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SUMMARY

The abundant literature of �nite-element methods applied to linear parabolic problems, generally, pro-
duces numerical procedures with satisfactory properties. However, some initial–boundary value problems
may cause large gradients at some points and consequently jumps in the solution that usually needs a
certain period of time to become more and more smooth. This intuitive fact of the di�usion process
necessitates, when applying numerical methods, varying the mesh size (in time and space) according
to the smoothness of the solution. In this work, the numerical behaviour of the time-dependent solu-
tions for such problems during small time duration obtained by using a non-conforming mixed-hybrid
�nite-element method (MHFEM) is investigated. Numerical comparisons with the standard Galerkin
�nite element (FE) as well as the �nite-di�erence (FD) methods are checked. Owing to the fact that
the mixed methods violate the discrete maximum principle, some numerical experiments showed that
the MHFEM leads sometimes to non-physical peaks in the solution. A di�usivity criterion relating the
mesh steps for an arti�cial initial–boundary value problem will be presented. One of the propositions
given to avoid any non-physical oscillations is to use the mass-lumping techniques. Copyright ? 2002
John Wiley & Sons, Ltd.

KEY WORDS: parabolic problem; mixed-hybrid �nite-element method; discrete maximum principle;
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1. INTRODUCTION

Many environmental problems, in particular the transport of pollutants by underground water,
have pressed upon the attention to develop new methods for more precise representative
simulations. Subsequently, numerical modelling has played an increasing role to solve such
physical processes. Despite the fact that the mathematical models delineating the transport
problems are described by coupled systems of non-linear partial di�erential equations, in
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1374 H. HOTEIT ET AL.

this paper we are restricted to the linear di�usion equation since the focus is to give a
numerical study of the approximated solution attained by the MHFE method. Nevertheless,
this work is of importance even for the non-linear advection–di�usion problems since one of
the approaches to solve such problems is by using the time-splitting operator technique, i.e.
advection and dispersion operators are treated separately. Generally, the MHFEM is voted to
solve the di�usion part [1].
For the unknown pressure scalar function p=p(x; t) and velocity vector function u=u(x; t),

we consider the mass conservation equation and Darcy’s law which are given as follows:

s
@p
@t
+∇u=f in �×(0; T ] (1)

p(x; 0) =p0(x) in � (2)

p=pD on �D×(0; T ] (3)

u·= qN on �N×(0; T ] (4)

the so-called Darcy velocity u is given via

u= −K∇p in �×(0; T ] (5)

where � is a bounded domain in Rd (d=1; : : : ; 3) with boundary @�=�D∪�N; K=K(x) is
the conductivity, it is assumed to be a diagonal tensor with components in L∞(�); � indicates
the outward unit normal vector along @�; f=f(x; t)∈L2(�) represents the sources; s=s(x)
is the storage coe�cient; pD(x; t) and qN(x; t) are, respectively, the Dirichlet and Neumann
boundary conditions.
It should be noted that the above parabolic, initial–boundary value problem can also model

many other physical phenomena like heat transfer, chemical transport and electromagnetic
current [2]. For the reason of similarity, the �uid �ow equation in porous media is chosen to
be studied.
The �nite-element methods have been the preferred tools over the �nite-di�erence meth-

ods due to their simple physical interpretation and their �exibility dealing with irregular geo-
metrical domains. In modelling �ow in porous media, it is essential to utilize a discretization
method which satis�es the physics of the problem, i.e. conserves mass locally and preserves
continuity of �uxes. The Raviart–Thomas mixed �nite-element method of lowest order sat-
is�es these properties. Moreover, both the pressure and the velocity are approximated with
the same order of convergence (see, e.g., References [3–5]). One of the inconvenient prop-
erties of this method is that it leads to an inde�nite linear system, so its resolution cannot be
achieved by simple robust algorithms like Choleski or conjugate gradient methods. Further-
more, the number of unknowns is relatively quite large since both the pressure on each element
and the �ux through each edge have to be calculated simultaneously [6]. The mixed-hybrid
formulation was introduced as a method for solving the mixed �nite-element linear system
[7]. Moreover, this technique provides more information about the pressure since the degrees
of freedom of the pressure on the edges are computed as well.
Numerous works showed the accuracy and the e�ciency of this method applied to the

stationary di�usion problem [8–10]. However, numerical comparisons presented in many pa-
pers like [11; 12], which showed the upper hand of the MHFEM applied to the parabolic
problem with regard to other classical methods, took an implicit supposition of at least one
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of these two cases: (i) smooth initial and boundary values, (ii) su�cient long interval of
simulation time (0; T ]. Discordantly, in this work we show that the MHFEM applied to some
particular initial-boundary value di�usion problems leads to relatively erroneous results com-
pared with solutions obtained by the classical FE or FD methods. It is proved that under
assumptions of smoothness of initial and boundary conditions, optimal convergence for the
pressure and the velocity is obtained (see, e.g., References [3; 4; 13; 14]). In our study here,
we show, by numerical experiments, that if the assumption of smoothness is omitted an os-
cillatory solution is obtained at some points of large gradient.
The fact that the mixed methods do not obey the discrete maximum principle is well

