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Abstract

In this paper, we study an inverse problem consisting in the determination of the mechanical prop-
erties of a layered solid elastic medium in contact with a fluid medium by measuring the variation
of the pressure in the fluid while propagating a seismic/acoustic wave. The estimation of mechanical
parameters of the solid is obtained from the simulation of a seismic wave propagation model governed
by a system of partial differential equations.
Two stochastic methods, Markov Chain Monte Carlo (MCMC) with an accelerated version and
Stochastic Perturbation Simultaneous Approximation (SPSA), are implemented and compared with
respect to cost and accuracy.
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1 Introduction

Marine geosciences study the genesis and the dynamics of processes taking place at the ocean-subsoil
interface and the neighboring solid sublayers. Such studies provide a deeper knowledge of the impact of
marine processes resulting from petroleum industries on environment and natural resources. To improve
our knowledge of these processes, it is necessary to have equipments capable of the recognition of the
subsoil marine geological properties. This is made by seismic campaigns that send punctual waves then
measure the reflection of these waves on each geological layer.
In this study, we consider a solid elastic medium composed of a stack of thin layers and in contact
with a fluid. A numerical simulation is done by placing a seismic source in the fluid and computing
the propagation of a seismic wave in both media. The seismic wave creates while propagating a local
variation of the pressure in the fluid and a local stress in the solid. The wave is supposed to penetrate in
the solid and return to the fluid after some reflections on the solid interfaces (see Figure 1). A simulation
of a seismic recording at a defined receiver in the fluid shows the variation of the pressure in time at the
position of the receiver. This variation depends on the mechanical properties of the solid. We take an
interest in finding these mechanical properties, namely the density and the Lamé’s coefficients, from the
pressure variation (in space and time) in the fluid due to the propagation of a seismic/acoustic wave. To
solve this task, two problems have to be defined (see Figure 2):

1. the forward problem consists in finding the pressure field in the fluid knowing the mechanical
properties of the solid by solving numerically a system of PDEs which model the wave propagation
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Figure 1: Seismic wave path.
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Figure 2: Definition of the forward and the inverse problems.

2. the inverse problem is going backward to find the mechanical properties of the solid given a set of
pressure measures in the fluid.

Here, the solid is a stack of one, two or three thin layers which have their thickness less than the wave
length. This makes the signals coming form different reflections overlap and the inverse problem harder.
This parameter estimation problem has been studied with many approaches. The essential differences
between these approaches are the modelization of the the wave propagation and the way to find the
solution of the wave equation. Numerical and analytical methods to solve this equation have been
developed according to the application domain. For example:

• In geophysics where a seismic traveltime inversion is of interest to find the wave velocity in each
geological layer, the wave equation is approximated with the Eikonal equation and is solved numer-
ically using the ray tracing technique (see [16]). This approach is able to find one parameter (the
wave velocity is function of the mechanical parameters) out of the three parameters so each layer
is not fully determined.

• In nondestructive control, inversion techniques based on analytical solutions were studied in the
case of a smoothly inhomogeneous solid. The analytical solution of the wave equation is expressed
in terms of Green functions and its derivatives with respect to material parameters is considered to
solve the inverse problem (see [15] and [3]). However, this approach can not model the reflection of
the wave over interfaces.
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• In the case of a thin layered solid, the wave equation is solved analytically using a double Laplace
transform and the Cagniard method to process the reflection over the interface (see [17]). The
limitation of this approach is that the solid domain has to be simple to be able to find the analytical
solution. Thus, it is possible to recover only one thin layer.

In this paper, we propose to estimate the mechanical properties of a solid with multiple thin layers us-
ing a numerical solution of the wave equation. It is based on a Finite Elements discretization which is
relatively fast in computations (see [1] and [2]). Thus it is possible to consider a complex structure with
multiple layers and run simulations thousands of times without the burden of demanding computations.
The inverse problem is formulated as a nonlinear least squares problem where a cost function has to be
minimized to get an estimation of the parameters.
Usually, this is done by computing the gradient of the cost function using the adjoint state method (see
[21]). However, our mathematical model for the wave propagation in a layered solid is too complex to
be used with the adjoint state method. So we propose to use instead a stochastic and global optimiza-
tion technique, named SPSA (Simultaneous Perturbation Stochastic Approximation). We compare this
method to MCMC (Markov Chain Monte Carlo) and show that SPSA is more interesting according to
its cost and accuracy.
Finally, we study the stability of the solution of the inverse problem against random noise in the pressure
measures.

