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In order to simulate the nonlinear behaviour of elastomer composite materials, we use
a homogenization technique which induces nonlinear problems. This paper presents a non-
incremental solving method which allows the reduction of computational costs. In this paper
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1. Introduction

Nowadays there is an increasingly widespread use of elastomer materials in auto-
mobile, space, aeronautic, railway or pneumatic industries for links in binding, damping
or tightness processes. Reinforcements (e.g., fibers, carbon black, etc.) are traditionally
used within these links to improve their mechanical properties. However, when deal-
ing with the computation of the resulting mechanical behaviour, this association raises
great difficulties which stem from the large number of heterogeneities and the nonlinear
behaviour.

Elastomer materials and more generally nonlinear elastic materials have been
widely studied as the literature reveals [1,2,10,20]. Different procedures may be used
to compute the mechanical behaviour of such nonlinear composite materials. The first
consists in determining bounds from the equivalent strain energy density [24–26] at low
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numerical cost. However, this approach does not allow us to compute the sought be-
haviour of such materials accurately, and gives no information about stress and strain
at the heterogeneity level. Such methods are thus inefficient for industrial applica-
tions.

Here we choose to use a homogenization technique [22], well suited for nonlinear
elasticity problems and related to composites with periodic microstructures. This re-
duces the numerical cost of the simulations. In nonlinear elasticity, instability (such as
buckling on the composite’s microscale) could occur, due to the strain energy density
not being a convex function of the deformation gradient. This homogenization tech-
nique would thus require us to consider variations which are periodic over a set of cells.
However, in the case presented here where no such bifurcation phenomena are encoun-
tered, variations over only one period can be considered [18]. The technique in this
case consists in solving microscopic and macroscopic problems, coupled to one an-
other by mean relations. This allows us to compute the macroscopic and microscopic
displacement fields and the first macroscopic and microscopic Piola–Kirchhoff stress
tensors.

Since the behaviour induces nonlinearities, the problem requires a nonlinear solv-
ing method. An incremental algorithm has already been developed in [13,14]. However,
since it converges too slowly [5], it requires too much CPU time. To reduce compu-
tational costs, we propose a non-incremental algorithm initially used for plastic and
elastoplastic materials [19]. It consists in splitting up the equations into a group of
nonlinear equations to be solved locally in space and a group of linear equations to be
solved over the complete structure. In the case studied here, it thus consits in comput-
ing couples of microscopic and macroscopic strain and stress, alternatively satisfying
the linear and nonlinear equations [7]. However, the convergence of this algorithm has
not been proved yet. The purpose of this paper is to prove the convergence of the pro-
posed solving method, when it is applied to the elastomer composite homogenization
technique.

Section 2 of this paper presents the problem considered and the homogenization
technique used. In section 3, the solving method is introduced. Let L (respectively
NL) be the set of strain and stress satisfying the linear equations (respectively nonlin-
ear equations) and the transformation operator H+ (respectively H−). We assume that
all continuous problems considered have a unique solution in some appropriate space
which we do not define precisely. We use a classical finite element discretization and
assume that the discrete problems considered have unique solution in the space of finite
dimension defined by the discretization. We use the Euclidian norm in that space. Our
main contribution is then the proof of the convergence of our algorithm. In section 4, we
first prove that the particular choice of H+ and H− leads to a discrete method equivalent
to a Newton-type method. Under classical assumptions, we can then derive a conver-
gence proof. Section 5 is a study of a unidirectional composite with numerical results
which highlight the efficiency of our algorithm.
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2. The problem considered

2.1. The heterogeneous problem

We consider the heterogeneous nonlinear elastic structure B which occupies a do-
main denoted by � included in R

3 with respect to its undeformed, stress-free state.
If we denote respectively by Tε, Fε, Uε, eε the heterogeneous first Piola–

Kirchhoff stress tensor, deformation gradient tensor, displacement field and strain en-
ergy density, and assume that there are no body forces, the problem to be solved in �

under the assumption of quasi-static deformation is written:


divxTε = 0; Tε = ∂eε

∂F

(
x, Fε

); Fε = 1 + ∇xUε in �;
T(N) = g on ∂�g; U = U on ∂�u

(1)

where ∂�u denotes the external boundary of � where displacement U is prescribed,
∂�g the external boundary of � where stress g is prescribed, N the unit external normal
to ∂�g, and divx, ∇x respectively denote the divergence and the gradient operator with
respect to the space variables (x1, x2, x3).