known [4]. In the work presented in Reference [15], it is found that the MHFEM applied
to semiconductor device equations violates the discrete maximum principle. This problem is
time-independent convection–di�usion problem. However, in this work we study the MH-
FEM applied to an groundwater �ow problem which is a time-dependent purely di�usive
problem.
An outline of the paper is as follows. In Section 2, the formulation of the MHFEM cor-

responding to the Raviart–Thomas space of lowest order is reviewed. Numerical analyses
of the solution of an arti�cial well-posed initial–boundary value problem are discussed in
Section 3 where we compare the approximated solutions with the exact one. In Section 4
we show that, unlike the FD method, the MHFEM conditionally satis�es the discrete max-
imum principle. Before ending with a conclusion, we give in Section 5 some alternative
propositions to prevent the non-physical oscillations in the solutions attained by the MHFE
method.

2. THE HYBRIDIZED MIXED FINITE-ELEMENT METHOD

We restrict our discussion to the two-dimensional case: the three-dimensional case follows
in a similar manner. The polygonal domain � is discretized into a mesh Qh consisting of
parallelograms or triangles where h denotes the mesh parameter. In practice, quadrangles are
restricted to be parallelograms since these can be generated from the reference element by
a�ne transformations. Throughout this paper, we denote by Eh the set of edges of the grid
not belonging to �N, NE is the cardinal of Eh and NQ is the number of discretized elements.
In the mixed �nite-element method, Darcy’s law and the mass conservation equation are

approximated individually subsequently; we get additionally the Darcy velocity u as an un-
known function. In the following, we present the approximation spaces of our unknowns, the
discretization of Darcy’s law and that of the mass conservation equation as well as the derived
algebraic system to solve.

2.1. Approximation spaces

The essential idea of the MFE methods is to approximate simultaneously the pressure and its
gradient. The simplest case of approximation, which is by means of the space of Raviart–
Thomas of the lowest order RT0, will be presented in brief. For more details see References
[3; 4; 13; 16].
The �nite approximation spaces of the pressure ph and the velocity uh are the two �nite-

dimensional spaces M(Qh) and V(Qh), respectively.
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M(Qh) is the space of piecewise constant function on each element of Qh, it is given by

M(Qh)={’∈L2(�) |’=K ∈P0(K); K∈Qh}
where Pd(K) is the space of polynomials of total degree d de�ned on K .

V(Qh) is given by the Raviart–Thomas space RT0(Qh):

V(Qh)=RT0(Qh)={�∈L2(�) | �=K ∈RT0(K); K∈Qh}
where RT0(K) stands for the lowest Raviart–Thomas element,

RT0(K)=

{{�∈(P1(K))2 |�=(a+ bx1; c+ bx2); a; b; c∈R} if K is triangle

{�∈(P1(K))2 |�=(a+ bx1; c+ dx2); a; b; c; d∈R} if K is parallelogram

The hybridization technique tends to enforce the continuity of the normal component of uh
across the interelement boundaries by using the Lagrange multiplier spaces

N(Eh) = {�∈L2(Eh) | �=E∈P0(E) ∀E∈Eh}
Ng;D(Eh) = {�∈N(Eh) | �=g on �D}

Now we introduce tph a new degree of freedom approximating the traces of the pressure on the
edges of the mesh. Thus the MHFE formulation reads as: Find (uh; ph; tph)∈V(Qh)×M(Qh)×
NpD ; D(Eh) such that∫

�
(K−1uh) ·�h dx +

∑
K∈Qh

∫
@K
tph�K ·�h d‘=

∑
K∈Qh

∫
K
ph∇·�h dx ∀�h∈V(Qh)

∫
�
s
@ph
@t
’h dx +

∫
�
∇·uh’h dx=

∫
�
f’h dx ∀’h∈M(Qh)

∑
K∈Qh

∫
@K
uh ·�K�h d‘=

∫
@�
qN�h d‘ ∀�h∈N0; D(Eh)

(6)

2.2. Local basis functions

As a matter of fact, any irregular element K can be mapped from a reference element K̂ (as
shown in Figure 1) by using an a�ne transformation (see, e.g., References [13; 16; 17]). This
mapping is de�ned as

K̂ �→ K

x̂ �→ x=TK x̂ + bK

Subsequently, V(K)=RT0(K) could be written as

V(K)=
1
JK
TKV(K̂)

where TK is the transformation matrix, JK=det(TK) is the Jacobian and bK is a point in K .
The Raviart–Thomas basis functions of V(K̂), de�ned on the reference element, are de�ned
as follows:
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Figure 1. The approximated unknowns and the basis functions on the reference elements.