2 the Forward problem: a Two-dimensional numerical model

2.1 the Physical model

Our study starts with a two-dimensional mathematical model that consists in finding (p, vf , vs and σ)
that verify the following system of partial differential equations and over an infinite domain constituted
by a solid medium (Ωs) and a fluid medium (Ωf ) and separated by an interface (Γ):





∂p

∂t
+ c2

fρf div vf = 0 (Ωf )(1.1)

ρf
∂vf

∂t
+∇p = 0 (Ωf )(1.2)

A
∂σ

∂t
− ε(vs) = 0 (Ωs)(1.3)

ρs
∂vs

∂t
− div σ = 0 (Ωs)(1.4)

vs.n = vf .n (Γ)(1.5)
σ.n = −p.n (Γ)(1.6)

(1)

where the unknowns are:

• p: the pressure field in the fluid medium

• vf : the velocity field in the fluid

• σ: the stress tensor field in the solid

• vs: the velocity field in the solid

and the physical parameters are:

• cf : the wave propagation speed in the fluid

• ρf : the fluid density

• ρs: the solid density

• A: the inverse of the elasticity tensor which is function of λ and µ, the Lame’s coefficients.

This model has been derived by [2]. Its main feature is that two media are clearly defined allowing to
consider independent discretization for each of the two domains (fluid and solid). These discretizations
are based on the following variational formulations.
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2.2 Numerical model

Let :

• L2(Ω) = {w | ∫
Ω

w2 < ∞} and

• Hdiv(Ω) = {w ∈ (L2(Ω))2 |div w ∈ L2(Ω)},
be respectively the Hilbert spaces of square integrable functions in the sens of Lebesgue and the “H-div”
space of vectorial functions which have each coordinate in (L2(Ω)) and its divergence also in (L2(Ω))
The semi-variational formulation for the fluid medium is obtained after multiplying equations 1 and 2
by a pair of test functions (q, wf ) ∈ ([0, T ] × L2(Ωf )) × ([0, T ] × H div(Ωf )), then integrating over Ωf

and using Green’s formula, with boundary and interfaces conditions on Ωf . Since this process involves
only the space variables and leaves out the time variable, it leads to the following (semi-)variational
formulation established by [2].
Find (p, vf ) ∈ ([0, T ]× L2(Ωf ))× ([0, T ]×H div(Ωf )) such that:





d

dt

∫

Ωf

pq

c2
fρf

+
∫

Ωf

q div vf = 0 (2.1)

d

dt

∫

Ωf

ρfvf .wf −
∫

Ωf

p div wf −
∫

Γ

p(wf .n) = 0 (2.2)
(2)

∀(q, wf ) ∈ ([0, T ]× L2(Ωf ))× ([0, T ]×H div(Ωf )).

Similarly for the solid domain, one finds the following (semi-)variational formulation for the solid.
find vs ∈ [0, T ] × (L2(Ωs))2 and σ ∈ [0, T ] × Hsym

div (Ωs), Hsym
div (Ωs) = {σ|σ ∈ (L2(Ωs))4, div σi ∈

(L2(Ωs))2 and σij = σji} .




d

dt

∫

Ωs

Aσ.ξ +
∫

Ωs

div ξ.vs −
∫

Γ

(ξn).vs = 0 (3.1)

d

dt

∫

Ωs

ρsvs.ws −
∫

Ωs

ws. div σ = 0 (3.2)
(3)

∀(ws, ξ) ∈ (([0, T ]× (L2(Ωs))2)× ([0, T ]×Hsym
div )).

