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In this paper, we consider several finite-difference approximations for the three-dimensional
biharmonic equation. A symbolic algebra package is utilized to derive a family of finite-
difference approximations for the biharmonic equation on a 27 point compact stencil. The
unknown solution and its first derivatives are carried as unknowns at selected grid points. This
formulation allows us to incorporate the Dirichlet boundary conditions automatically and there
is no need to define special formulas near the boundaries, as is the case with the standard dis-
cretizations of biharmonic equations. We exhibit the standard second-order, finite-difference
approximation that requires 25 grid points. We also exhibit two compact formulations of the
3D biharmonic equations; these compact formulas are defined on a 27 point cubic grid. The
fourth-order approximations are used to solve a set of test problems and produce high accu-
racy numerical solutions. The system of linear equations is solved using a variety of iterative
methods. We employ multigrid and preconditioned Krylov iterative methods to solve the sys-
tem of equations. Test results from two test problems are reported. In these experiments,
the multigrid method gives excellent results. The multigrid preconditioning also gives good
results using Krylov methods.
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1. Introduction

Consider the three-dimensional biharmonic equation:

�2u(x, y, z) = f (x, y, z), (1.1)
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or
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with (x, y, z) ∈ �, and Dirichlet boundary conditions of the first kind

u = g1(x, y, z),
∂u

∂n
= g2(x, y, z), (x, y, z) ∈ ∂�. (1.2)

Here � is a closed convex domain in three dimensions and ∂� is its boundary.
Equation (1.1) is the three-dimensional version of the 2D biharmonic equation

∂4u

∂x4
+ ∂4u

∂y4
+ 2

∂4u

∂x2∂y2
= f (x, y), (x, y) ∈ �, (1.3)

that has been considered extensively in the literature. Altas et al. [1] presented a fam-
ily of compact finite-difference approximations for the 2D biharmonic equation; these
compact approximations were obtained through the use of a symbolic algebra package
Mathematica.

In [2], Altas and Gupta presented another method, also derived through Mathemat-
ica, to solve the second biharmonic boundary value problem where values of u and its
second normal derivative ∂2u/∂n2 are prescribed on ∂�.

Various approaches for the numerical solution of the 2D biharmonic equation (1.3)
have been considered in the literature. A popular technique is to split it into two coupled
Poisson equations for u and v:




∂2u

∂x2
+ ∂2u

∂y2
= v,

∂2v

∂x2
+ ∂2v

∂y2
= f,

(1.4)

each of which may be discretized using the standard approximations and solved using
any of the Poisson solvers. Difficulty with this approach is that the boundary condi-
tions for the new variable v are undefined and need to be approximated from the discrete
form of equation (1.4). The coupled equation approach has been used by many au-
thors for many years (see [1,12,14] and other references contained therein for detailed
background), and there have also been efforts to introduce multigrid techniques with
the coupled equation approach. However, these computations are dependent on accurate
evaluation of the missing boundary values for v, and the computational procedures are
often unsatisfactory. Mixed approximations have also been considered, see, for exam-
ple, [11], and multigrid preconditioners have been designed for this approach [20].

Not many authors have tried to solve the three-dimensional biharmonic equation.
The reason, of necessity, is that three-dimensional problems require large computing
power and place huge amounts of memory requirements on the computational systems.
Such computing power has only recently begun to become available for academic re-
search.
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A conventional approach for solving the three-dimensional biharmonic equations
is to discretize equation (1.1) on a uniform grid using a 25 point approximation with
truncation error of order h2. Such an approximation of 3D biharmonic equation is not
generally available in the literature and is exhibited below. Using a 25-point finite-
difference “star”, this approximation was derived by Ribeiro Dos Santos [18] in 1967
who also proposed certain modifications required near the boundaries.