If K is a triangle (as depicted in Figure 1), a choice for a basis of the three-dimensional
space V(K̂) is

ŵK̂; E1 =

[
x̂1 − 1
x̂2

]
; ŵK̂ ; E2 =

[
x̂1

x̂2 − 1

]
; ŵK̂ ; E3 =

[
x̂1
x̂2

]
(7)

On the other hand, if K is a rectangle (see Figure 1), V(K̂) becomes a four-dimensional
space with the basis functions

ŵK̂; E1 =

[
x̂1 − 1
0

]
; ŵK̂ ; E2 =

[
x̂1
0

]

ŵK̂; E3 =

[
0

x̂2 − 1

]
; ŵK̂ ; E4 =

[
0
x̂2

]
(8)

One can easily verify that for every �K=
∑

E⊂@K qK;EwK;E∈V(K) and K∈Qh, the following
properties are satis�ed:

(1) ∇·�K is constant over K .
(2) �K;E ·�K=qK;E is constant on each E⊂@K .

Hence uK is uniquely determined by the normal �uxes qK;E=uK ·�K;E on the edges of K ,
where �K;E denotes the outer normal vector on E with respect to K .

2.3. Approximation equations

The �nite-dimensional space V(Qh) is spanned by linearly independent vectorial basis
functions wK;E , E⊂@K , K∈Qh, such that wK;E has its support in K (supp(wK;E)⊆K) and∫

E′
wK;E ·vK d‘=�EE′ ; E; E′⊂@K

These functions can be chosen the local bases functions given in Equation (7) or (8). Thus,
a function uh∈V(Qh) has three degrees of freedom per element which are the �uxes across
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the element’s edges:

uh(x)=
∑
K∈Qh

∑
E⊂@K

qK;EwK;E(x); x∈�

The two spaces M(Qh) and N(Eh) are spanned, respectively, by the linearly independent
scalar basis functions ’K , K∈(Qh), and �E , E∈(Eh), such that

’K(x) = �K;K′ ; x∈K ′; K; K ′∈Qh

�E(x) = �E;E′ ; x∈E′; E; E′∈Eh

Thus, a function ph∈M(Qh) (resp. tph∈N(Eh)) has one degree of freedom of constant value
per element K∈Qh (resp. E∈Eh), such that

ph(x) =
∑

K′∈Qh

pK′’K′(x)=pK; x∈K

tph(x) =
∑
E′∈Eh

tpE′�E′(x)=tpE; x∈E

Now, we individually investigate the underlying equations in (6), which can be integrated
over the element level.

2.3.1. Discretization of Darcy’s law. By taking as test functions �K successively the basis
functions wK;E , the discretized equation of Darcy’s law (the �rst equation in (6)) becomes∫

K
(K−1

K uK) ·�K dx +
∑
E⊂@K

∫
E
tpK;E�K ·�K;E d‘=

∫
K
pK∇·�K dx (9)

where KK is a piecewise approximation of the conductivity tensor over K , and

tpE= tpK;E=

{
tpK′ ; E if E=K∩K ′

pDE if E∈�D
; E∈Eh∪�D; K; K ′∈Qh

By integrating (9) and by making use of the Raviart–Thomas space basis properties, the
following equations come into view:∑

E′⊂@K
(BK)E;E′ qK;E′=pK − tpK;E; E⊂@K; K∈Qh (10)

In the matrix form, (9) is written as

BKQK=pKe − TPK ; K∈Qh (11)

where QK and TPK are NK -dimensional vectors containing, respectively, the �uxes qK;E and
the traces of the pressure tpK;E on each E⊂@K , with NK being the number of edges of K ; e
refers to the elementary divergence vector. It is of dimension NK and unitary entries and BK
is an NK×NK symmetric positive-de�nite matrix whose elements are

(BK)E;E′=
∫
K
wTK;E K−1

K wK;E′ dx (12)

It should be noted that these integrations are all evaluated exactly.
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The last equation in (6) is equivalent to∫
E
uK ·�K;E d‘+

∫
E
uK′ ·�K′ ; E d‘=0 if E=K∩K ′

∫
E
uK ·�K;E d‘=qNE if E∈�N

where qNE =
∫
E q

N d‘.
Hence, the normal components of uh are continuous across the interelement boundaries, i.e.

qK;E=

{−qK′ ; E if E=K∩K ′

qNE if E∈�N
(13)

By inverting the matrix BK and using (13), it is possible to eliminate the unknown �ux. As
a result, the reduced algebraic system, acquired by discretizing Darcy’s law with unknowns
the pressure head given in P and its traces in TP, becomes

RTP −MTP + V =0; (14)

where RT is the transpose matrix of R which is a sparse matrix of dimension NE×NQ with
non-zero elements given by

(R)K;E=�K;E=
∑

E′⊂@K
(B−1
K )E;E′ ; E⊂@K

M is an NE×NE sparse matrix with non-zero entries de�ned as

(M)E;E′=
∑

@K⊃E;E′
(B−1
K )E;E′

V is an NE-dimensional vector corresponding to the Dirichlet and Neumann boundary
conditions.