The finite elements used to discretize (1) are mixed finite element and are taken from the work
in [2]. The pressure p ∈ L2(Ωf ) is approximated by a finite-element piecewise constant function in
Q0(Ωf ) ⊂ L2(Ωf ); for vf ∈ Hdiv(Ωf ), we use Raviart-Thomas’s finite elements is

RT0(H){q ∈ L2(Ωf ) ∀e ∈ E, ∃ a ∈ R2 and b ∈ R | q(x) = ax + b and ∀e ∈ E [q]e.νe = 0} (4)

where H and E denote the sets of meshes and edges, [q]e is the jump of q over an edge e and νe is a
normal vector to e .
For σ and vs we used the finite elements proposed by [1], with regular rectangular meshes, which present
the follows following advantages:

• The mass matrices are block diagonal.

• The symmetry of the stress tensor does not need to be imposed. Such condition becomes “natural”
rather than “essential”.

Note however that in such method, one disadvantage is that curved interfaces would be approximated
with a staircase discretization.

The finite elements chosen to approach the stress tensor are those described in [1]. It will be considered
only the case of a horizontal interface between the solid and the fluid. The degrees of freedom of the
stresses are all associated to the nodes of the elements. In order to be conforming to the transmission
conditions at the interface, one imposes that σ12 = 0 for all nodes at the fluid-solid interface.
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Applying the standard finite element procedure that consists in seeking P ∈ Q0(Ωf ), Vf ∈ RT0,
Vs ∈ Q0(Ωs) and Σ ∈ Q1

div −Q0 that verify the semi-variational formulation (3) and (2), P , Vf , Vs and
Σ are evaluated respectively at instants n, n + 1/2, n, n + 1/2:





Mp
Pn+ 1

2 − Pn− 1
2

∆t
+ DfV n

f = 0 (5.1)

Mf

V n+1
f − V n

f

∆t
−Dt

fPn+ 1
2 + B

Σn+1 + Σn

2
= 0 (5.2)

MΣ
Σn+1 − Σn

∆t
+ Dt

sV
n+ 1

2
s −Bt

V n+1
f + V n

f

2
= 0 (5.3)

Ms
V

n+ 1
2

s − V
n− 1

2
s

∆t
+ DsΣn = 0 (5.4)

(5)

This computational model provides a solution of the forward problem given the set of physical param-
eters for the fluid-solid pair, θ = (ρ, λ, µ). In such model, the matrices Df and Ds represent discrete
divergence operators and B is the discrete trace operator. Since p and vs are piecewise constant, Mp and
Ms are diagonal matrices. The mass-lumping technique described in [1] is applied in order to obtain a
block-diagonal matrix MΣ(5× 5) and a diagonal matrix Mf .

3 The Bayesian Model and the Inverse Problem

The inverse problem starts with experiments consisting in placing receivers at various points of the fluid,
then stimulating the pair solid-fluid by sending seismic waves from the fluid. The receivers measure the
variation of the pressure resulting from such stimulation. An inverse problem formulation would consist
in finding the vector of parameters θ = (ρl, λl, µl) l = 1..nl from the pressure measurements, nl is the
number of layers of the solid. It aims at computing estimations of θ on the basis of a given set of data
y := {yij = y(xi, tj)} representing noisy measures of the pressure at a set of points {xi} in the fluid, at
times {tj}. The formulation of the inverse problem considered in the paper is a Bayesian formulation. It
relates pressure measures to mechanical properties in a probabilistic sens and using the forward problem.
Specifically, let

y = P(θ) + ε (6)

be the input data of the inverse problem, where ε = {εij} is a blank noise following a Gaussian law
N(0, s2); s2 is the fixed variance of the noise and where P (θ) is the pressure computed by the forward
model with parameter θ.
Estimation of θ requires p(θ|y) the probability distribution of θ given y. The Bayesian formula reads:

p(θ|y) =
1

p(y)
p(y|θ)p(θ) (7)

Use of (7) is coupled with the following assumptions:

• The prior probability density (p(θ)) is a knowledge on θ before making the measurements. It is
the range of acceptable values for the physical parameters such that the solid having these values
of parameters can be found in nature. It is supposed that the value of each parameter fall into
the domain of acceptable values Dθ =

∏
i[θi,min, θi,max] with a uniform probability. The prior

probability density (p(θ))is given by

p(θ) ∝
{

1 if θ ∈ Dθ

0 elsewhere (8)

• The likelihood probability density (p(y|θ)) is the relationship which maps the physical parameters
to the solution of the forward problem and computed with numerical simulations. In equation (6)
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P (θ, x, t) is not a random variable so the expression of the likelihood probability distribution p(y|θ)
can be deduced from the one of ε which is a Gaussian distribution of mean zero and variance s2

p(y|θ) ∝ exp
(−1

2
‖y − P (θ)‖2F

)
. (9)

where ‖.‖2F is the Frobenus norm.