Since we assume that each component is homogeneous and isotropic, the behaviour
of the composite’s components depends only on the principal invariants i1, i2, i3 of the
dilatation tensor C [23]. They are defined as follows:




C = tFε Fε;
i1 = det(C); i2 = 1

2

[(
det(C)

)2 − det
(
C2

)]; i3 = tr(C)

where tFε, det(C) and tr(C) respectively denote the transpose of Fε, the determinant
of C and the trace of C which leads to eε(x, Fε) = eε(x, i1, i2, i3).

We assume that problem (1) has a unique solution in some appropriate space.

Remark. As illustrated in figures 1 and 2, elastomeric composite materials have in gen-
eral a unique response and behavior under specific prescribed loadings or displacements.
For this reason, assuming a unique solution makes sense according to the physics of the
problem considered.

In order to solve (1), we must use a discretization technique such as a finite element
method. We recall that the heterogeneities in the structure are much smaller than the
size of the structure. In order to take into account all these heterogeneities, the finite
element mesh should be very thin, in which case too many computations would result.
To avoid such numerical overheads, it is now standard to introduce a homogenization
technique [4,22].
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Figure 1. Response of test-tubes of naturel rubber reinforced by black of carbon under uni-axial tension
test.

Figure 2. Response of test-tubes of naturel rubber reinforced by silica under uni-axial tension test.

2.2. The homogenization problem

The classic homogenization technique for the study of linear elastic Y-periodic
composite structure, allows us to obtain a great deal of information at the level of struc-
ture B but also at the level of the heterogeneities. We assume that the material studied
has a periodical (mechanical and geometrical) structure in such a way that the definition
of its period (or representative volume element) allows it to be known. We also assume
that Y does not contain holes, nor cracks and is undamaged. Moreover, denoting by H

a representative length of the structure �, and by L one of the basic cells Y, we assume
that the ratio

ε = L

H
(2)

is such that ε � 1. This parameter allows us to define the heterogeneity level.
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The microscopic strain energy density is defined by

y → e(y, f) Y-periodic in y, ∀y ∈ Y. (3)

Once Y has been defined, we can build the geometry and the behaviour of the structure B.
The geometric definition of B is defined by successive translations in the three spacial
directions, and the strain energy density eε is given by

eε(x,F) = e

(
x

ε
,F

)
, ∀x ∈ �. (4)

In order to define the strain energy density E of the homogeneous equivalent materials,
as ε converges to 0, which means that the heterogeneities are much smaller than the
structure, let us introduce test functions Vε ∈ Uad [4] defined by

Uad = {
V | V = U on ∂�u

}
,

(5)
UY

ad = {
v(x, y) ∈ Uad ∀y ∈ Y and v(x, y) Y-periodic in y

}
,

Vε(x)= V(x) + εv
(

x,
x

ε

)
, V ∈ Uad and v ∈ UY

ad. (6)

By setting y = x/ε, we introduce two different scales in the problem:

• a macroscopic scale of reference (O, x1, x2, x3), linked to the structure B, in which
the size of the heterogeneities are smaller than the unit;

• a microscopic scale of reference (O, y1, y2, y3) (with yi = xi/ε), linked to the basic
cell Y, in which the size of the heterogeneities is related to unit size.

We assume that the strain energy density of the homogeneous equivalent material con-
verges to the density E, which does not explicitely depend on y, as ε converges to 0.
This strain energy density E is defined by

E = inf
k∈N

{
min
V, v

1

k3

1

|Y|
∫
kY

e
(
y,F(V) + ∇yv

)
dy

}
, (7)

where F(V) = 1 + ∇xV and |Y| is a measure of Y.

Remark. More precise informations of this result can be found in [22].

Here a minimisation on the number of basic cells can be noted. This allows us to
take into account instability phenomena such as microscopic buckling. If we assume that
such phenomena cannot happen then this minimisation step is not required, and k = 1
[18].