Consider a three-dimensional uniform grid centered at the point (xi, yj , zk); values
of unknown solution u and other functions at the point (xi, yj , zk) are written as ui,j,k .
The conventional 25-point finite-difference approximation of equation (1.1) at the point
(xi, yj , zk) may be written as

42ui,j,k − 12(ui+1,j,k + ui,j+1,k + ui,j,k+1 + ui−1,j,k + ui,j−1,k + ui,j,k−1)

+ ui+2,j,k + ui,j+2,k + ui,j,k+2 + ui−2,j,k + ui,j−2,k + ui,j,k−2

+ 2(ui+1,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui,j−1,k+1 + ui+1,j,k−1 + ui,j+1,k−1

+ ui−1,j,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui−1,j−1,k + ui+1,j−1,k)

= h4fi,j,k. (1.5)

This approximation has a truncation error of order h2 and connects the values of
ui,j,k in terms of 24 neighboring values of u in a 5×5×5 “star” grid; the two-dimensional
biharmonic equation is similarly approximated by the 13-point formula in a 5 × 5 grid.
We note that the value of ui,j,k is connected to grid points two grids away in each di-
rection from the point (xi, yj , zk) and the above difference approximation needs to be
modified at grid points near the boundaries. In case of 2D biharmonic equations, many
such modifications are discussed in [15]. However, there are serious computational dif-
ficulties with solution of the linear systems obtained through the 13-point discretization
of the 2D biharmonic equations [8,15]; these problems are worse in 3D. Approximations
using compact cells avoid these difficulties.

Certain second- and fourth-order finite-difference approximations for the bihar-
monic equation (1.1) on a 9-point compact cell have been known for some time [1,16,
21]. The compact approach involves discretizing the biharmonic equation using not just
the grid values of the unknown solution u but also the values of the gradients ux , uy

and uz at selected grid points. Introducing ux , uy and uz as unknowns may look as if
the computational cost of our method would increase fourfold when compared with a
method with only u as unknown. However, as demonstrated for the 2D problems in [1],
the compact fourth-order difference scheme produced an accuracy with a 16 × 16 grid
that was comparable to the accuracy of a conventional second-order method using a
256 × 256 grid. As described in detail in [1], our approach is advantageous because

(i) the given Dirichlet boundary conditions are exactly satisfied and no approximations
need to be carried out at the boundaries, in contrary to the splitting method (1.4);

(ii) the proposed finite-difference approximations are derived on a compact cell and
no modifications are needed at grid points near the boundaries; this eliminates the
problems of the conventional approach described above;
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(iii) the values of gradients ux , uy and uz are already available at all grid points and need
not be approximated from the computed values of the solution u;

(iv) the proposed methodology represents a streamfunction–velocity formulation of
fluid flow problems (such as Stokes’ flow problems represented by the biharmonic
equation, and the Navier–Stokes equations), and produces physically meaningful
solutions with an efficient formulation and computational procedure.

In summary, we claim that the finite-difference approximation using a compact cell
has several advantages. We extend the 2D Mathematica code presented in [1] to three
dimensions and obtain a family of finite-difference approximations on the 27-point com-
pact cubic cell. In section 2, we present finite-difference approximations with truncation
errors of order h2 and h4. In section 3, we briefly introduce multigrid, Krylov and classi-
cal iterative schemes that are employed to solve the system of equations arising from the
fourth-order discretisation of the biharmonic equation (1.1). Results of our computations
show that the proposed finite-difference approximations yield highly accurate solutions
that exhibit a fourth-order convergence. A brief comparison of convergence behaviour
of Krylov and multigrid methods for two test problems is introduced in section 4. Con-
clusions are presented in section 5.

2. Compact finite-difference approximations

Using our Mathematica code, we can obtain a variety of finite-difference approx-
imations by choosing various combinations of the grid values of u, ux , uy and uz to be
used in the derivations. For example, an efficient finite-difference approximation of order
h2 may be obtained by choosing the values of u at 18 neighboring points of (xi, yj , zk)

and the values of ux , uy and uz at two neighboring points in the respective directions.
With these choices, the Mathematica code produces the following finite-difference ap-
proximation:

48ui,j,k − 10(ui+1,j,k + ui,j+1,k + ui,j,k+1 + ui−1,j,k + ui,j−1,k + ui,j,k−1)

+ (ui+1,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui,j−1,k+1 + ui+1,j,k−1 + ui,j+1,k−1

+ ui−1,j,k−1 + ui,j−1,k−1 + ui+1,j+1,k + ui−1,j+1,k + ui−1,j−1,k + ui+1,j−1,k)