• Equation (7) with (8) and (9) leads to following the expression of the posterior probability density:

p(θ|y) ∝




exp
(−1

2 ‖y − P (θ)‖2F
)

if θ ∈ Dθ

0 elsewhere
(10)

The normalization constant (
1

p(y)
) is a constant with respect to θ that verifies:

∫

Dθ

1
p(y)

p(y|θ)p(θ) = 1. (11)

This constant is not calculated and the expression of the posterior probability density is unnormalized.
In (10), the pressure P (θ) is the result of a forward simulation (5), with ρs and A defined by θ. Thus
it must be kept in mind that finding the value of p(θ|y) for a certain θ is costly and an algorithm which
requires a few number of evaluation of p(θ|y) has to be used.

On this basis, we implement the following estimators:

1. The first seeks
Θ(y) = E(θ|y) =

∫
θ p(θ|y) dθ,

the expectation of θ given y.
This estimator is evaluated using the Markov Chain Monte Carlo (MCMC) algorithm which is
described in section (4). Results are shown for an accelerated form of this method.

2. The second computes the maximum of the posterior probability p(θ|y).

θ∗ = arg max
θ∈Dθ

p(θ|y), (12)

where arg provides the value of θ where the given objective function (p(θ|y)) is maximal. This sec-
ond estimator is computed with the Simultaneous Perturbation Stochastic Approximation (SPSA)
method which is detailed in section 5. This maximization problem is equivalent to minimizing
− log p(θ|y) = ||y − P (θ)||2F . So in our case, this estimation of the parameters is also the solution
of the least squares error problem:

θ∗ = arg min
θ∈Dθ

||y − P (θ)||2F (13)

4 Markov Chain Monte Carlo

The first estimation of the mechanical properties of interest is its expected value :

E(θ|y) =
∫

θ p(θ|y) dθ.

Monte Carlo methods were first developed to estimate integrals that cannot be evaluated analytically
(see [6]). Although the term “Monte Carlo methods” includes several statistical techniques, this paper is
based on a standard Monte Carlo type integration. In such a method, approximation of the integral is
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done through draws of N dependent, identically distributed samples of θ, say θk, k = 1, . . . , N from the
probability density p(θ|y). The average of these samples is then computed, leading to the estimate:

∫
θ p(θ|y) dθ − 1

N

N∑

k=1

θk = O(1/
√

N), θk ∼ p(θ|y) (14)

The Metropolis-Hastings generates a sequence of samples (θk) which form a Markov chain with the
limiting distribution p(θ|y). This method uses a proposal density q(.|θ). Its usage is shown next in the
description of the algorithm. A common choice for this distribution is the random walk with a uniform
probability. Specifically, let Dθk,δ be the parallelepiped of centre θk and edges 2δ

Dθk,δ =
∏

i

[θk,i − δi, θk,i + δi].

Let also U(Dθk,δ) be the uniform distribution over Dθk,δ and null outside Dθk,δ. We define

q(.|θk) = U(Dθk,δ).

Note that q(C|θk) = q(θk|C). The standard M-H algorithm includes two steps and is described as follows:

1. Generation step: from a state θk, a candidate C is proposed by drawing at random on the basis
of q(.|θk). Simultaneously, a number r is randomly drawn from the interval (0,1).

2. Acceptance step: The probability

α(C, θk) = min
( p(C|y)

p(θk|y)
, 1

)
(15)

is evaluated and the candidate C is accepted if α(C, θ) > r. Thus, θk+1 = C if the candidate is
accepted and otherwise, θk+1 = θk, i.e. the Markov chain remains at the same state.

This Markov chain generation is highly expensive because it requires many evaluations of p(C|y) by
running a numerical simulation. To overcome this difficulty, we use an accelerated MCMC based on the
algorithm in ([4]).