We have to solve the problem


Find U ∈ Uad and u ∈ UY
ad such as:

E(U, u) = min
V, v

∫
�

1

|Y|
(∫

Y
e(y, 1 + ∇xV + ∇yv) dy

)
d�,

(8)
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denoting by T, F and U the macroscopic first Piola–Kirchhoff stress tensor, gradient ten-
sor and displacement field respectively and by τ , f and u their microscopic equivalents.
It is easy to prove that problem (8) is equivalent to the following:

Macroscopic problem.
divxT = 0; T = ∂E

∂F
(x,F); F = 1 + ∇xU in �;

U = U on ∂�u; T(N) = g on ∂�g.

(9)

Microscopic problem.
divyτ = 0; τ = ∂e

∂f
(y, f); f = F + ∇yu in Y;

u Y-periodic; τ (n) Y-antiperiodic
(10)

where divy and ∇y denote the divergence and the gradient operator with respect to the
space variables y1, y2, y3, respectively, and where n is the unit external normal to Y. The
microscopic strain energy density e is assumed to be known as we know the behaviour
of each component. On the other hand, the macroscopic density E is implicitly defined
by (11).

Microscopic–macroscopic relations. Finally, the macroscopic strain energy density E
of the equivalent homogeneous material is defined by the following coupling relations,

E = 〈e〉Y, T = 〈τ 〉Y, F = 〈f〉Y, (11)

with 〈h〉Y = (1/|Y|) ∫Y h dy.

In the sequel, we describe our algorithm to solve these coupled nonlinear prob-
lems (9)–(11).

3. Non-incremental algorithm

Our non-incremental algorithm, is adapted from the method initially developed to
study viscoplastic structures [11,19].

This algorithm consists of computing couples S = ((U,T); (u, τ )), alternatively
belonging to the sets L and NL, defined below. The method is defined by two operators,
H+ :L → NL and H− :NL → L and by the iterations:

S0 ∈ L,

Sn+1/2 ∈ NL, and Sn+1/2 = H+(
Sn

); Sn+1 ∈ L, and Sn+1 = H−(
Sn+1/2

)
.



M. Brieu, J. Erhel / Non-incremental homogenization method 147

3.1. Choice of L and NL

In order to split the equations, we assume that the macroscopic boundary conditions
on ∂� are linear. We define the sets L and NL by

NL =
{(
(T,U); (τ ,u)

)
such that (14)

∣∣τ = ∂e

∂f
in Y

}
, (12)

L = {(
(T,U); (τ ,u)

)
such that (14)

∣∣{divxT = 0 in �; T(N) = g on ∂�g;
divyτ = 0 in Y; τ (n) Y-antiperiodic

}}
(13)

where{
T = 〈τ 〉Y; F = 〈f〉Y; F = 1 + ∇xU in �; U = U on ∂�u

f = F + ∇yu in Y; u Y-periodic.
(14)

3.2. Computation of S0

The first step of this algorithm consists in computing an initial approximation
S0 ∈ L, as cheaply as possible. To this end, we linearise the microscopic law near f = 1,
so that S0 is defined by

{
divyτ

0 = 0; τ 0 = q0(y)
(∇xU0 + ∇yu0

)
in Y,

u0 Y-periodic; τ 0(n) Y-antiperiodic
(15)

where

q0(y) = ∂2e

∂f ∂f
(y, f = 1), (16){

divxT0 = 0; T0 = Q0∇xU0 in �,

U0 = U on ∂�u; T0(N) = g on ∂�g

(17)

where the homogenized stiffness tensor Q0 is implicitly defined by

T0 = 〈
τ 0

〉
Y; F0 = 〈

f 0
〉
Y. (18)

Thus, we get a coupled linear system, solved by a method similar to step n + 1 given
in (3.4).
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3.3. Step n + 1/2: from L into NL

Let B = {(τ , f)}, with τ and f in some appropriate space. The operator H+ we
have chosen is defined by

H+ :B → NL,

(
τ n, f n

) → (
τ n+1/2, f n+1/2

)
with




f n+1/2 = f n,

τ n+1/2 = ∂e

∂f

(
y, f n+1/2).