2.3.2. Discretization of the mass conservation equation. By integrating the mass conservation
equation (the second equation in (6)) where the test functions �h are successively replaced
by the basis functions of M, we get

sK�K
@pK
@t

+
∑
E⊂K

qK;E=fK; K∈Qh (15)

where sK and fK are, respectively, the approximations of the storage coe�cient and the
sink=source term over K , �K denotes the measure of K .
Therefrom, by using (11) to replace the sum of �uxes in (15), we obtain an ordinary

di�erential system which is given in its matrix form

S
dP
dt
+DP − RTP=F (16)

where S is an NQ×NQ diagonal matrix with entries (S)K;K=�KsK ; D is also an NQ×NQ

diagonal matrix whose coe�cients are

(D)K;K=�K=
∑
E⊂@K

�K;E
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F is a vector of dimension NQ, it corresponds to the source=sink function as well as to the
imposed pressure given by the Dirichlet boundary conditions.

2.4. The derived algebraic system

The spatial discretization of the governing equations obtained by applying the hybridized
mixed formulation led to two systems. The �rst one, given in (14), is an algebraic system of
unknowns P and TP and the second is an ordinary system of �rst-order di�erential equations
in time (16). By inverting the matrix M which is symmetric, positive de�nite [6; 16; 18],
it is possible to eliminate TP from (16) and consequently a sti� initial value problem is
attained:

dP
dt
=LP +W

P(0)=P0
(17)

where

L= − S−1(D − RTM−1R); W =RTM−1V + F

The semi-exact solution (solution of the problem discretized in space with exact time integral
operator) of (17) is given by the following formula:

P(t)=etLP0 +
∫ t

0
e(t−s)LW ds (18)

For simplicity, we assume that pD, qN and f are time-independent piecewise constant func-
tions over the grid then W is time independent and so (18) turns into

P(t)=etL(P0 + L−1W )− L−1W; t∈[0; T ] (19)

This solution is computationally high priced due to the di�culties in evaluating the expo-
nential besides inverting the matrix M . To avoid such problem, a temporal discretization of
the di�erential operator in (16) is indispensable. Nevertheless, the solution given in (19) will
be useful in appraising the accuracy of the time-discretization scheme. Since our primary
motivation here is orientated to study the non-physical oscillations in the approximated pres-
sure which is caused by the spatial discretization (as we will see later), a �rst-order accurate
scheme for time discretization is adequate. Accordingly, the classical Euler backward (im-
plicit) method is elected for the reason that it is unconditionally stable, besides it is easy to
be carried out.
We subdivide [0; T ] into a �nite number of equal subintervals of time steps �t. By replacing

the di�erential time operator in (16) by the di�erence quantity (Pn−Pn−1)=�t, then by simple
substitution of Pn in (14), the following system is achieved:

(M −�tN )TnP =RG−1(SPn−1 + �tF) + V

GPn= SPn−1 + �tRTTnP +�tF
(20)

where G=S +�tD; N=RG−1RT.
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Hence the problem is reduced to compute, at every time step, �rst TP by solving a
linear system with symmetric, positive de�nite coe�cient matrix (M − �tN ) [18], then P
by solving a diagonal linear system. As a matter of fact, experimental inspections showed the
adaptability and the robustness of the preconditioned conjugate gradient method in solving
such systems [17].

3. PRESENTATION OF THE PROBLEM

Generally, the MHFE method is a wildly used tool to solve linear di�usion equations specially
when both the pressure and the velocity of the �ow are needed to be approximated. As a
matter of fact, numerical laboratory works with this method furnished many phenomena where
non-physical solutions are obtained and which are still inexplicable due to the complication
of the initial–boundary values or the complexity of the underlying geometrical regions. For
a better understanding of the problem, in this section we present a very simple well-posed
initial–boundary value problem wherein various comparisons and observations of the numerical
solution behaviour are interpreted.
The domain � is taken to be of rectangular shape (0; 20)×(0; 10) with the following initial–

boundary conditions:




s
@p
@t
+∇ · u=0 in �×(0; T ]

u=−K∇p in �×(0; T ]
p(x; 0)=0 in �

p=1 on �D1 ×(0; T ]
p=0 on �D2 ×(0; T ]
u:�=0 on �N×(0; T ]

(21)

where �D1 , �
D
2 are, respectively, the left- and the right-hand perpendicular sides of the domain,

�D1 ={0}×[0; 10]; �D2 ={20}×[0; 10] and �N=@�\�D.
We discretize � into a (20×10) uniform grid, the macro-elements are either rectangles or

right angle triangles. In Figure 2, both together, the pressure P and its traces TP are simulated
over the grid with time step �t=T=0:05, s=1 and K=1. It is clear that the two spatial
discretization lead to severe peaks at some points of the solution. These oscillations cannot
be evaded or disregarded since they even cause large critical deviations in the direction of the
�ow velocity, as appears in Figure 3. Even though this sample problem can be considered as
a one-dimensional problem since physically the �ow di�uses horizontally, the non-horizontal
deviations of the �ow velocity appearing in Figure 3(b) justify why the problem is discretized
in the two-dimensional space. However, for the sake of clearness, in the runs the pressure
will be visualized with one variable in space.
In Figure 4(a) we compare the approximated solutions of (21) obtained by applying the