4.1 An Accelerated Version of MCMC

The main idea for reducing the cost of computations is to run simulations for the candidates that will
likely be accepted. Thus we avoid computations for the candidates that are likely to be refused. To guess
whether a candidate C will be accepted or not p(C|y) is evaluated approximately. Unlike in ([4]) we use
a linear interpolation, named p∗(.|y). Thus if the predicted probability is high, a simulation is run to
evaluate exactly p(C|y).

The modification (acceleration) of the standard algorithm is in the insertion of an intermediate step
between the generation and the acceptance steps of the standard M-H:

1. At θk generate a proposal C from q(·|θk).

2. A number r is randomly drawn from the interval (0,1). Evaluate

αpred(C, θk) = min
( p∗(C|y)

p∗(θk|y)
, 1

)
(16)

C is promoted to be a candidate to the standard M-H algorithm if αpred(C, θ) > r. Otherwise, pose
θk+1 = θk.

3. Again a number r is randomly drawn from the interval (0,1). Evaluate

α(C, θk) = min
( p(C|y)

p(θk|y)
, 1

)
(17)

accept θk+1 = C if α(C, θ) > r; Otherwise reject C, θk+1 = θk
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So we recall here that the estimation of the mechanical properties θ is done by generating a sequence
of samples θk ∼ p(θ|y), k = 1..N from the accelerated version of MCMC and by evaluating its average
value

E(θ|y) ≈ 1
N

N∑

k=1

θk (18)

In order to get a reliable result with MCMC, the proposal distribution q(C|θk) has to be tuned very
carefully because MCMC is very sensitive to its proposal distribution. Several tests have to be done to be
sure of the reliability of the results. These tests concern the accuracy, the convergence and the uniqueness
of the solution. They are detailed in section 7.1.1.

5 Simultaneous Perturbation Stochastic Approximation algo-
rithm(SPSA)

The second estimator is the maximum a posteriori which is the solution of the following minimization
problem:

θ∗ = arg min
θ∈Dθ

L(θ) (19)

where L(θ) = ||y − P (θ, xi, tj)||2F .
We recall that θ = {(ρl, λlµl), l = 1, .., nl} is the set of mechanical properties to find with nl the number
of layers in the solid. The loss function L(θ) represents the misfit function between the input pressure
measures and the simulated pressure corresponding to θ. In what follows, it is assumed that L(θ) is a
scalar differentiable function of the 3nl-dimensional vector θ representing the unknown parameters and
the estimator θ∗ should verify:

∂L

∂θ
(θ∗) = 0.

Given that the exact value of the gradient L with respect to θ is not available, the gradient of L is
computed using a stochastic approximation based on only two evaluations of L.
The SPSA algorithm is of the form

θk+1 = Ψ(θk − akg(θk)), (20)

where Ψ is a projection application that keeps θk ∈ Dθ and g(θk) is a stochastic estimation of the true
gradient ∂L/∂θ.

In the SPSA method, one uses a special approximation for the gradient that requires only two evalua-
tions of L(θ). All the variables are perturbed at the same time by drawing two random points θk + ck∆k

and θk − ck∆k centered at θk to form the gradient approximation:

g(θk) =
L(θk + ck∆k)− L(θk − ck∆k)

2ck
(∆−1

k1 , ∆−1
k2 , . . . , ∆−1

3nl
)T (21)

∆k is the perturbation random variable vector of mean zero and ck is some positive number.
In ([13]) it is shown that this stochastic approximation of the gradient makes SPSA a global optimizer
under certain conditions.

The SPSA algorithm is summarized in the following steps:

1. Initialization step: With the SPSA, the sequences ak and ck are of the form ak = a/(A + k)α

and ck = c/kγ . Set counter index k=1. Define values for the positive coefficients a, c, A, α, γ, and
the maximal number of iterations kmax .

2. Generation of the simultaneous perturbation vector: Generate a 3nl-dimensional random
perturbation vector ∆k, where each component of ∆k is independently generated from a zero-mean
probability distribution satisfying the previous conditions. A simple (and theoretically valid) choice
for each component of ∆k is to use a Bernoulli distribution.

3. Loss function evaluations: Compute L(θk + ck∆k) and L(θk − ck∆k) which involves numerical
simulation of the forward problem.
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4. Gradient approximation and updating θk: Generate the approximate gradient g(θk) from (21)
and update θk using equation (20).