+ 3h(uxi+1,j,k
− uxi−1,j,k

+ uyi,j+1,k
− uyi,j−1,k

+ uzi,j,k+1 − uzi,j,k−1)

= h4

2
fi,j,k. (2.1)

We observe that this approximation utilizes the values of u in the compact cubic
cell and does not require the values of u two grid points away from the central point
(xi, yj , zk). Corresponding finite-difference approximations for the gradients ux , uy and
uz at (xi, yj , zk) may also be obtained from the Mathematica code:
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huxi,j,k
= 3

4
(ui+1,j,k − ui−1,j,k) − h

4
(uxi+1,j,k

+ uxi−1,j,k
), (2.2)

huyi,j,k
= 3

4
(ui,j+1,k − ui,j−1,k) − h

4
(uyi,j+1,k

+ uyi,j−1,k
), (2.3)

huzi,j,k
= 3

4
(ui,j,k+1 − ui,j,k−1) − h

4
(uzi,j,k+1 + uzi,j,k−1 ). (2.4)

A fourth-order compact finite-difference approximation for the three-dimensional
biharmonic equation (1.1) is given below:

ui,j,k − 19

104
(ui+1,j,k + ui,j+1,k + ui,j,k+1 + ui−1,j,k + ui,j−1,k + ui,j,k−1)

+ 1

208
(ui+1,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui,j−1,k+1

+ ui+1,j,k−1 + ui,j+1,k−1 + ui−1,j,k−1 + ui,j−1,k−1

+ ui+1,j+1,k + ui−1,j+1,k + ui−1,j−1,k + ui+1,j−1,k

+ ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui−1,j−1,k+1 + ui+1,j−1,k+1

+ ui+1,j+1,k−1 + ui−1,j+1,k−1 + ui−1,j−1,k−1 + ui+1,j−1,k−1)

+ 13

208
h(uxi+1,j,k

− uxi−1,j,k
+ uyi,j+1,k

− uyi,j−1,k
+ uzi,j,k+1 − uzi,j,k−1)

+ 1

416
h(uxi+1,j,k+1 − uxi−1,j,k+1 + uxi+1,j,k−1 − uxi−1,j,k−1

+ uxi+1,j+1,k
− uxi−1,j+1,k

+ uxi+1,j−1,k
− uxi−1,j−1,k

+ uyi,j+1,k+1 − uyi,j−1,k+1 + uyi,j+1,k−1 − uyi,j−1,k−1

+ uyi+1,j+1,k
+ uyi−1,j+1,k

− uyi−1,j−1,k
− uyi+1,j−1,k

+ uzi+1,j,k+1 + uzi,j+1,k+1 + uzi,j−1,k+1 + uzi−1,j,k+1

− uzi+1,j,k−1 − uzi,j+1,k−1 − uzi,j−1,k−1 − uzi−1,j,k−1)

= h4

1248

[
9fi,j,k + (fi+1,j,k + fi,j+1,k + fi,j,k+1

+ fi−1,j,k + fi,j−1,k + fi,j,k−1)
]
. (2.5)

This finite-difference approximation discretizes equation (1.1) at a grid point (xi, yj , zk)

using the 26 neighboring values of u; it also uses 12 values of ux , 12 values of uy and
12 values of uz at appropriate neighboring points. Truncation error of this approximation
is of order h4.

Compatible approximations for ux , uy and uz at (xi, yj , zk) are given, respectively,
by
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huxi,j,k
= 5

12
(ui+1,j,k − ui−1,j,k)

+ 11

120
(ui+1,j,k+1 − ui−1,j,k+1 + ui+1,j,k−1 − ui−1,j,k−1

+ ui+1,j+1,k − ui−1,j+1,k − ui−1,j−1,k + ui+1,j−1,k)

+ 1

120
(−ui+1,j+1,k+1 + ui−1,j+1,k+1 + ui−1,j−1,k+1 − ui+1,j−1,k+1

− ui+1,j+1,k−1 + ui−1,j+1,k−1 + ui−1,j−1,k−1 − ui+1,j−1,k−1)

− 3

20
h(uxi+1,j,k

+ uxi−1,j,k
)