(19)

We make this choice because it is then easy to compute Sn+1/2. Moreover, the equations
we have to deal with are local in space. The iterate Sn+1/2 = ((Un+1/2,Tn+1/2), (un+1/2,

τ n+1/2)) is thus defined by


Tn+1/2 = 〈
τ n+1/2

〉
Y; Fn+1/2 = 〈

f n+1/2
〉
Y in �;

Un+1/2 | ∇xUn+1/2 = Fn+1/2 − 1 in �; U = U on ∂�u;
τ n+1/2 = ∂e

∂f

(
y, f n+1/2); f n+1/2 = f n in Y;

un+1/2|∇yun+1/2 = f n+1/2 − Fn+1/2 in Y; un+1/2 Y-periodic.

(20)

It may be noted that

∀ S ∈ NL, H+(S) = S.

Also if S� is a solution of (9)–(11) then H+ (S�) = S�.

3.4. Step n + 1: from NL into L

In order to define H−, we notice that there is no behaviour law connecting stress
and strain. Then the operator H− we have chosen is a “tangent” operator such that

H− :B → L,(
τ n+1/2, f n+1/2

) → (
τ n+1, f n+1

)
,

with τ n+1 = τ n+1/2 + ∂2e

∂f ∂f

(
y, f = f n+1/2

)(
f n+1 − f n+1/2

)
.

(21)

The approximation Sn+1 is given by{
divyτ

n+1 = 0; τ n+1 = pn+1/2 + qn+1/2
(∇xUn+1 + ∇yun+1

)
in Y,

un+1 Y-periodic; τ n+1(n) Y-antiperiodic,
(22)


divxTn+1 = 0; Tn+1 = ∂E

∂F

(
x,Fn+1

); Fn+1 = 1 + ∇xUn+1 in �,

Un+1 = U on ∂�u; Tn+1(N) = g on ∂�g

(23)
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where E is implicitly defined by

Tn+1 = 〈
τ n+1〉

Y; Fn+1 = 〈
f n+1〉

Y (24)

and where

qn+1/2 = ∂2e

∂f ∂f

(
y, f = f n+1/2

);
pn+1/2 = τ n+1/2 + qn+1/2

(
1 − f n+1/2

)
.

(25)

It may be noted that

∀S ∈ L, H−(S) = S

and also that H− (S�) = S�.
Finally, since τ n+1 is a linear function of ∇xUn+1, we split the microscopic fields

as follows:

un+1 = vn+1 − χkl ∂Uk

∂xl
, τ n+1 = tn+1 + σ kl ∂Uk

∂xl
, (26)

where the ten couples (tn+1, vn+1) and (σ kl,χ kl) ((k, l) ∈ {1, 2, 3}2) are solutions of{
divytn+1 = 0; tn+1 = pn+1/2 + qn+1/2∇yvn+1 in Y,

vn+1 Y-periodic; tn+1(n) Y-antiperiodic
(27)

and {
divyσ

kl = 0; σ kl = qn+1/2
(
1kl − ∇yχ

kl
)

in Y,

χ kl Y-periodic; σ kl(n) Y-antiperiodic
(28)

where (1kl)ij = δikδkl .
These problems are linear and independent of the unknown macroscopic fields, so

they are easy to solve.
We assume that problems (27), (28) have a unique solution.
Once problems (27) and (28) have been solved, we compute the macroscopic fields

Tn+1 and Un+1 by solving the following linear problem{
divxT = 0; T = Pn+1 + Qn+1∇xUn+1 in �;
Un+1 = U on ∂�u; Tn+1(N) = g on ∂�g

(29)

with

Qn+1
ijkl = 〈

σ kl
ij

〉
Y; Pn+1

ij = 〈
tn+1
ij

〉
Y. (30)

We assume that (30) has a unique solution.
Finally, we compute the microscopic fields using (26).
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3.5. Convergence criterion

The solution S� satisfies S� ∈ L ∩ NL, so H+(S�) = H−(S�) = S�.
As usual, we define a stopping criterion based on the difference between two ite-

rates. We choose a criterion using both microscopic and macroscopic energies defined
by 


en+1 = ‖τ n+1: f n+1 − τ n+1/2: f n+1/2‖Y

‖τ n+1/2: f n+1/2‖Y
;

En+1 = ‖Tn+1 : Fn+1 − Tn+1/2: Fn+1/2‖�
‖Tn+1/2: Fn+1/2‖� ; raten+1 = sup

(
en+1, En+1

)
with ‖ · ‖Y = ∫

Y | · | dy and ‖ · ‖� = ∫
�

| · | dx. The stopping test is then

raten+1 < ε (31)

where ε has to be specified.

