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Abstract. Subsurface hydraulic properties are mainly governed by the heterogeneity of
the porous medium considered. Our work aims at characterizing the asymptotic dispersion
coefficients for highly heterogeneous permeability fields triggered by advection and constant
local dispersion-diffusion. We have developed a fully parallel software for simulating flow
and transport. We have compared two well-known sparse linear solvers, based respectively
on a multifrontal Cholesky factorization and an iterative structured multigrid method. We
study the effect of various parameters, mainly the system size, the number of processors
and the degree of heterogeneity of the permeability field.

1 INTRODUCTION

Solute transport in underground media is a key for both energy and environment appli-
cations like the storage of high-level nuclear wastes and the management of groundwater
resources. Solutes are transported by advection and diffusion processes in highly hetero-
geneous media. Heterogeneity stems both from the juxtaposition of different lithologies
(sand, clay, silt,) and from the differences within lithological units of sedimentary condi-
tions [8, 14]. As a consequence physical properties like permeability are widely distributed.
Depending on the geological settings, the distribution of permeability may be restricted to
less than an order of magnitude [2] or span several orders of magnitude [22]. For low levels
of heterogeneity, upscaling from the local scale heterogeneity typically at the decimetre
scale to the macroscopic transport law typically at the kilometre scale has been solved
analytically by use of linearization and limited-orders techniques [9]. For high levels of
heterogeneity, such approximations cannot account for the high flow channelling and the
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large range of flow values [Moreno and Tsang, 1994|. The macro-scale transport law re-
lies in those cases on numerical modelling. The simulated domains must be larger than
the critical spatial scale L. at which the macroscopic asymptotic regime establishes. Nu-
merical estimates of the asymptotic transport coefficients have not yet been determined
without linearizing assumptions because domains of size larger than L. have not been
numerically attained [26]. In fact L. is very large because the characteristic time scales
of the involved phenomena (transport and diffusion) differ from at least 4 orders of mag-
nitude [5]. Simulating simultaneously advection as the main transport phenomenon and
diffusion as the only mixing process requires 2D domains of typical maximal scale over
resolution scale of the order of 10* leading to around 10® elements.

In this work, we have developed software for computing the full velocity field and
for simulating transport by advection-dispersion. Our platform is object-oriented, with
a modular approach and clearly defined interfaces and calls to numerical free software
libraries whenever possible. We run stochastic simulations based on a Monte-Carlo ap-
proach, with random samples of the permeability field. Our software is fully parallel and
allows running large-scale simulations until the asymptotic behaviour. The flux compu-
tation is a linear model leading to a large sparse structured matrix. We have compared
two well-known solvers, the direct solver PSPASES (multifrontal Cholesky factorization)
and the iterative structured multigrid solver SMG in the HYPRE library. We study the
effect of various parameters, mainly the system size, the number of processors and the
variance of the permeability field.

The paper is organized as follows. We first define the physical and numerical model,
then we describe the software; the fourth section is devoted to numerical experiments.

2 HYDRAULIC AND NUMERICAL MODEL
2.1 Physical model

The computational domain is a 2D rectangle with dimensions L, and L,,. Permeability
in porous media is classically modelled by a finitely-correlated field with lognormally
distributed values [4, 9]. The permeability field is characterized by its mean m, and
covariance function Cy, given by

Cy(r) = o® exp (—'f\|2> , (1)

with r the separation distance between two points, A, the correlation length and o the
log-normal variance. The length )\, is typically in the range [0.1m,100m] [28, 32] and the
variance o2 is in the interval [0, 7] that encompasses most of the generally studied values
[19].

Classical laws governing the steady flow in a porous medium are mass conservation
and Darcy law

v=—-KVhV.u=0, (2)
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where K is the permeability field, v is the Darcy velocity and h is the hydraulic head.
Boundary conditions are homogeneous Neumann on upper and lower sides and Dirichlet
h = 0 on left side, Dirichlet h = 1 on right side. Therefore L, and L, are respectively
longitudinal and transversal to the mean flow direction. The system should not be too
much elongated in order to avoid border effects. In fact the velocity field close to the
lateral boundaries is highly influenced by the no-flow boundary condition [24]. Transport
equations are governed by advection and diffusion; the velocity field is thus an input for
solving these equations. Simulations are divided into three main steps: we first gener-
ate the domain and the permeability field; then we solve the steady flow equations and
compute the velocity field; finally, we solve the transient transport equations.

2.2 Numerical model

The flow equations are discretized on a regular grid using a classical finite-volume
scheme, equivalent for a regular grid to a mixed finite-element scheme [3, 12]. The mesh
size Az is fixed as 1/8 to 1/10 of the correlation length which turns out to be enough for
flow and transport studies [1]. Thus the number of elements is given by N = L, L, /(Az)?.
Discrete linear equations are a linear system Az = b, with a sparse structured penta-
diagonal matrix A of order N, where x is the discrete hydraulic head and b comes from
Dirichlet boundary conditions. Transport is simulated by a particle tracker whose key
advantages for this study are the absence of numerical diffusion and the good performances
for obtaining a not too precise solution [29]. Particles are transported along the flow lines
and perform random jumps according to diffusion. In this Lagrangian framework, the
transport equation is discretized with an explicit scheme [20]. The time step is adapted
to the typical velocities on the boundaries of the mesh so that the particles perform on
average ten steps in the mesh. Within the mesh, particle velocities are obtained by bilinear
interpolation of the boundary velocities, because it is the sole interpolation method that
respects mass conservation [21]. Establishing the asymptotic transport coefficients does
not require a very precise solution but the simulation of flow and transport on a large
number of permeability fields. The precision of the results depends both on the particle
number and on the number of simulations.

