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1. Introduction

Numerical modelling is an important key for the management and remediation of groundwater
resources [28]. As opposed to surface water and to highly karstic geologies, groundwater does not
flow in well-identified open streams but is like water flowing in the voids of a sponge. Groundwa-
ter is highly dependent on the percentage of pores (porosity), size and connectivity of the pores
that controls the permeability of the medium. Its quality depends on the biochemical reactivity
of the crossed geological media and on the kinetics of the biochemical reactions. These parame-
ters (porosity, permeability, reactivity) are highly variable. Several field experiments show that
the natural geological formations are highly heterogeneous, leading to preferential flow paths
and stagnant regions. The contaminant migration is strongly affected by these irregular water
velocity distributions. Transport of contaminant by advection and dispersion induce a large
spreading of the particles generally called plume. The characterization of the plume remains a
much debated topic [7,16,25]. Fractures and heterogeneous sedimentary units cannot be identi-
fied whatever the remote data, whether geophysical, geological or hydraulic. Because data give a
rather scarce description of the medium hydraulic properties, predictions rely heavily on numer-
ical modelling. Numerical modelling should integrate the multi-scale geological heterogeneity,
simulate the hydraulic flow and transport phenomena and quantify uncertainty coming from
the lack of data. Analytical techniques like homogenization or perturbations are in general not
relevant. Modelling must thus be performed in a probabilistic framework that transfers the lack
of data on prediction variability [1]. Practically, random studies require running a large number
of simulations, for two reasons. First, non intrusive Uncertainty Quantification methods rely on
sampling of data. Second, the questions addressed must consider a large panel of parameters
(Peclet number, variance of probabilistic models, etc). The hydraulic simulations must be per-
formed on domains of a large size, at the scale of management of the groundwater resource or at
the scale of the homogeneous medium type in terms of geology. This domain must be discretized
at a fine resolution to take into account the scale of geological heterogeneities. Also, large time
ranges must be considered in order to determine an asymptotic behaviour. High performance
computing is thus necessary to carry out these large scale simulations.

Therefore we have developed the parallel scientific platform HYDROLAB, which integrates in
a modular structure physical models and numerical methods for simulating flow and transport
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in heterogeneous porous and fractured media. It includes stochastic models and Uncertainty
Quantification methods for dealing with random input data. It relies as much as possible on
existing free numerical libraries such as parallel sparse linear solvers. This policy increases
the global reliability and efficiency of HYDROLAB. Our software is also fully parallel and
follows a powerful object-oriented approach. Most existing codes for groundwater flow and
transport contaminant do not gather all these original features. To our knowledge, there is no
public parallel code performing groundwater simulations in 3D fracture networks. Popular free
software for reservoir modeling, environmental studies or nuclear waste management, such as
MODFLOW [19], MT3DMS [29] and TOUGH2 [24] are not easy to use for highly heterogeneous
porous media; moreover, MODFLOW and MT3DMS are not parallel. Other software, such as
IPARS [26] or ALLIANCES [23], are private or commercial.

Our paper is organized as follows: we first describe the physical models processed by HYDRO-
LAB; then we describe the numerical methods and algorithms implemented in the software with
details about parallel features. After a short synopsis on HYDROLAB, we discuss performance
results on parallel clusters of various numerical experiments. The paper ends up with concluding
remarks about future work.