3.6. Discretization

In order to compute Sn+1, we first give the variational formulation at step n + 1,
and then we discretize it.

Let us denote by uad the space of the microscopic admissible displacement field,
defined by

uad = {v | v Y-periodic}. (32)

Let us introduce Uad, the space of the macroscopic admissible displacement fields, de-
fined by

Uad = {V | V = U on ∂�u}, (33)

and denote by U0
ad the vectorial space associated to Uad, defined by

U0
ad = {V | V = 0 on ∂�u}. (34)

Then, it is easy to prove that the variational formulation of (22), (23) and (24) is given
by

Un+1 ∈ Uad, un+1 ∈ uad such that{
an+1

(
un+1, v

) = ln+1(v), ∀v ∈ uad

An+1
(
Un+1,V

) = Ln+1(V), ∀V ∈ U0
ad

(35)

with 

an+1(u, v) =

∫
Y

qn+1/2∇yu∇yv dy,

ln+1(v) = −
∫

Y

(
pn+1/2 + qn+1/2∇xUn+1

)∇yv dy

(36)
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and



An+1(U,V) =

∫
�

(∫
Y

qn+1/2 dy

)
∇xU∇xV dx,

Ln+1(V) =
∫
∂�g

gV dx −
∫
�

(
1

|Y|
( ∫

Y

(
pn+1/2 + qn+1/2∇yun+1

)
dy

))
∇xV dx.

(37)
Problem (35) may be discretized by approximating uad, Uad and U0

ad by spaces of finite
dimension, using a finite element method [9,15]. Let us introduce the subspaces uhad, Uh

ad

and U0,h
ad of finite dimension with

dim uhad = nh; dimUh
ad = dimU0,h

ad = Nh.

By choosing for V and v the basis vectors �i and � i of R
Nh and R

nh , respectively, we
get the following problem:

Un+1,h ∈ Uh
ad, un+1,h ∈ uhad such that{

an+1
(
un+1,h,� i

) = ln+1
(
� i

)
, ∀i = 1, . . . , nh,

An+1
(
Un+1,h,�i

) = Ln+1
(
�i

)
, ∀i = 1, . . . , Nh.

(38)

4. Convergence of the algorithm

In order to prove convergence, we first write the variational formulation of prob-
lem (9)–(11), and discretize it. Then we prove that, with our choice of the sets L, NL
along with our choice of the operators H+ and H−, we get an algorithm which is equiv-
alent to a Newton-type method. This result allows us to prove convergence.

4.1. Discretization

It is easy to prove that the variational formulation of the nonlinear problem (9)–(11)
is given by

U ∈ Uad, u ∈ uad such that{
a′(u, v) = 0, ∀v ∈ uad,

A′(U,V) = L′(V), ∀V ∈ U0
ad

(39)

with

a′(u, v) =
∫

Y

∂e

∂f
(y, f = 1 + ∇xU + ∇yu)∇yv dy (40)
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and 

A′(U,V) =

∫
�

1

|Y|
( ∫

Y

∂e

∂f
(y, f = 1 + ∇xU + ∇yu) dy

)
∇xV dx,

L′(V) =
∫
∂�g

gV dS.
(41)

We use the same finite element method as previously. The discrete problem is

Uh ∈ Uh
ad, uh ∈ uhad such that: Fi

(
Uh,uh

) = 0, ∀i = 1, . . . , Nh + nh, (42)

where{
Fi

(
Uh,uh

) = a′(uh,� i
)
, ∀i = 1, . . . , nh

Fi

(
Uh,uh

) = A′(Uh,�i−nh
) − L′(�i−nh

)
, ∀i = 1 + nh, . . . , nh + Nh.

(43)

In order to solve this problem, let us consider a Newton-type method.