5. Iteration or termination: Return to step 2 and increment k by 1 or terminate the algorithm if
the maximum allowable number of iterations is reached.

The choice of the gain sequences (ak and ck) is critical to the performance of SPSA. In [12], it is
provided some guidance on picking these coefficients in a practically effective manner. In [10] and
[11], it is presented sufficient conditions for convergence of the SPSA iterates.

5.1 Confidence Interval for θ∗

We suppose that the gain sequences have the standard form ak = a/(k + 1 + A)α and ck = c/(k + 1)γ ,
with a, c, α, γ strictly positive, A ≥ 0, β = α − 2γ > 0 and 3γ − 2α ≥ 0. In [9] the convergence of the
method is established in a stochastic meaning:

kβ/2(θk − θ∗) dist−−−−−−−−−→N(µ,Σ) as k →∞

The mean µ depends on both the Hessian matrix and the third derivative of L(θ∗) and Σ depends on the
Hessian at L(θ∗) ([9]). If we take 3γ − 2α > 0, µ = 0. We propose a confidence interval for θ∗ by using
the standard definition of the mean value and the covariance for the random variable kβ/2(θk − θ∗) (for
a sequence θk, k = 1..N, sufficiently long):

1. The mean value of the random variable kβ/2(θk − θ∗) is computed as follows:

µ =
1
N

N∑

k=1

kβ/2(θk − θ∗) = 0 (22)

2. We deduce the value of θ∗

θ∗ =
∑N

k=1 kβ/2θk∑N
k=1 kβ/2

(23)

3. The covariance of the estimation of θ∗

Σ =
1
N

N∑

k=1

kβ(θk − θ∗)(θk − θ∗)T (24)

Thus the 95% confidence interval for each parameter θi is equal to θ∗i ± 2
√

Σii.

6 Sensitivity Analysis

The purpose of the sensitivity analysis is to find the threshold of noise in the pressure measures above
which some parameters are not identifiable. We assume that, for any θ ∈ Rp (p = 3nl), the forward
problem has a unique solution. We denote by P (θ) ∈ Rm the pressure P (θ, xi, tj) at points xi and

instants tj , with m ≥ p. We assume that P (0) = 0 and that
∂P

∂θ
∈ Rm×p exists and is of full rank.

Let y = P (θ) + ε = P (θ + δθ) be the measured pressure. We compute a bound for the error δθ in the
estimated parameter using a first-order analysis. We write a linear approximation of y and P (0) = 0
around θ ([18]):





ε ≈ ∂P

∂θ
(θ)δθ

P (θ) ≈ ∂P

∂θ
(θ)θ

(25)
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Figure 3: Forward numerical model: time variation of the pressure computed at a point in the fluid.

Let σmin and σmax the smallest non-zero and the largest singular values of
∂P

∂θ
; then




||δθ|| ≤ 1

σmin
||ε||

||P (θ)|| ≤ σmax||θ||.
(26)

Thus ||δθ||
||θ|| ≤ K

||ε||
||P || (27)

where K =
σmax

σmin
is the condition number of

∂P

∂θ
. Therefore, at first-order, the noise is amplified the

condition number of the forward problem.

7 Numerical Results

The computational software that does the numerical simulation of the wave propagation was developed
by team ONDES at INRIA Rocquencourt ([1],[2]). It is considered to be fast, since at each time step,
computing the solution at each node requires a local scheme, unlike other existing codes (see [1]) that
use a global system to advance the solution in time. Figure 3 shows the time variation of the pressure
at a given point of the fluid. The input data of the inverse problem are pressure measures obtained
synthetically from this software.

7.1 Test case with a homogeneous solid

We compare accelerated MCMC and SPSA in the case of a homogeneous solid medium where only three
parameters (λ, µ, ρs) are to be estimated. The source is placed at 50 m above the solid-fluid interface.
A standard choice for the transmitted signal is the derivative of a Gaussian. Its frequency is 100 Hz and
its amplitude is 1000 Pa. 26 receivers are placed at the same depth of the source and evenly spaced by
5m. 78 pressure measures are considered at each receiver. To simulate an observational measure error, a
Gaussian noise ∼ N(0, s2) is added to the pressure computed by the forward problem. The covariance s
of the noise is taken equal to 6% of Frobenus norm of the measures array.