MHFE, FE and FD methods. We �nd that oscillatory solution is also obtained by the FE
method except that these oscillations stay small compared to those obtained by the MHFEM.
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Figure 2. The pressure and its traces over the grid: (a) 20 × 10 grid of rectangular elements,
T = �t = 0:05; and (b) 20× 10 grid of triangular elements, T = �t = 0:05.
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Figure 3. The velocity of the �ow at the center of every element: (a) grid of 20 × 10 rectangular
elements; and (b) grid of 20× 10 triangular elements.

On the other hand, the �nite di�erence method achieves a numerical solution free from any
oscillations.
For an in�nite long geometrical domain �, the analytic solution of (21) is given by (see

Reference [19])

p(x; t)=pD erfc
(
x
2
√
t

)
; (x; t)∈[0;∞)×[0;∞) (22)
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Figure 4. Comparisons between the analytical solution and the approximated solutions: (a) grid of
20× 10 rectangular elements; and (b) grid of 20× 10 rectangular elements.

where
erfc(�)=1− 2√

�

∫ �

0
e−x

2
dx; �∈R

By comparing the analytical solution (22), the semi-discretized time-dependent solution (19)
and the Euler backward solution (20), as depicted in Figure 4(b), the following remarks are
deduced.

• The sharp layer appearing in the analytic solution restricts its smoothness.
• Dis-convergences in the approximated solution occur in the region where large gradients
in the analytical solution are located.

• The semi-exact solution is also oscillatory; moreover, it behaves in a similar manner as
the Euler backward solution.

Since, in general, any discretizing scheme in time attempts to converge to the exact time-
dependent solution, no time-discretizing method is able to amend these oscillations. Further-
more, if smaller time steps are taken the results may be even worse. Reasonably, we focus on
the spatial decomposition of the domain. For the moment we try a uniform re�nement of the
mesh by taking a (100×10) grid. The depicted results in Figure 5(a) show that the MHFE
method leads to an acceptable approximation of the exact solution. However, by trying out
smaller time steps, oscillations will reappear again.
One more numerical test which will help to clarify this phenomenon is by increasing the

simulation time interval [0; T ]. In Figure 5(b), even though without any re�nement of the
mesh, convergence of the approximated pressure (similarly its derivative Figure 6) is attained
and this is due to the intuitive nature of linear di�usion process whose solution becomes
smoother as t increases. It should be noted that similar oscillatory solutions may be also
obtained if the sink=source function f(x; t) varies abruptly in time.
As a primary conclusion, it becomes obvious to mind that in order to prevent any non-

physical solutions it is advantageous to vary the mesh size in time and space according to
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Figure 5. Reduction of space-step or enlargement of time interval wipes out oscillations: (a) 100× 10
grid of rectangular elements; and (b) 20× 10 grid of rectangular elements.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

T = ∆t = 1 

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

T = ∆t = 1 

(a) (b)

Figure 6. The velocity of the �ow at the centre of every element: (a) 20 × 10 grid of rectangular
elements; and (b) 20× 10 grid of triangular elements.

the smoothness of the analytic solution. In the sequence, a criterion relating the temporal and
spatial steps is presented whereby the domain can be discretized with maximum space steps
and without oscillations in the solution.

4. DISCRETE MAXIMUM PRINCIPLE

The maximum principle is generally used to explore some information about the theoretical
solution of some types of PDE. Speci�cally, it asserts that the solution cannot have a maximum
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Figure 7. Two arbitrary adjacent element with their corresponding edges.

or a minimum within the interior of the underlying domain; besides, it is employed to show
that the solution of certain problems must be non-negative. Accordingly, by applying the
maximum principle to the problem given in (21), we obtain the following (see, e.g., References
[20; 21]):

(i) max
	�×(0;T ]

{p(x; t)}6 max
@�×(0;T ]

{p(x; t); 0}

(ii) min
	�×(0;T ]

{p(x; t)}¿ min
@�×(0;T ]

{p(x; t); 0}
(23)

where 	�=�∪@�:
So the pressure solution cannot have negative values as well as it is restricted between the

Dirichlet boundary values. In the sequence, we verify whether the discrete maximum principle
is obeyed by the discretized scheme given in (20) and this by investigating the following two
properties:

(1) Tn−1P ¿0 ⇒ TnP¿0 (24)

(2) max(TnP)6max(T
n−1
P ) (25)