− 1

40
h(uxi+1,j,k+1 + uxi−1,j,k+1 + uxi+1,j,k−1 + uxi−1,j,k−1

+ uxi+1,j+1,k
+ uxi−1,j+1,k

+ uxi−1,j−1,k
+ uxi+1,j−1,k

+ uyi+1,j+1,k
− uyi−1,j+1,k

+ uyi−1,j−1,k
− uyi+1,j−1,k

+ uzi+1,j,k+1 − uzi−1,j,k+1) − uzi+1,j,k−1 + uzi−1,j,k−1)

+ h4

240
(fi+1,j,k − fi−1,j,k), (2.6)

huyi,j,k
= 5

12
(ui,j+1,k − ui,j−1,k)

+ 11

120
(ui,j+1,k+1 − ui,j−1,k+1 + ui,j+1,k−1 − ui,j−1,k−1

+ ui+1,j+1,k + ui−1,j+1,k − ui−1,j−1,k − ui+1,j−1,k)

+ 1

120
(−ui+1,j+1,k+1 − ui−1,j+1,k+1 + ui−1,j−1,k+1 + ui+1,j−1,k+1

− ui+1,j+1,k−1 − ui−1,j+1,k−1 + ui−1,j−1,k−1 + ui+1,j−1,k−1)

− 3

20
h(uyi,j+1,k

+ uyi,j−1,k
)

− 1

40
h(uxi+1,j+1,k

− uxi−1,j+1,k
+ uxi−1,j−1,k

− uxi+1,j−1,k

+ uyi,j+1,k+1 + uyi,j−1,k+1 + uyi,j+1,k−1 + uyi,j−1,k−1

+ uyi+1,j+1,k
+ uyi−1,j+1,k

+ uyi−1,j−1,k
+ uyi+1,j−1,k

+ uzi,j+1,k+1 − uzi,j−1,k+1 + uzi,j−1,k−1 − uzi,j+1,k−1 )

+ h4

240
(fi,j+1,k − fi,j−1,k), (2.7)

huzi,j,k
= 5

12
(ui,j,k+1 − ui,j,k−1)

+ 11

120
(ui+1,j,k+1 + ui,j+1,k+1 + ui−1,j,k+1 + ui,j−1,k+1

− ui+1,j,k−1 − ui,j+1,k−1 − ui−1,j,k−1 − ui,j−1,k−1)
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+ 1

120
(−ui+1,j+1,k+1 − ui−1,j+1,k+1 − ui−1,j−1,k+1 − ui+1,j−1,k+1

+ ui+1,j+1,k−1 + ui−1,j+1,k−1 + ui−1,j−1,k−1 + ui+1,j−1,k−1)

− 3

20
h(uzi,j,k+1 + uzi,j,k−1)

− 1

40
h(uxi+1,j,k+1 − uxi−1,j,k+1 − uxi+1,j,k−1 + uxi−1,j,k−1

+ uyi,j+1,k+1 − uyi,j−1,k+1 − uyi,j+1,k−1 + uyi,j−1,k−1

+ uzi+1,j,k+1 + uzi,j+1,k+1 + uzi,j−1,k+1 + uzi−1,j,k+1

+ uzi+1,j,k−1 + uzi,j+1,k−1 + uzi,j−1,k−1 + uzi−1,j,k−1)

+ h4

240
(fi,j,k+1 − fi,j,k−1). (2.8)

We discuss the solution of linear systems associated with the above finite-
difference approximations in the next section.

3. Solution of linear systems

By writing equations (2.5)–(2.8) at every interior grid points one obtains a system
of linear algebraic equations for equation (1.1).

Direct solution of these linear systems is impractical because of the huge size of
the coefficient matrix and enormous storage requirements even for moderate values of
grid size h.

On the other hand, the condition number of the coefficient matrix increases rapidly
with the grid size h and one must be very cautious when attempting to solve such linear
systems using iterative linear solvers (see [2,13,15] for two-dimensional problems).

