because the structure of the matrices is
fixed during the whole simulation.

Different options for the pivot order are possible. The pivot order consists in reordering the un-
knowns of the matrix to reduce fill-in during factorisation.

1. Approximate Minimum Degree (AMD)[3],

2. user-defined ordering,

3. Approximate Minimum Fill (AMF),

4. PORD [16],

5. METIS [12],

6. AMD with automatic quasi-dense row detection (QAMD).

3.2. Data distribution and parallel matrix generation
Scalability is not completely achieved by the choice of a parallel linear solver, because of the other

computations.
Therefore, parallelism is generalised to all computations in order to speed up again the execution.

This also reduces memory requirements. Indeed, matrices and data are distributed instead of cen-
tralising them on one processor. Data are partitioned by the free METIS [12] package according to
the elements of the mesh. Indeed, METIS is a well-known package for partitioning large irregular
graphs and large meshes, and computing fill-reducing orderings of sparse matrices.

Each subdomain contains the data corresponding to the edges and nodes belonging to these ele-
ments. Each processor treats its own sub-domain and transfers data to other interfaces when neces-
sary.

Currently, the matrix needed by MUMPS is distributed on processors but neither the right-hand
side nor the solution which are centralised on processor 0. It is one restriction of MUMPS, but it
is planned to be changed in the next version of MUMPS. Otherwise, only the I/O operations are
centralised on a single processor.

4. Results

4.1. Test case
In order to validate our modifications, a classical test case is used : the Henry [10] problem.
This seawater intrusion problem describes the advance of a saltwater front in a confined aquifer

initially charged with freshwater.
This test case admits a steady state which is represented in Figure 1. The water is considered

saturated in salt (c = 1) when the density is 1200 kg/m−3 whereas the density of fresh water is
equal to 1000 kg/m−3.

5

Figure 1. Advance of a saltwater front in a confined aquifer initially charged with fresh water :
Henry test case at the steady state and boundary conditions of the problem.

Table 1
Parameters for the Henry problem.

Permeability kx = ky = 1.0204 × 10−9 m2

Porosity ε = 0.35
Dispersivity αL = αT = 0 m
Molecular diffusion coefficient Dm = 18.86 × 10−6 m2s−1

Flux Q = 6.6 × 10−5 kg/s
State equations ρ = ρ0 + 200Cm (Cm is the mass fraction)

µ = 10−3 Pa.s
Domain 2 × 1 m

Here, the density variations are small, but this test case is the first stage of the model validation
because of the existence of a semi-analytic steady-state solution. It has become a classic test of
variable-density flow. The steady state appears after 120 minutes. With this problem, the results
obtained with two regular meshes, one with 254 horizontals elements by 126 verticals elements and
the other with 510 by 254 elements, are presented.

We have also done experiments with the Elder test case [8], which deals with tens of years but is
more unstable.

4.2. Choice of the network
Parallel experiments have been firstly run using MPI on a Fast Ethernet (100 Mb/s) network with

bi-processors Intel Xeon (CPU 2.4GHz, cache 512KB). But the results are not so good. In fact, the
matrix concerned are relatively small with little time of calculation and a very sparse structure. The
use of a high latency network in connection with relatively small volume of data exchanged explains
these poor results.

Thus, similar machines are used but with a faster network, Myrinet (2Gb/s) to obtain efficient
results.

4.3. Choice of the options
As the meshes used are regular, we investigated if a nested dissection on a regular grid could

improve performances. We have defined an ordering based on the following idea :
It consists in partitioning recursively in two parts the original mesh in the largest dimension, and

then, renumbering the edges accordingly to this partition. The mesh ordering is then optimized as

6

we can see on Figure 2 with the representation of the sparsity structure of the matrix.

5th

1st partition
3rd

4th
6th

2nd

0 2 4 6

x 10
4

0

1

2

3

4

5

6

x 10
4

nz = 448436

nz : non−zero elements

Figure 2. Renumbering of the edges, the partitioning and matrix sparsity structure for a mesh of
254x126 elements.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

tim
e

(in
 s

ec
on

de
s)

number of processors

method 1
method 2
method 3
méthod 4
méthod 5
méthod 6

Figure 3. Time spent in MUMPS for different methods of pivot order with mesh 254x126 elements
for the Henry test case and 10 time steps.

We see on Figure 3 that the best pivot order is with our user-defined ordering (method 2) just before
METIS one (method 5). Actually, these two methods share the same principle, nested dissection,
but whereas method 2 is applied only on regular meshes, method 5 is applied on any mesh. Because
of this difference, method 5 is used in the following studies.