We shall investigate the positivity of the scheme locally over each macro-element, i.e. tpn−1K;K¿0
⇒ tpnK;E¿0 for E∈Eh; K∈Qh. For the sake of simplicity, we shall introduce the case of
uniform rectangular discretization of the mesh over homogenous isotropic medium such that
K=aI; s=sK ∀K∈Qh, where a is the anisotropic coe�cient and I is the 2×2 identity matrix.
In Figure 7 we consider any two arbitrary adjacent elements in Qh. The local mass

conservation property enables us to rewrite the hybridized mixed formulation over each el-
ement K=K1; K2. By inverting BK in (11) furnished from Darcy’s law discretization, we
get

qK;E=a
(
�K;EpK − ∑

E′⊂@K
(B−1
K )E;E′ tpK;E′

)
∀E⊂@K; K=K1; K2 (26)
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BK can be simply obtained by exact integrations over each element K , its inverse is given by

B−1=B−1
K =2




2
�x2
�x1

�x2
�x1

0 0

�x2
�x1

2
�x2
�x1

0 0

0 0 2
�x1
�x2

�x1
�x2

0 0
�x1
�x2

2
�x1
�x2




(27)

From the spatial and the temporal discretization of the mass conservation equation, we obtain

pnK=p
n−1
K − �t

s�
∑
E⊂@K

qnK;E; K=K1; K2 (28)

Since there is no vertical di�usion of the �ow, we have null �uxes across the horizontal
edges, i.e.

qEt1 =qEb1 =qEt2 =qEb2 =0 (29)

As depicted in Figure 7, the labels l; r; t; b and m refer to left, right, top, bottom and middle
edges, respectively. Now by enforcing the continuity of the �ux through the middle edge and
by eliminating the unknowns qK;E (substitute (29) and (26) into (28)), the following system
is achieved:

c1tpnEm = c2(tp
n
El + tp

n
Er) + c3(p

n−1
K1 + pn−1K2 ) (30)

pnK1 =
1

1 + 2�
pn−1K1 +

�
1 + 2�

(tpnEl + tp
n
Em)

pnK2 =
1

1 + 2�
pn−1K2 +

�
1 + 2�

(tpnEm + tp
n
Er ) (31)

where �=�x1�x2; �=
∑

i=1;4 B
−1
i;1 =6(�x2=�x1); �=a��t=s�; c1=(B

−1
11 +B

−1
22 −2��=(1+2�));

c2=(��=(1 + 2�)− B−1
21 ) and c3=�=(1 + 2�).

It is easy to verify that c1 and c3 are always non-negative, whereas c2 is conditionally
positive.

Proposition 4.1
The discrete maximum principle is satis�ed by the MHFEM if c2 is non-negative, i.e.

c2¿0 ⇔ �x21
�t

6
6a
s

Proof
To verify the positivity of the scheme, the classical mathematical induction technique is
utilized. We suppose that tpn−1K;E ; p

n−1
K ¿0 and let us prove that tpnK;E; p

n
K¿0 ∀K∈Qh; E∈Eh.
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We denote by E⊥ the set of vertical edges of the mesh and Em∈E⊥ such that

tpnEm = min{tpnK;E |E∈E⊥; K ∈ Qh}
We shall only consider the non-trivial case, i.e. Em =∈�D. So Em can be considered as an
interior edge (suppose Em=K1∩K2). Consequently, by applying (30), we get

c1tpnEm = c2(tp
n
El + tp

n
Er ) + c3(p

n−1
K1 + pn−1K2 )

¿ 2c2tpnEm + c3(p
n−1
K1 + pn−1K2 ) (c2; c3¿0)

Since (c1−2c2)¿0 and pn−1K are positive by our assumption then tpnEm¿0 and by making use
of (31), one can deduce the positivity of pnK for all K∈Qh. Now, if E is a horizontal edge
in Eh then one can easily deduce from (26) and (29) that tpnK;E and p

n
K have the same sign.

Therefore, the positivity of the scheme holds. In order to avoid boring repetitions, similar
technique can be used to verify the second property given in (25) by taking

tpnEm = max{tpnK;E |E∈E⊥; K ∈ Qh}

It should be noted that one can get the same results by verifying that the coe�cient matrix
(M−�t N ) is an M -matrix. Since this matrix is symmetric de�nite positive then the M -matrix
property holds by showing that the o�-diagonal entries are non-positive [22]. As a result, in
the general case of rectangular or uniform triangular grids, the MHFEM obeys the discrete
maximum principle if the following criteria are satis�ed for every K∈Qh:

(�x21)K
�t

6



6aK
sK

if K is a rectangle

6aK√
2sK

if K is a triangle
(32)

The above criteria have a physical signi�cation since the fraction (aK=sK)(L2T−1) is the so-
called di�usivity coe�cient [23]. Therefore, by logical inference, the space steps must not
be larger than the displacement pressure in order to prevent negative solutions. It should be
noted that similar criteria are also obtained in the case of standard Galerkin method; how-
ever, numerical experimentations showed that the non-physical oscillations obtained by this
method are relatively less signi�cant than those obtained by the MHFE method (see Fig-
ure 4). On the other hand, the classical �nite di�erence method with one nodal degree of
freedom seeks the approximated pressure by solving of the form a symmetric, de�nite positive
penta-diagonal linear system. Hereby, one can easily verify that the discrete maximum
principle is unconditionally obeyed by showing that the coe�cient matrix is an M -matrix
(see Reference [24]).