2. Physical models

2.1. Geometry and data
We consider two types of geological domains, either porous media or fractured media. Per-

meability values span more than ten orders of magnitude from 10−12 m/s in non fractured
crystalline rocks or clays to 10−1 m/s for gravels [14]. Variability can be huge not only at the
transition between geological units, like between sand and clay, but also within units. Since
data is lacking, the physical model of porous media is governed by a random permeability field,
following a given distribution law. In order to cover a broad-range of structures, we consider
finitely correlated, fractal or multifractal distribution laws. The geometry is kept very simple
and is a deterministic 2D or 3D regular polyhedron. In rocks, the fractures can represent only
0.01 % of the volume although they are the sole water carrying structures. Fractured media
are by nature very heterogeneous and multi-scale, so that homogenisation approaches are not
relevant. In an alternative approach, called the discrete approach, flow equations are solved on
the fracture network, explicitly taking into account the geometry of the fractured medium, and
thus the structure of the connected network. According to recent observations of fractured rocks,
fractures are characterized by a variety of shapes and a broad range of lengths and apertures.
The physical model is thus based on a complex and random geometry, where the geological
medium (the surrounding matrix) is a cube; fractures are ellipses with random distributions of
eccentricity, length, position and orientation. The main feature of our model is the fracture
length distribution, which is given by a power law. We first consider an impervious matrix,
because almost no water flows in it [9,6]. For some applications, it is also important to consider
the coupling between the matrix and the fractures.

2.2. Governing equations
Well tests are the first source of information on the hydraulic properties of underground media.

Numerical modelling of these tests involves computation of transient flow in large domains. We
assume here that the medium is saturated and that the water density is constant. Flow is
governed by the classical Darcy law and the mass conservation law:{

εv = −K∇h,
s∂h/∂t +∇.(εv) = q

(1)

40  J. Erhel et al.



where the Darcy velocity v and the hydraulic head h are unknown, K is a given permeability
field, ε is a given porosity, s is a given storativity parameter and q is a given source term. An
initial condition and boundary conditions close the system. For steady-state flows, the time
derivative disappears. In order to characterize plumes of contaminant, numerical simulations
consist in computing the velocity field over large spatial domains and simulating solute transport
over large temporal scales [16]. We consider here one inerte solute and a steady-state flow.
Governing equations are:

∂(εc)
∂t

+∇.(εcv)−∇.(εD∇c) = 0 (2)

where c is the unknown solute concentration, v is the previous Darcy velocity and D is the given
dynamic dispersion tensor. Boundary conditions and an initial condition complete the equation.

3. Numerical methods

3.1. Uncertainty Quantification methods
The physical model is not complex in itself since equations are linear but both the broad

geological heterogeneity and the lack of measures require dealing with uncertain physical and
geometrical properties. The permeability field is a random variable and the geometry of fracture
networks is random. Hydrogeological studies aim at describing the random velocity field and the
random dispersion of solute. They must rely on Uncertainty Quantification methods. Currently,
we use a classical Monte-Carlo approach [8]. It is non intrusive in the sense that each sample
is a deterministic simulation, using classical spatial and temporal discretizations. It is easy to
implement and can be applied to any random field, either data or geometry. However, only
the mean of random output can be attained with few samples; other statistical results require
much more samples. Therefore, more sophisticated UQ methods can be considered, such as non
intrusive spectral methods or intrusive Galerkin methods [27,1].

3.2. Spatial and temporal discretizations
For each sample, we have to discretize the set of Partial Differential Equations. In flow

computations, we use a method of lines in the case of transient equations and get a system
of ODEs after spatial discretization. For porous media, the geometry is simple and the mesh
is a regular grid. In both transient and steady-state cases, we choose a finite volume method,
which computes accurately the velocity and ensures mass conservation. For fracture networks,
the geometry is complex, so that it is quite difficult to generate a mesh. We have designed a
two-fold mesh generator, with a preprocessing step before meshing each fracture separately [3].
We first discretize the intersections, so that they are uniquely defined in the mesh. Then, by
considering these discretized intersections as boundaries, we mesh each fracture with a 2D mesh
generator. We consider steady-state flows and use a hybrid mixed finite element method, based
on the unstructured mesh. Again, the method computes accurately the velocity and ensures
mass conservation. The unknowns in the hybrid method are the hydraulic head in each cell and
on each face, so that the continuity equations are easy to implement at the intersections.

At each time step, we get a large sparse symmetric positive definite linear system. Direct
solvers are efficient for medium size systems but suffer from too big memory requirements for
large size systems. Therefore, we prefer to use iterative solvers. Algebraic multigrid methods
appear to be very efficient, either as such or as preconditioners of Conjugate Gradient method
[4].