The performance of iterative solvers is sensitive to the number of equations to be
solved, the type of boundary conditions applied, the condition number and other factors.
Classical iterative solvers such as Gauss–Seidel and SOR are attractive for their low
storage requirements as long as convergence is guaranteed. Employing these classical
methods to solve the linear systems arising from the fourth-order discretization suffers
from extremely slow convergence. For example, the Gauss–Seidel method requires over
13,000 and 200,000 iterations to solve the linear system arising from the discretization
of test problem 1 (see section 4) on 16 × 16 × 16 and 32 × 32 × 32 grids, respectively.
The required error tolerance for the maximum absolute iteration error is 10−10. This
example clearly demonstrates that one needs some other approaches that may produce
faster convergence rates. In this paper, our aim is to solve the linear systems arising
from (2.5)–(2.8) by employing various iterative solvers and to compare results. One
of the approaches to accomplish faster convergence rates is the implementation of a
multigrid algorithm discussed in section 3.1. Another approach is to use preconditioned
Krylov methods, as discussed in section 3.2.
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3.1. Multigrid

The rate of convergence of basic iterative methods can be improved by employing
multigrid methods. Since the pioneering work of Brandt [3] in the early 1970s, multigrid
methods have been widely applied to the numerical solution of differential equations.
A good introductory text on multigrid is the book by Briggs [5], more advanced treat-
ment is given by Brandt in [4]. We present a brief description of how multigrid works.

While iterative processes are sometimes slow to solve differential equations, they
tend to make good smoothers. That is, analyzing Fourier components of the error, an
iterative solver will typically sharply reduce the oscillatory components, while leaving
the smooth components virtually unchanged. These smooth components can be solved
for on a coarser grid by computing the residual of the equation, restricting it to the coarse
grid, and solving. This is more efficient, both due to the smaller number of coarse grid
points and to the fact that smooth fine grid components become oscillatory on the coarse
grid (“smoothness” being measured in gridpoints per wavelength), thus, are efficiently
solved by the iterative method. Components that are still slow to converge on the coarse
grid are transferred to a yet coarser grid, and so on, until a grid is reached where all
components can be efficiently resolved. The error components solved for on the coarse
grid are added to the fine grid solution, using interpolation to determine the correction
values at fine grid points.

A multigrid cycle starts with a number (ν) of relaxations of the iterative scheme,
transfers the (now smoothed) error to a coarser grid where a number (γ ) of multigrid
cycles are performed before the solution is interpolated back to the fine grid, and some
(µ) more relaxations performed. Setting γ = 1 results in what is called a “V cycle”,
while γ = 2 gives a “W cycle”.

A good initial guess for the multigrid cycle may be obtained cheaply by solving
a coarsened version of the problem and interpolating it to a finer grid. The FMG (Full
Multigrid) algorithm uses this idea recursively, starting at a relatively coarse grid and
going to progressively finer grids. This minimizes the work done on fine grids – starting
out with the interpolated coarse grid solution.

3.2. Krylov methods

Krylov methods are now commonly used to get fast convergence rates. Recent
surveys are given, for example, in books from Saad [19], Meurant [17] and Bruaset [6].

Here the linear algebraic system to solve is nonsymmetric with no storage of
the matrix required. In order to minimize storage, we have chosen to implement
BiCGSTAB [22] and QMR [10] which rely on short recurrences so that storage re-
quirement is well controlled. Thanks to the compact grid, it is easy to implement both
matrix–vector products Ax and ATx without storing the matrix A (matrix-free version).
Hence, the Transpose-Free QMR [9] algorithm is not required here. Both methods rely
on the nonsymmetric Lanczos process.

Usually, it is necessary to use preconditioned versions of Krylov methods. Classi-
cal preconditioners are SSOR, where the preconditioning matrix comes from the SSOR
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decomposition or m-step SSOR where the SSOR iteration is applied m times. Here, pre-
conditioners such as Incomplete Cholesky or Approximate Inverse are not considered,
because the matrices are not stored. One of our objectives is to compare multigrid by
itself with multigrid used as a preconditioner of Krylov methods. Therefore, multigrid
preconditioning is implemented with a fixed number of cycles.

4. Numerical experiments

4.1. Test problem 1

We consider the biharmonic boundary value problem (1) in a unit cube with the
exact solution

u(x, y, z) = (1 − cos 2πx)(1 − cos 2πy)(1 − cos 2πz). (4.1)

The forcing term f (x, y, z) and boundary data g1, g2 are obtained from u.