5. VARIOUS ALTERNATIVE APPROACHES TO PREVENT OSCILLATIONS

5.1. Re�nement

The global re�nement is maybe the simplest technique in order to enhance the accuracy of
the approximated solution. As we have seen above, the criteria given in (32) enable us to
re�ne the grid with maximum space steps (see Figure 8).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1373–1390



1388 H. HOTEIT ET AL.

0 1 2 3 4 5
 –0.2

0

0.2

0.4

0.6

0.8

1

P
re

ss
ur

e
T = ∆t = 0.05 

Analytical solution
MHEF solution 

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

P
re

ss
ur

e

Analytical solution
MHEF solution 

T = ∆t = 0.05 

(a) (b)

 –0.2

Figure 8. Global re�nement of the grid by using the maximum allowed space step: (a) uniform grid of
rectangular elements, �x1 = (6�t)1=2; and (b) uniform grid of triangular elements �x1 = (3×21=2�t)1=2.

Although speed and storage capabilities of computers have recently improved, the ever
increasing demand to more time and memory requirements is endless. Owing to such circum-
spections, the global re�nement technique may not be preferred in sizable problems.

5.2. Adaptive techniques
In general, two types of adaptive techniques are mostly used; the �rst one is the local re�ne-
ment method whereby uniform �ne grids are added in the regions where the approximated
solution lacks adequate accuracy, and the second is the moving mesh technique where nodes
are relocated at necessary time steps.
We have found that the adaptive techniques could ameliorate the correctness of the solution

despite the fact that their idea may not �t in with the conditions of the discrete maximum
principle. However, we can de�ne a process so that the discrete maximum principle is satis�ed
locally and precisely in the regions where high oscillations occur. Thereafter, we follow a
similar work presented in Reference [25] where the mesh is moved so that a predetermined
estimated error is satis�ed and a system of di�erential equations is used to dominate the
locations of the nodes. In our procedure, the error estimates rely on the properties given in
(23) and the criteria previously discussed in (32) control the motion of the elements. Thus,
we regroup the nodes (or add new nodes) in the regions where the solution behaves sharply
in so that (32) are satis�ed. However, in order to avoid non-smooth or coarse meshes, we
uniformly redistribute the other nodes. By comparing Figures 4 and 9(a), one can clearly
notice the improvement in the approximated solution achieved by the redistribution of the
nodes. In Figure 9(b), we present the MHFE solution at di�erent time simulations. It should
be noted that the requisite solution with respect to the original grid can be simply obtained
by linear interpolations.

5.3. Lumped-mass method
By using the integration formula proposed in References [6; 26; 27] for rectangular elements
and in Reference [28] for acute triangulations (the angles of triangular elements 6�=2), the
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Figure 9. Relocating the mesh nodes at each time step; (a) non-uniform 20 × 10 grid of rectangular
elements; (b) non-uniform 20× 10 grids at di�erent simulation times.

elementary matrix BK boils down to a diagonal matrix and so is M . Then the o�-diagonal
entries of (M −�tN ) are

(M −�tN )E;E′= −�t(RG−1RT)E;E′60 ∀E �=E′; E; E′⊂Eh

Therefore, the coe�cient matrix (M −�tN ) is an M -matrix.

6. CONCLUSION

The mixed-hybrid �nite-element methods have been developed to handle many physical
models where the classical numerical methods such as the �nite-element or the �nite di�erence
methods fail to give satisfactory representative approximations. The superior properties of this
method is that it allows to conserve mass locally besides the primary unknown and its deriva-
tive are approximated simultaneously. In this work we have introduced a brief review of a
non-conforming MHFE formulation corresponding to the lowest order Raviart–Thomas space
which is the most popular. Due to the fact that the MHFEM does not obey the discrete max-
imum principle, many numerical experiments have brought to light some phenomena where
non-physical oscillations are obtained. Accordingly, we have clearly seen such oscillations in
the approximated solution of a simple arti�cial initial-boundary value problem by using rect-
angular and triangular grids. Consequently, a di�usivity criterion relating the space and time
steps is given with respect to both spatial discretizations (rectangular and triangular grids).
Some alternative solutions are suggested to solve this di�culty. The �rst natural remedy is
a global or local re�nement of the grid where we re�ne the mesh at necessary time steps
in a way that we regroup the nodes in the regions where fast changes in the solution occur.
The second idea is to use the mass-lumping technique whereby integrations are evaluated by
using some approximation formula. Such techniques enable to reduce the MHFE method to
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the �nite di�erence or �nite volume methods and in both cases the discrete maximum principle
is obeyed.