In transport computations, we choose a random walker method, because it does not introduce
numerical dispersion in advection-dominated problems. We generate a bunch of particles for
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the initial condition and solve a stochastic differential equation to compute their trajectories.
In the case of pure advection, this is simply a deterministic particle tracker method, whereas
dispersion is modeled by a random motion. We use an explicit first-order Euler scheme to solve
the equation.

3.3. Parallel algorithms
In each simulation, the spatial and temporal dimensions are very large, in order to study

multi-scale effects and asymptotic behaviour. Numerical modelling must overcome two main
difficulties, memory size and runtime, in order to solve very large linear systems and to simulate
over a large number of time steps. High performance computing is thus necessary to carry out
these large scale simulations.

Because memory requirements are very high, it is mandatory to distribute data from the
beginning to the end of the simulation. Therefore, everything is done in parallel, including data
generation, mesh generation, flow computation, transport computation. Parallel algorithms are
based on a subdomain decomposition. In porous media, we subdivide the domain into regular
blocks, which can be slices or rectangles in 2D. Each processor owns a subdomain and ghost cells
surrounding the domain. This classical tool reduces communication costs between processors.
In fracture networks, we subdivide the network into groups of fractures, assigned to different
processors. Computations are done in parallel and communications occur for synchronizing data
at the intersections.

Once the data and the mesh are generated, it is possible to launch flow computations and
transport computations. In flow computations, we use a parallel sparse linear solver. We have
developed interfaces to several libraries, such as SUPERLU [22], PSPASES [18], HYPRE [12].
The distributed matrix and right-hand side are input data to the solver. Parallel computations
inside the solver may redistribute the matrix but the output solution is distributed as the right-
hand side. The velocity field is computed in each processor from the hydraulic head returned
by the solver. Thanks to this structure, we can compare different sparse solvers. We require a
linear complexity with the matrix size N , a robust solver for heterogeneous permeability fields,
parallel scalability. We observe that direct solvers are robust and scalable but have a complexity
in O(N1.5) [4]. Preconditioned Conjugate Gradient methods have also a poor complexity [10].
Domain decomposition methods seem very promising [17], thus we are developing such methods
[11], extending the Aitken-Schwarz methodology [15]. Algebraic multigrid methods have a linear
complexity and are robust [10]. Therefore, in this paper, we compare geometric and algebraic
multigrid methods, using HYPRE.

In transport computations, we have designed a simple but efficient parallel algorithm which
allows to consider large temporal domains [2]. Our parallel algorithm takes advantage of a
subdomain decomposition and of the non interaction between the particles. This hybrid parallel
strategy is quite original, since most of previous work uses either one or the other [20],[5],[21].
This strategy allows to run simulations on very large computational domains. Actually, we use
the domain decomposition and data distribution arising from permeability generation and flow
computation [3]. Communications with processors owning neighboring subdomains must occur
when particles exit or enter the subdomain. We add a global synchronisation point after the
exchanges of particles, in order to define a global state where each processor knows the total
number of particles still in the domain. By the way, it guarantees that all RECV operations
have been successful and that the algorithm may execute new SEND operations. Thus neither
deadlock nor starvation may occur and the algorithm terminates safely. We also take advantage
of the independence of the particles and launch them by bunches. The idea is to initiate a
pipeline of particles. At each global synchronisation point, the master processors inject a new
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bunch of particles, until all particles have been injected into the domain. All processors track
the particles in their subdomain, then exchange particles on their boundaries, finally synchronize
globally to define the total number of particles in activity.