4.2. Test problem 2

We consider the biharmonic boundary value problem (1) in a unit cube with the
exact solution given by

u(x, y, z) = (
x2 − x

)(
y2 − y

)(
z2 − z

)
eq[(x−0.5)2+(y−0.5)2+(z−p)2]. (4.2)

The forcing term f (x, y, z) and boundary data g1, g2 are obtained from u.
The exact solution of this test problem is strongly peaked for large values of the

parameter q. The second parameter p moves the peak along the z-direction. The com-
putational results are presented here for p = 0.2 and q = 10.

4.3. Computed solution error of the method

First we measure the solution error in order to check the fourth-order convergence
behaviour of our method. Figures 1 and 2 show respectively the exact solution u and the
computed solution uh for problem 1 (on a grid of size 323). Figure 3 shows the computed
solution uh for problem 2 (on a grid of size 643).

Since the exact solution is known, it is easy to compute the discretisation errors
(i.e., the solution errors) for u and its derivatives ux, uy and uz. Figures 4 and 5 show the
Euclidean norm of the discretisation errors with respect to the grid size for problems 1
and 2, respectively. It is clear that the errors decay with order h4 as the mesh size h is
reduced. Also, as expected, problem 2 is more difficult to solve and the error for u can be
approximated as 0.4 × 104 ×h4, whereas it can be approximated as 1 ×h4 in problem 1.

4.4. Multigrid results

In this work we have implemented both V and W cycle versions of multigrid. We
observe that W cycle produces better convergence rates than V cycle implementations.
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Figure 1. Exact solution for problem 1.

As a smoothing scheme we have tried different iteration schemes such as Gauss–Seidel,
SOR, and zebra SOR. For our test problems SOR iteration scheme works reasonably well
with the relaxation parameters 1.25, 1, 1 and 1 for equations (2.5), (2.6), (2.7) and (2.8),
respectively. We pick ν = 4 and µ = 4. The multigrid algorithm for our test problems
is sensitive to the residual transfer. We employ an order 0 residual method. That is, the
residuals are directly calculated from the corresponding difference schemes and injected
to a lower level with the following ratios. Three quarter of the residuals of equation (2.5)
are transferred to the coarser grid. Only one quarter of the residuals from the derivative
equations (2.6)–(2.8) are transferred to the coarser grid. As the interpolation procedure
we employ the standard approach. That is, we directly transfer values to finer levels
at the points common to both levels, and the rest of the values are transferred as the
average of either two or four closest grid points. We also implemented full multigrid
with the above parameters. However, this implementation produces similar results to the
one without full multigrid.

We performed the following calculations on Sun Ultra Enterprise 450 with 3
UltraSPARC-II 248 MHz CPU and 1 Gbyte memory. The stopping criterion here is
the absolute maximum value of the differences of values of u(x, y, z) from two con-
secutive multigrid cycles. We stop the multigrid algorithm when the criterion is less
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Figure 2. Computed solution for problem 1.

than 10−10. Results for problems 1 and 2 are reported in tables 1 and 2, respectively. As
expected, the number of cycles is almost independent of the mesh size, thus indicating
true multigrid performance. On the other hand, the CPU time is roughly proportional
to 1/h3.

Since the exact solution is known, we have also computed the error during the
computational cycles. Figures 6 and 7 plot the criterion and the solution errors for mesh
sizes 16, 32, and 64. Here the criterion is the Euclidean norm of the difference between
two consecutive cycles normalized by the Euclidean norm of the right-hand side. The
solution error is the Euclidean norm of the difference between the exact solution and the
computed solution, normalized by the Euclidean norm of the exact solution. We observe
a linear convergence of the criterion and the solution error; the solution error decreases
down to a plateau which corresponds to the discretization error. Further cycles have no
effect. Therefore, an efficient criterion needs to be able to estimate this error and stop
early enough.
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Figure 3. Computed solution for problem 2.

Table 1
Multigrid results for problem 1.