4.2. Newton-type method

In the sequel, we omit the exponent h but all fields are discretized. The Newton
method is defined by the iterations(

Un+1, un+1
) = (

Un,un
) + (

Wn,wn
)

(44)

where

F
(
Un,un

) + J
(
Un,un

)(
Wn,wn

) = 0 (45)

and J (Un,un) is the Jacobian of F (Un,un). Let us consider J (Un,un)(Wn,wn).

Lemma 1. Let f(u,U) = 1 + ∇xU + ∇yu. Then

∂

∂U

(
∂e

∂f
(y, f)

)
(W)= ∂2e

∂f ∂f
(y, f)∇xW,

∂

∂u

(
∂e

∂f
(y, f)

)
(w)= ∂2e

∂f ∂f
(y, f)∇yw.

Proof. As f is linear with respect to U and u, we have

∂f
∂U

(W) = ∇xW; ∂f
∂u

(w) = ∇yw,

so

∂

∂U

(
∂e

∂f

)
(W)= ∂2e

∂f ∂f
∂f
∂U

(W) = ∂2e

∂f ∂f
∇xW,

∂

∂u

(
∂e

∂f

)
(w)= ∂2e

∂f ∂f
∂f
∂u

(w) = ∂2e

∂f ∂f
∇yw. �
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Theorem 2.

J
(
Un,un

)(
Wn,wn

) = (
An
i

)
1�i�nh+Nh

with


An
i =

∫
Y

qn
(∇xWn + ∇ywn

)∇y�
i dy, 1 � i � nh,

An
i =

∫
�

1

|Y|
(∫

Y
qn

(∇xWn + ∇ywn
)

dy

)
∇x�

i dx, nh + 1 � i � nh + Nh

and with qn = (∂2e/(∂f ∂f ))(y, f = 1 + ∇xUn + ∇yun).

Proof. By definition of F (43):


Fi =
∫

Y

∂e

∂f
(y, f)∇y�

i dy, 1 � i � nh,

Fi =
∫
�

1

|Y|
( ∫

Y

∂e

∂f
(y, f) dy

)
∇x�

i−nh dx −
∫
∂�g

g�i−nh dS,

nh + 1 � i � nh + Nh,

where (∂e/∂f)(y, f) = (∂e/∂f)(y, f = 1 + ∇xUn + ∇yun). As

J
(
Un,un

)(
Wn,wn

) =
(
∂Fi

∂U

(
Un,un

)(
Wn

) + ∂Fi

∂u

(
Un,un

)(
wn

))
1�i�nh+Nh

for 1 � i � nh, we have by use of lemma 1

∂Fi

∂U
(u,U)

(
Wn

) =
∫

Y

∂

∂U

(
∂e

∂f
(y, f)

)(
Wn

)∇y�
i dy

=
∫

Y

∂2e

∂f ∂f
(y, f)∇xWn∇y�

i dy

and

∂Fi

∂u
(u,U)

(
wn

) =
∫

Y

∂2e

∂f ∂f
(y, f)∇ywn∇y�

i dy.

We can also prove that for 1 + nh � i � nh + Nh:

∂Fi

∂U
(u,U)

(
Wn

) =
∫
�

1

|Y|
( ∫

Y

∂2e

∂f ∂f
(y, f) dy

)
∇xWn∇x�

i−nh dx,

=
∫
�

1

|Y|
( ∫

Y

∂2e

∂f ∂f
(y, f)∇xWn dy

)
∇x�

i−nh dx,

∂Fi

∂u
(u,U)

(
wn

) =
∫
�

1

|Y|
( ∫

Y

∂2e

∂f ∂f
(y, f)∇ywn dy

)
∇x�

i−nh dx.
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Finally, by summation over i (i ∈ {1, . . . , nh + Nh}) of (∂Fi/∂U)(u,U)(Wn) and
(∂Fi/∂u)(u,U)(wn), we obtain the result. �

Therefore, problem (45) is equivalent to

Wn ∈ Uh
ad, wn ∈ uhad



∀i, 1 � i � nh,∫
Y

∂e

∂f

(
y, f = f n

)∇y�
i dy +

∫
Y

qn
(∇xWn + ∇ywn

)∇y�
i dy = 0,

∀i, 1 + nh � i � nh + Nh,∫
�

1

|Y|
(∫

Y

∂e

∂f

(
y, f = f n

)
dy

)
∇x�

i−nh dx −
∫
∂�g

g�i−nh dS

+
∫
�

1

|Y|
( ∫

Y
qn

(
y, f = f n

)(∇xWn + ∇ywn
)

dy

)
∇x�

i−nh dx = 0

(46)

with f n = 1 + ∇xUn + ∇yun.