4. Parallel software HYDROLAB

We have developed a fully parallel object-oriented software platform, called HYDROLAB,
which provides a generic platform to run Monte-Carlo numerical simulations of flow and trans-
port in highly heterogeneous porous media and in fracture networks. The software is organized
in three main parts, respectively dedicated to physical models, numerical methods and various
utilitaries. Physical models include heterogeneous porous media and discrete fracture networks.
We plan to develop a coupled model for porous fractured media. The physical model is com-
posed of several tasks: the generation of the random geometry and the random permeability
field, the mesh generation, the spatial discretization of the flow operator. The numerical meth-
ods include PDE solvers, ODE solvers, linear solvers, multilevel methods, a random walker, UQ
methods. Utilitaries are generic modules including Input/Output, results management, parallel
tools, grid tools, geomotry shapes, visualization, etc. This modularity and genericity allows a
great flexibility and portability, enhancing the development of new applications. The software
is written in C++ and is implemented on machines with Unix or Windows systems. Graphical
functions are written with OpenGL and parallel programming relies on the MPI library. The
software integrates open-source libraries such as sparse linear solvers for flow computation.

Our commitment is to design free packages available for downloading on the website of the
platform (http://hydrolab.univ-rennes1.fr/).

5. Numerical results for 2D porous media

We have done multiparametric Monte-Carlo simulations for solving steady-state flow and
transport problems with 2D heterogeneous porous media [8]. We have done many experiments
on a parallel cluster of the Grid’5000 computing resource installed at INRIA in Rennes and we
got good performances with parallel sparse linear solvers and our parallel particle tracker. Some
results can be found in [3], [4] and [2].

5.1. Numerical experiments
In this paper, we study the case of a 2D porous medium where the permeability field K follows

a log-normal correlated law, where Y = ln(K) is defined by a mean m and a covariance function
C given by C(r) = σ2 exp(− |r|

λ ), where σ2 is the variance of the log hydraulic conductivity,
|r| represents the separation distance between two points and λ denotes the correlation length
scale. The length λ is typically in the range [0.1m, 100m] and the variance σ2 is in the interval
[0, 7]. These two ranges encompass most of the generally studied values.

We consider a steady-state flow and solve first the flow equations, then the transport equations
of an inerte solute with the computed velocity. In flow equations (1) and transport equations
(2), we assume a constant porosity ε = 1. In flow equations, boundary conditions are no-flow on
upper and lower sides and specified-head h = 0 on left side, h = 1 on right side. In transport
equations, we consider only molecular diffusion, assumed homogeneous and isotropic. The ratio
of diffusion to advection is measured by the Peclet number defined by Pe = λU

Dm
, where Dm is the

molecular diffusion coefficient, with a typical range of [100,∞], where ∞ means pure advection.
This range covers advection-dominated transport models, whereas diffusion-dominated models
require smaller values. In transport equations, the initial condition at t = 0 is the injection of
the solute. In order to overcome the border effects, the inert solute is injected at a given distance
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Figure 1. Numerical conditions (left) and simulation result for heterogeneous porous media
(right): permeability field (top left), solute transport (top right), horizontal velocity field (bot-
tom left), vertical velocity field (bottom right).

Parameter Values
σ 1, 2, 2.5, 3
λ 10
Pe 100, 1000,∞
∆x 1
n 128, 256, 512, 1024, 2048, 4096
tol 10−11

Np 2000
solver SMG,AMG, TRACKER

Table 1
Physical and numerical parameters used for heterogeneous 2D porous medium with log-normal
correlated permeability

of the left side. Boundary conditions are no-mass-flux on upper and lower sides, specified zero
concentration on left side, free mass outflow on right side. An example of simulation output is
depicted in Figure 1.

5.2. Complexity analysis
Many physical parameters have a strong impact on the computations, such as the variance, the

correlation length or the Peclet number. Also the computational requirements are governed by
numerical parameters such as linear solver, problem size and convergence thresholds. Here, we
consider a square domain with as many cells in each direction. The problem size is defined by the
mesh step ∆x, the number of cells n in each direction of the mesh and by the number of particles
Np in the random walker. In iterative sparse linear solvers, another numerical parameter is the
threshold tol for convergence. Physical and numerical parameters are summarized in Table 1.
The number of particles is large enough to ensure convergence of the random walker and the
mesh step is small enough to get an accurate flow field. The correlation length is also fixed.
Here, we consider multigrid sparse linear solvers: SMG and Boomer-AMG from the HYPRE
library [13], [12].
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Figure 2. CPU time of flow computations using SMG geometric multigrid (left) and AMG
algebraic multigrid (right). The matrix size is N = n2.