Mesh size Discretisation error Time (s) W cycles

16 × 16 × 16 3.9 × 10−5 64.7 20
32 × 32 × 32 2.3 × 10−6 679.5 22
64 × 64 × 64 3.0 × 10−7 5747.9 22

Table 2
Multigrid results for problem 2.

Mesh size Discretisation error Time (s) W cycles

16 × 16 × 16 8.9 × 10−2 60.9 19
32 × 32 × 32 7.2 × 10−3 594.9 20
64 × 64 × 64 4.8 × 10−4 5388.0 21
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Figure 4. Discretisation errors for problem 1.

Figure 5. Discretisation errors for problem 2.
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Figure 6. Criterion and error histories for problem 1.

Figure 7. Criterion and error histories for problem 2.
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Figure 8. Comparison between BiCGSTAB and QMR for problem 1.

4.5. BiCGSTAB results

We need to solve the linear system Ax = b and the residual r = b − Ax is used to
control the convergence. In our examples, the residual computed from recurrences in the
algorithm and the true residual are equal. The stopping criterion at iteration k is, thus,
‖rk‖2/‖b‖2.

We first compare BiCGSTAB with QMR for various grid sizes and problem 1.
Results are shown on figure 8. For this example, QMR is somewhat less efficient than
BiCGSTAB, so we have selected BiCGSTAB for further experiments.

Then we compare several preconditioners and estimate the computational costs for
the different preconditioners tested. Since matrix–vector products are the most time-
consuming operations, we take this operation as the comparison unit, called U in the
following. Hence, one BiCGSTAB iteration requires 2U and two preconditioning calls.
SSOR preconditioning requires 1U and m-step SSOR requires m × U . One V cycle of
multigrid requires roughly (ν + µ + 2)U , where 1U is counted for restriction and 1U

is counted for interpolation. Here smoothing on coarse grids is neglected. One W cycle
is about 60% more expensive than one V cycle. In our experiments, we observed that
multigrid preconditioning was not too sensitive to the parameters. We have chosen to
use V cycles. For the grid size 32, we chose parameters ν = 2, µ = 2 and for the grid
size 64, we chose parameters ν = 4, µ = 4.

Results for problem 1 are shown on figures 9 and 10, for grid size 32 and 64.
Clearly, SSOR and m-step SSOR are not very efficient especially for the 64 × 64 × 64
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Figure 9. Comparison between several preconditioned BiCGSTAB for problem 1 and for a grid size 323.

Figure 10. Comparison between several preconditioned BiCGSTAB for problem 1 and for a grid size 643.
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Figure 11. Comparison between BiCGSTAB and MULTIGRID for problem 1.

grid. Indeed, the condition number of the preconditioned matrix depends on h, so that
the impact of preconditioning is about the same for all grid sizes. On the other hand,
multigrid is a very efficient preconditioner for finer grids and the condition number is
almost independent of h.

4.6. Comparison between multigrid and BiCGSTAB

In order to compare BiCGSTAB preconditioned by multigrid with multigrid on its
own, we plot the computational cost in terms of the number of matvec units versus the
solution error. Figures 11 and 12 show the results for problems 1 and 2, respectively, for
grid sizes 32 and 64. For these problems, multigrid is clearly very efficient and cannot
be further accelerated by a Krylov method. Here the problems are homogeneous and
isotropic, the grid is regular, and the grid size is a power of 2. Hence, we can conclude
that under these conditions, multigrid is the most efficient algorithm.

5. Conclusions

In this paper we examine a high-accuracy, compact formulation for the three-
dimensional biharmonic equation with Dirichlet boundary conditions. The finite-
difference approximation is derived on a 27-point compact stencil using the values of the
solution and its gradients as the unknowns. The approximations have been derived using
a symbolic software package. We solve several test problems using a multigrid method
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Figure 12. Comparison between BiCGSTAB and MULTIGRID for problem 2.

and a preconditioned BiCGSTAB method. Our results show that multilevel methods
are required for large problems in order to get a convergence independent of the mesh
size. For our test problems, multigrid by itself is very efficient. For unstructured grids,
algebraic multigrid or multilevel preconditioners should be used.

We plan to introduce a stopping criterion based on an error estimation using the
results at embedded grid levels. We also plan to implement a parallel version in order to
reduce CPU timings.
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