Theorem 3. If the initial solution and the finite element method used are the same for
the non-incremental method and the Newton-type method, if the discrete problems con-
sidered have a unique solution, the discretized non-incremental method (38) and the
Newton-type method (46) are equivalent.

Proof. As a result of (19) and (25) we have

∂2e

∂f ∂f

(
y, f = f n

) = qn+1/2

and also ∇xWn + ∇ywn = f n+1 − f n.
The first equation of (38) is equivalent to∫

Y

∂e

∂f

(
y, f = f n

)∇y�
i dy +

∫
Y

q n+1/2(f n+1 − f n
)∇y�

i dy = 0, 1 � i � nh.

Because of (19) and (25) it follows that

pn+1/2 = ∂e

∂f

(
y, f = f n

) + qn+1/2(1 − f n
)

and since

f n+1 = 1 + ∇xUn+1 + ∇yun+1

we have finally∫
Y

q n+1/2∇yun+1∇y�
i dy +

∫
Y

(
pn+1/2 + q n+1/2∇xUn+1)∇y�

i dy = 0,

for 1 � i � nh.
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The first set of equations of (46) and (38) are equivalent. The proof is similar for the
second set of equations. Thus if the initial solution and the finite element method used
are the same for both methods, then they are equivalent. �

Finally, we conclude that our specific choice of H+ and H− implies that the non-
incremental method proposed is equivalent to a Newton-type method.

4.3. Convergence

In order to prove the convergence of our method, we need to make a few more
assumptions.

• H1: ∃β ∈ R
+ such as∥∥∥∥

(
∂2e

∂f ∂f

)−1∥∥∥∥ � β with ‖q‖ = max
‖f‖=1

‖qf‖ and q = ∂2e

∂f ∂f

and ‖f‖ = ∑3
i=1,j=1 ‖fij‖.

• H2: ∂2e/(∂f ∂f) is such that ∃α ∈ R
+ such as∥∥∥∥ ∂2e

∂f ∂f
(y, f1) − ∂2e

∂f ∂f
(y, f2)

∥∥∥∥ � α‖f1 − f2‖.

These assumptions lead to the following theorem.

Theorem 4. We assume that all discrete problems considered have a unique solution and
that H1 − H2 hold. Then the non-incremental method converges locally and quadrati-
cally.

Proof. Under our assumptions, the nonlinear discrete problem to solve has a unique
solution and our non incremental method is equivalent to a Newton-type method.

Assumptions H1 and H2 guarantee the convergence [12]. �

5. Numerical application

In order to assess the performance of our non-incremental algorithm presented
above, we use it here in the case of unidirectional composites. This case requires, a
priori, the use of a finite element method for the solution of the microscopic problems,
as well as for the macroscopic problem. In the case of prescribed loadings such that
heterogeneous distribution of deformations is obtained at the macroscopic scale, the
computation of the macroscopic problem indeed requires the use of an adapted numeri-
cal scheme. Thus we consider, in the sequel, only macroscopic loadings inducing ho-
mogeneous distributions of macroscopic deformations, such as defined in table 1. The
structure considered is parallelipedic.
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Table 1
Macroscopic loadings prescribed (Tt: tangential component of T(N); UN: normal dis-

placement).