Figure 3. CPU time of transport computations using a particle tracker. Impact of the variance
(left) and of the Peclet number (right). The number of cells is each direction is n.

One of the objectives of the simulations is to analyze the effect of heterogeneity and Peclet
number on solute dispersion. Therefore, it is very important to develop a software with com-
putational times as much independent of the variance σ and the Peclet number Pe as possible.
Another objective is to estimate the asymptotic dispersion; therefore, we have to run the trans-
port simulation with very large times; because all particles of the random walker must stay
in the domain, this implies to run flow and transport simulations in very large computational
domains. We analyze the effect of the size of the computational domain.

In Figure 2, we plot the CPU time of AMG and SMG multigrid solvers versus the matrix size
N = n2, for different values of σ. We observe in both cases a linear complexity, as expected
from the theory. However, the behaviors are different when σ varies. The geometric multigrid
solver SMG is more efficient for σ = 1, the geometric solver SMG and the algebraic solver AMG
are equivalent for σ = 2 and AMG becomes more efficient for σ = 2.5 and σ = 3. Therefore, the
best choice depends on the value of σ.

In Figure 3, we plot the CPU time of the particle tracker versus the number of cells n in each
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Figure 4. Parallel CPU time of flow (left) and transport (right) computations using respec-
tively algebraic multigrid (AMG) a particle tracker. Impact of the matrix size N = n2. The
heterogeneity is driven by σ = 2 and transport is pure advection with Pe = ∞.

direction. The tracker is nearly independent of the variance σ. We observe a complexity which
is roughly linear with n (thus with

√
N). For small values of n, the transport computation is

slower than the flow computation, but the CPU times become equivalent for n = 2048 and the
transport will become much faster than the flow for larger n because of the different complexities.

Whereas flow computations are obviously independent of the Peclet number, we observe that
the computational time of transport computations increases with the Peclet number. How-
ever, for these large values of Pe, the transport computations remains cheaper than the flow
computations with a large number of cells.

5.3. Scalability analysis
From the sequential results, it is clear that the algebraic multigrid solver is very efficient, has a

linear complexity with the number of cells in the mesh and is not sensitive to the heterogeneity.
Therefore, we choose this solver for parallel flux computations. We run experiments on a cluster
composed of two nodes of 32 computers each. Each computer is a 2.2 Ghz AMD Opteron
bi-processor with 2 Go of RAM. Inside each node, computers are interconnected by a Gigabit
Ethernet Network Interface, and the two nodes are interconnected by a Gigabit Ethernet switch.
In Figure 4, we plot the CPU time of flux (using AMG) and transport (using our particle tracker)
computations with a varying number of processors P . Here, the heterogeneity is σ = 2 and we
consider a pure advection case (Pe = ∞). We observe good speed-ups for the different sizes of
the computational domain and a quite good scalability for both parallel modules. We did more
experiments with various σ and Pe and got very similar results.

6. Current and future work

We have designed a parallel modular software, called HYDROLAB, for solving flow and trans-
port problems in heterogeneous and fractured geological media. Our performance results show
that our software is very efficient on parallel clusters for dealing with random 2D heterogeneous
porous media. We are extending this work to 3D domains and have designed multilevel methods
based on subdomain decompositions. As far as fracture networks are concerned, we are now
able to generate a mesh for any network and to solve steady-state flow problems [3]. We are
doing more experiments for improving parallel performances.
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Future work concern transient flow problems in porous and fractured media and transport
problems in fracture networks. Also, we plan to investigate non intrusive Uncertainty Quantifi-
cation methods, in order to improve efficiency and to get more statistical information than with
Monte-Carlo simulations.
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