7

4.4. Parallel results
Time measurements are reported in Figure 4. In this figure, three different parts of the computation

are plotted :

• the MUMPS parallel solving timing,

• the initialisation, the storage and the visualisation timings, which are sequential and are not
representative of the calculation. Indeed, the initialisation only occurs one time whereas the
storage and the visualisation are optional,

• the other parts of the calculation which are parallelised thanks to the METIS partitioning.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

tim
e

(in
 s

ec
on

de
s)

number of processors

mesh of 254x126 elements, 10 time steps, 48 iterations

total simulation time
MUMPS time

initialisation and log time
remaining time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35

tim
e

(in
 s

ec
on

de
s)

number of processors

mesh of 510x254 elements, 10 time steps, 49 iterations

total simulation time
MUMPS time

initialisation and log time
remaining time

Figure 4. time results with MUMPS and the Henry problem on 2D meshes.

As expected, solving the linear systems takes a large part of the total simulation time. For the
smallest mesh (system size N= 64262), parallelism is very efficient up to 4 processors. For the
largest mesh (system size N=259590) performances are still good with 8 and 16 processors.

5. Conclusion

Numerical simulations in hydrogeology are quite often based on coupled models like the saltwater
intrusion problem involving strongly flow and transport coupling.

Our parallel software allows to speed up the execution especially by the use of the parallel linear
solver but also by data partitioning.

Moreover, simulations with 3D geometry should show better performances because the matrices
would be much larger. Besides, parallelisation of the visualisation could also be investigated as
well as the comparison with other linear solvers. Another direction of work will be to improve the
coupling of the flow and the transport.

References

[1] P. Ackerer, A. Younes, S.E. Oswald, and W. Kinzelbach. On modelling of density driven flow. Calibra-
tion and Reliability in Groundwater Modelling : Coping with Uncertainty (Red book of the ModelCARE
99 Conference), IAHS Publication, 265:377–384, 2000.

8

[2] Ph. Ackerer, A. Younes, and R. Mosé. Modeling variable density flow and solute transport in porous
medium : 1. numerical model and verification. Transport in Porous Media, 35:345–373, 1999.

[3] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM
Journal on Matrix Analysis and Applications, 17:886–905, 1996.

[4] P. Amestoy, I.S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison of two general sparse
solvers for distributed memory computers. ACM Transactions on Mathematical Software, 27(4):388–
421, 2001.

[5] P. R. Amestroy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel Solver
(MUMPS Version 4.3) Users’ guide, July 2003.

[6] J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer
Academic Publishers, Dordrecht, 1991.

[7] H. J. Diersch and O. Kolditz. Coupled groundwater flow and transport: 2. thermohaline and 3d convec-
tion systems. Advances Water Ressource, 21(5):401–425, 1998.

[8] J. W. Elder. Numerical experiments with a free convection in a vertical slot. Journal of Fluid Mechanics,
24:823–843, 1966.

[9] A. Gupta. Recent advances in direct methods for solving unsymmetric sparse systems of linear equa-
tions. ACM Transactions on Mathematical Software, 28(3):301–324, 2002.

[10] H. R. Henry. Interfaces between salt water and fresh water in coastal aquifers. Technical Report 1613-C,
U.S. Geological Survey, Water Supply Paper, 1964.

[11] K. Johannsen, W. Kinzelbach, S.E. Oswald, and G. Wittum. The saltpool benchmark problem - numeri-
cal simulation of saltwater upconing in a porous medium. Advances in Water Resources, 25(3):335–348,
2002.

[12] George Karypis and Vipin Kumar. Metis a software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing ordering of sparse matrices version 4.0. Technical Report
MN 55455, University of Minnesota, Department of Computer Science/Army HPC Research Center,
September 1998.

[13] K. L. Kipp. Guide to the revised heat and solute transport simulator : Hst3d - version 2. Technical
Report 97-4157, US Geological Survey, Water Resources Investigations, 1997.

[14] L. F. Konikow, P.J. Campbell, and W. E. Sanford. Modelling brine transport in a porous medium : a
re-evaluation of the hydrocoin level 1, case 5 problem. In K. Kodar and P. Van Der Heijde, editors, Cal-
ibration and Reliability in Groundwater Modeling, 237, pages 363–372. IAHS Press IAHS Publication,
1996.

[15] M. Reeves, D. S. Ward, N. D. Johns, and R. M. Cranwell. Theory and implementation of SWIFT II, the
sandia waste-isolation flow and transport model for fractured media. Technical Report SAND83-1159,
Sandia National Laboratory, 1986.

[16] J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods. BIT,
4(800-841):2001, 41.

[17] C. I. Voss. A finite element simulation model for saturated-unsaturated fluid-density dependent ground-
water flow with energy transport or chemically-reactive single species solute transport. Technical Report
84-4369, US Geological Survey, Water Resources Investigations, 1984.

[18] A. Younès, Ph. Ackerer, and R. Mosé. Modelling variable density flow and solute transport in porous
medium : 2. re-evaluation of the salt dome flow problem. Transport in Porous Media, 35:375–394, 1999.