Uniaxial tension on (O, xi) UN = ±U , Tt = 0 on |xi | = Li
T(N) = 0 on ∂� | |xi | = Li

Biaxial tension on (O, xi , xj ) UN = ±Ui , Tt = 0 on |xi | = Li
UN = ±Uj , Tt = 0 on |xj | = Lj
T(N) = 0 on ∂�|(|xi | = Li ∪ |xj | = Lj )

Pure shear on (O, xi , xj ) Un = Ui, Tt = 0 on |xi | = Li
and (O, xi ) T(N) = 0 on |xj | = Lj

UN = 0, T(N) = 0 on ∂�|(|xi | = Li ∪ |xj | = Lj)

5.1. Choice of the basic cell

The reinforcements of the chosen unidirectional composite are assumed to be all
aligned in the same direction (O, y3) (parallel to (O, x3)) with circular section. More-
over, they are assumed to be distributed at the corners of a regular square mesh. The
components of the basic cell are assumed to be homogeneous and isotropic in such a way
that, because of these properties and the geometry of the basic cell, the homogeneous
equivalent behaviour is orthotropic. Because of the nature of the composite considered,
it is shown that the problem requires only a two-dimensional study [21].

The strain energy densities of the components of the basic cell have been chosen
as follows:

• matrix: Harth–Smith modified [20]

e(I1, I2, I3) = E1

∫ I1

3
eE3(I1−3)2 dI1 +

∫ I2

3

E2

IE4
2

dI2 + E5(I3 − 1) − B ln I3

with 


λ = 4

(
E5 + E2

3E4

(
1 − 4

E4

3

))
,

µ = 2

(
E1 + E2

3E4

)
, Ei � 0, ∀i ∈ {1, . . . , 5},

(λ, µ: Lamé’s coefficients),

B = E1 + 2
E2

3E4
+ E5

where we have chosen

E1 = 3 · 105 Pa, E2 = 106 Pa, E3 = 0.03,

E4 = 0.63, E5 = 5 · 105 Pa,
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which leads to a Young’s modulus (E) and a Poisson ratio (ν), respectively, equal to

E = 1.5 · 106 Pa, ν = 0.42,

• fiber: Ciarlet–Geymonat [10]:

e(I1, I2, I3) = E1

2
(I1 − 3) + E2

2
(I2 − 3) + E3

2
(I3 − 3) − B ln I3

with 


E2 = µ − E1,

E3 = λ

2
− E2, Ei � 0, ∀i ∈ {1, . . . , 3},

(λ, µ: Lamé’s coefficients),

B = E1 + 2E2 + E3

where E1 = 1.16 · 108 Pa, E = 1.109 Pa, ν = 0.3.

5.2. Results

Figure 3 presents a comparison between the non-incremental method and an incre-
mental one [13,14]. As the number of iterations N in the incremental method increases,
the result obtained approaches that of the non-incremental method. Moreover, as the in-

Figure 3. Comparison of the result of a non-incremental and an incremental method.
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Figure 4. CPU times comparison.

cremental method leads to accurate results [14], we conclude that our new method is
efficient for simulating the behaviour of such composites.

Figure 4 compares the CPU times required for both methods. First of all, let us
note that CPU times of the incremental method do not depend on the loading conditions
but only on the number of iterations. An impressive reduction of CPU time of about
95% is obtained.

Figure 5 presents the various convergence behaviours. As expected, the conver-
gence rate is quadratic.

Finally, in order to analyse the influence of the initial solution, figure 6 shows
the convergence curves in the case of uniaxial tension on (O, x1) which induces a 50%
deformation. This result highlights the local convergence of the proposed algorithm.

6. Conclusion

In this paper we presented a non-incremental method to solve nonlinear problems
induced by a homogenization technique for elastomer composite materials. The method
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Figure 5. Convergence rate.

Figure 6. Influence of the initial solution.
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relies on a judicious splitting of the different difficulties into two different groups, and
on operators H+ and H− iterating from one group into the other. Each iteration then
requires to solve either nonlinear problems which are local in space or problems which
are global in space but linear.

The main result of this paper is the proof that this method is equivalent to a Newton-
type method. It is thus easy to conclude that there is local quadratic convergence.

In order to assess the global convergence, we plan to investigate Newton methods
with backtracking or continuation methods such as incremental Newton.

Our choice of operators and subspaces lead to the Newton method. We are also
looking for new operators or splitting wich could speed-up the method.

Another way to reduce the CPU time is to design parallel algorithm. The local step
is easy to parallelize and the global linear step can be parallelized by a substructuring
method. We have implemented a parallel version of our method, so that we can deal
with complex composite structures [6,8].
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