7.1.1 Results with MCMC

We estimate the three parameters of the solid using the accelerated MCMC algorithm. The main results
are shown in Table (1).
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Physical Parameters Exact Value (SI) Confidence Interval Error between estimated
and true parameters

λ 11.5×109 10.9×109±2.6% 5.2%
µ 6×109 6.5×109±2% 8%
ρ 1850 1867± 0.15% 0.9%

Table 1: Estimation of the density and the Lamé’s coefficients of a homogeneous solid with 19000 samples
from the accelerated MCMC (6000 simulations) and level o noise ≤ 6%.

Physical Parameters Confidence Interval with θmin Confidence Interval with θmax

λ 11.1×109±2.8% 10.8×109±2.7%
µ 5.82×109±2.5% 6.14×109±2.6%
ρ 1827± 0.21% 1911± 0.4%

Table 2: Convergence of MCMC (test 3): Two estimations of the density and the lamé’s coefficients with
two different starting points and with 19000 samples from the accelerated MCMC (6000 simulations) and
level of noise ≤ 6%.

The validity of the results with MCMC is done through four distinct tests:

1. Convergence of our estimate to E(θ|y): We want to know if the number of samples is sufficient
to have a correct estimation of our parameters. The plot of the average E(θ|y) = 1

N

∑N
k=1 θk with

respect to the first n samples of the chain is shown Figure 4. One must see that this average becomes
almost for n > 15000 samples so the convergence is reached (see [8]).

2. Sampling from p(θ|y): We need to check if the samples follow p(θ|y), the limiting distribution of
the Markov Chain. One must expect the same evaluation for the parameters at the convergence
with two different initial points (see [8]). Two Markov chains of length 19000 samples are run, one
starting with θmin the smallest acceptable values of θ and the other starting with θmax the largest
acceptable values of θ. The results are compared in table 2. The two results are not the same but
they are close enough to be able to consider that a length of 19000 samples for the Markov chain is
sufficient and the samples are quite distributed according to p(C|y).

3. Uniqueness of the solution: the plot of the frequency of the samples generated by the chain is shown
in Figure 5 from which one can verify that the posterior probability has one mode which means
that the inverse problem has a unique solution.

4. Variance of our estimation: the correlation between the samples separated by s C(s)‘ = cov(θk, θk+s)
gives a diagnosis on the behaviour of the Markov chain. If the sequence θk are sampled from the
desired probability p(θ|y), one must find a constant M for which C(s) tends to zero for s > M
(see [7, 5]). Figure 6 shows the correlation function C(s) which verifies the previous requirement.
From this figure it possible to compute the variance of the estimation of the parameters obtained
by MCMC var(θMC). It is given by the formula var(θMC) = τ var(θ)

n , where var(θ) is the vari-
ance of the samples θk but supposed independent, τ is the integrated autocovariance time given by
τ = 1 + 2

∑M
s=1 C(s)/C(0) (see [7, 5]).

In the case of a homogeneous solid, MCMC gives results with an acceptable accuracy but it is highly
expensive in computations. Moreover, it is difficult to carry out results with MCMC because it requires
tuning the parameters of the algorithm carefully to obtain reliable results. Therefore we compare MCMC
with the algorithm SPSA, which is easier to implement.

7.1.2 Results with SPSA

With SPSA we take the same pressure measures and level of noise as with MCMC. The estimation with
this algorithm is shown in table 3. The trajectories of parameters are in (Figure 7).

We see that SPSA is much less expensive than accelerated MCMC (700 simulations instead of 6000)
and gives the same accuracy. Thus we consider SPSA with a multi-layers solid.
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Figure 4: Convergence of MCMC: estimation of the parameters with respect to the size of the Markov
chain.

θ Exact Values (SI) Confidence Intervals Errors
λ 11.5×109 12.2×109±6.12% 6.6%
µ 6×109 5.4×109±7.2% 9.5%
ρ 1850 1868± 0.83% 1%

Table 3: Estimation of the density and the Lamé’s coefficients of a homogeneous solid with SPSA and
level of noise ≤ 6% (700 interations).