REFERENCES

1. Ackerer Ph, Younes A, Mose R. Modeling variable density �ow and solute transport in porous medium: 1.
Numerical model and veri�cation. Transport in Porous Media 1999; 35:345–373.

2. Yeh G. Computational Subsurface Hydrology: Fluid Flows. Kluwer Academic Publishers: The Pennsylvania
State University, 1999.

3. Raviart PA, Thomas JM. A Mixed Hybrid Finite Element Method for the Second Order Elliptic Problem.
Lectures Notes in Mathematics, vol. 606. Springer: New York, 1977; 292–315.

4. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Method. Springer: New York, 1991.
5. Yotov I. Mixed �nite element methods for �ow in porous media. Ph.D. Thesis, University of Texas, 1996.
6. Chavent G, Roberts J-E. A uni�ed physical presentation of mixed, mixed-hybrid �nite element method and
standard �nite di�erence approximations for the determination of velocities in water �ow problems. Advances
in Water Resources 1991; 14(6):329–348.

7. Arnold D, Brezzi F. Mixed and nonconforming �nite element methods: implementation, postprocessing and error
estimates. RAIRO Mod�elisation Mathematique Analyse Num�erique 1985; 19:7–32.

8. Arbogast T, Wheeler M, Yotov I. Mixed �nite elements for elliptic problems with tensor coe�cients as cell-
centered �nite di�erences. SIAM Journal on Numerical Analysis 1997; 34(2):828–852.

9. Nakata M, Weiser A, Wheeler M. Some superconvergence results for mixed �nite elements for elliptic problems
on rectangular domains. The Mathematics of Finite Elements and Applications. Academic Press: London, 1985;
367–389.

10. Hennart J-P. Nodal schemes, mixed-hybrid �nite elements and block-centered �nite di�erences. Rapport de
Recherche INRIA, No. 386, 1985.

11. Mose R, Siegel P, Ackerer Ph, Chavent G. Application of the mixed-hybrid �nite element approximation in a
ground water �ow model: luxury or necessity? Water Resources Research 1994; 30(11):3001.

12. Durlofsky L. Accuracy of mixed and control volume �nite element approximations to Darcy velocity and related
quantities. Water Resources Research 1994; 30(4):965.

13. Thomas J. Sur l’Analyse Num�erique des M�ethodes d’El�ement Finis Hybrides et Mixtes. Th�ese de Doctorat
d’Etat, Univ. de Pierre et Marie Curie, 1977.

14. Johnson C, Thom�ee V. Error estimates for some mixed �nite element methods for parabolic type problems.
RAIRO Analyse Num�erique 1981; 15:41–78.

15. Brezzi F, Marini L, Pietra P. Two-dimensional exponential �tting and applications to drift–di�usion models.
SIAM Journal on Numerical Analysis 1989; 26(6):1342–1355.

16. Chavent G, Ja�r�e J. Mathematical Models and Finite Elements for Reservoir Simulation. Elsevier Science:
Netherlands, 1986.

17. Kaasschieter E, Huijben A. Mixed-hybrid �nite elements and streamline computation for the potential �ow
problem. TNO-Report PN 90-02-A, TNO Institute of Applied Geoscience, 1990.

18. Hoteit H, Erhel J, Mos�e R. Numerical reliability and time requirements for the mixed methods applied to �ow
problems in porous media. Computational Geosciences, to appear.

19. Carslaw H, Jaeger J. Conduction of Heat in Solids. Clarendon: Oxford, 1959;363–365.
20. Protter M, Weinberger H. Maximum Principles in Di�erential Equations. Prentice-Hall Partial Di�erential

Equations Series. Prentice-Hall: Englewood cli�s, NJ.
21. Renardy M, Rogers R. An Introduction to Partial Di�erential Equations. Springer: New York.
22. Windisch G. M -matrices in numerical analysis. Teubner-Texte zur Mathematikische:115,1989.
23. Marsily G. Hydrog�eologie Quantitative. Masson: Paris, 1981.
24. Amiez G, Gremand P. On a numerical approach of Stefan-like problems. Numerische Mathematik 1991; 59:

71–89.
25. Adjerid S, Flaherty J. A moving �nite element method with error estimation and re�nement for one-dimensional

time dependent partial di�erential equations. SIAM Journal on Numerical Analysis 1986; 23(4):778–796.
26. Russell T, Wheeler M. Finite element and �nite di�erence methods for continuous �ows in porous media. In

The Mathematics of Reservoir Simulation, Ewing R (ed.), SIAM: Philadelphia, PA, 1983; 35–106.
27. Arbogast T, Wheeler M, Yotov I. Enhanced cell-centered �nite di�erences for elliptic equations on general

geometry. SIAM Journal on Scienti�c Computing 1998; 19:404–425.
28. Baranger J, Maitre JF, Oudin F. Convection between �nite volume and mixed �nite element methods. Equipe

d’analyse Numerique Lyon Saint-Etienne No. 198, 1995.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:1373–1390