7.2 Test case with three layers solid

The numerical experiment in this case is very similar to the previous one. The source is placed at 50 m
above the solid-fluid interface and each layer has a thickness of 5m. A standard choice for the transmitted
signal is the derivative of a Gaussian. Its frequency is 100 Hz and its amplitude is 1000 Pa. 26 receivers
are placed at the same depth of the source and evenly spaced by 5m. 208 pressure measures are considered
at each receiver. To simulate an observational measure error, a Gaussian noise ∼ N(0, s2) is added to
the pressure measures. We consider three levels of noise s = 0% (no noise), s = 1% and s = 3.5% of
Frobenus norm of the measures array.
The layers are considered thin because the the wavelength of the source which is related to the frequency
is less than the thickness of the layers. This configuration of the solid makes the reflected signals overlap
and the inverse problem difficult to solve.
Before solving this case, we make a sensitivity analysis to get the threshold of error in the pressure

measures above which the parameters are not identifiable. We compute
∂P

∂θ
by using a finite difference

approximation and an approximate condition number of
∂P

∂θ
. We obtain K ≈ 28. Therefore, following

(27) and in order to get
||δθ||
||θ|| ≤ 1,

||ε||
||P || ≤ K−1 = 0.035 (see [20] and [19]). This motivates our choice of

s above.
Results are summarized in table ?? and The trajectories of the parameters are depicted in Figure 8. We
see that SPSA gives good results with pressure measures without noise, and with noise equal to 1%. But
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Figure 5: Verification of the uniqueness of the solution of MCMC: mode of the posterior distribution.
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Figure 6: Sampling from pθ|y: autocorrelation function of each parameter.
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Figure 7: Convergence of SPSA: trajectories of the three mechanical parameters with respect to the
number of iterations in the case of a one layer solid.

when the noise is equal to the theoretical threshold given by the sensitivity analysis, some paramters are
badly estimated. These results are expected due to the high sensitivity of the inverse problem to the
noise in the pressure measures.

8 Concluding Remarks

We are interested in the inverse problem which is the estimation of the density and the Lamé’s coefficients
of a layered solid in contact with a fluid medium from the variation of the pressure in the fluid due to
the propagation of a seismic wave. The layers are considered thin because their thickness is less than the
wavelength.
The inversion is based on synthetic pressure measures and numerical simulations of the elastic wave

θ Exact Values Estimated values Estimated values Estimated values
(SI) with 0% noise with 1% noise with 3.5% noise

(estimation error) (estimation error) (estimation error)
λ1 11.5 11.59 (0.77%) 12.65 (9.09%) 39.15 (70.62%)
µ1 6 5.97 (0.50%) 5.92 (1.35%) 5.10 (17.64%)
ρ1 1700 1697 (0.17%) 1708 (0.46%) 1665 (2.10%)
λ2 9 9.09 (0.99%) 8.49 (6.00%) 10.05 (10.44%)
µ2 7 6.96 (0.57%) 7.10 (1.40%) 6.41 (9.20%)
ρ2 2000 1993 (0.35%) 2052 (2.53%) 1972 (1.41%)
λ3 11.5 11.65 (1.28%) 11.22 (2.49%) 16.18 (28.92%)
µ3 6 5.96 (0.67%) 6.43 (6.68%) 6.32 (5.06%)
ρ3 2400 2408 (0.33%) 2500 (4%) 2500 (4%)

Table 4: Estimation of the density and the Lamé’s coefficients of the three layers with SPSA and level of
noise = 0%, 1% and 3.5% (6000 interations).
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Figure 8: Convergence of SPSA: trajectories of the nine parameters with respect to the number of
iterations in the case of a three layers solid, noise = 1%.

propagation. Two stochastic methods are implemented and compared with respect to their computational
cost and accuracy.
The first method, MCMC, gives for this problem an estimation of the parameters of interest with an
acceptable error but its very costly in computations so only the case of one layer solid has been tested.
The second method, SPSA, gives the same level of accuracy as MCMC when compared for a one layer
solid and it has the advantage to be much less expensive in computations. It is possible with this method
to go further and solve the case of a three layers solid with about the same cost needed with MCMC for
one layer solid.
This work is supported by IFREMER and granted by Region Bretagne.
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