3 PARALLEL OBJECT-ORIENTED SOFTWARE

We have developed an object-oriented software which provides a generic platform to
run Monte-Carlo numerical simulations of flow and transport in highly heterogeneous
porous media. The software is segmented in four main modules, respectively dedicated
to the generation of the permeability field, the computation of flow, the computation of
transport and the management of multiple simulations and their results. This modularity
allows a great flexibility and portability. For example, it is easy to test different sparse
solvers. All data are distributed on a cluster of processors and all computations are done in
parallel. The unique source code is written in C++ and can be implemented on machines
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with Unix, Linux or Windows systems. Graphical functions are written with OpenGL
and parallel programming relies on the MPI library. The software integrates open-source
components and will be made available to the community through an open-source licence.

3.1 Data distribution

Because large arrays cannot be stored on a single processor, they are distributed from
the beginning to the end of the simulation, according to a domain decomposition. Three
decompositions are implemented, respectively in slices along L, or L, or by square blocks
of constant size. Each processor owns a well-defined part or the array corresponding to
a subdomain and keeps in local memory one layer of cells surrounding its subdomain.
These ghost cells allow to reduce communication costs between neighbouring processors
and enables a fast computation of flow. The necessary methods have been gathered in a
C++ class. Values stored on a processor are encapsulated within the class and can be
accessed neither from outside nor from another processor. In fact no function requires
more than the values stored in a cell and in its neighbours. The main public functions
are the generation and the construction of the array, the extraction of a value and the
statistical computations.

3.2 Permeability generation

The generation of the correlated lognormal field is performed via a Fourier transform
with the software FFTW [?]. This library has a variety of composable solvers representing
different FFT algorithms and implementation strategies, whose combination into a partic-
ular plan for a given size can be determined at runtime according to the characteristics of
the machine/compiler in use. This peculiar software architecture allows FFTW to adapt
itself to almost any machine and to have good performances. The construction of the
array ends up with filling up the ghost cells, requiring the management of some commu-
nication between the processors. Permeability, velocity components and head values are
all stored on the same types of array.

3.3 Flow computation

The second part of the software performs the flow computation taking as input the per-
meability array and delivering as output the head and velocity fields. The main functions
are the derivation of the linear system from the permeability field, the use of the chosen
solver giving the head field and the computation of the velocity field from the head field.

The discrete flow equations are a linear system Az = b, where A is a symmetric positive
definite sparse structured matrix. To study scale effects, mostly for heterogeneous media
with a high variance, system dimensions should reach L, = 16384Az and L, = 8192Ax,
resulting to a system size N = 13410°. Parallel computing is essential to achieve these
sizes, in order to satisfy both memory and CPU requirements. The condition number
is related to the heterogeneities considered and increases very rapidly with the variance.
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Several methods and solvers exist for these linear systems. They can be divided into three
classes: direct, iterative or semi-iterative [16, 23]. Direct methods are highly efficient but
require a large memory space. Iterative methods of Krylov type require less memory but
need a scalable preconditioner to remain competitive. Iterative methods of multigrid type
are often efficient and scalable, well-suited to regular grids, used by themselves or as pre-
conditioners, but are sensitive to condition numbers [6, 31]. Semi-iterative methods such
as subdomain methods are hybrid direct/iterative methods which can be good tradeoffs
[27, 30]. For iterative and semi-iterative methods, the convergence and the accuracy of
the results depend on the condition number which can blow up at large scale for a high
variance. Thus there is no clear method of choice and the most suitable solver will depend
on several parameters such as the system size, the variance, the computing architecture.
In this paper, we compare a direct method and an iterative multigrid method; both meth-
ods are very efficient but have different drawbacks, either memory requirements increasing
with domain size or CPU requirements increasing with heterogeneity. We use numerical
libraries which are free, heavily used, portable, parallel. Because the matrix is positive
definite, we choose PSPASES as a direct solver [13, 11]; we choose HYPRE and more
precisely SMG (Structured MultiGrid) as a multigrid solver [7]. We use them as black
boxes, with parameters set by default. In particular, we do not use any scaling or tuning.

3.4 Transport computation

The third part is the particle tracker that implements the transport computation. The
particle tracker is separated from the remaining of the software by a pure virtual class
that acts as an interface ensuring that the particle tracker can be used with other types of
grids. The interface contains the minimal number of functions necessary from the array.
The most important functions are the extraction of the velocities on the limit of the grid,
the geometry of the mesh, the topology of the grid (i.e. which cells neighbour a given
cell) and the presence of a boundary close to a cell.

3.5 Simulation supervision

This module controls the execution of Monte-Carlo simulations: it creates the parame-
ters, calls the three modules described above, gathers the simulation results and computes
the statistical ouputs.

4 NUMERICAL EXPERIMENTS AND RESULTS
4.1 Numerical tests

Our software enables us to run simulations at very large scales, with very high variances.
We have defined two main physical parameters: the domain size L, = L, (we consider
mainly squares) and the variance 0. For each value, we generate several random samples
in order to produce statistical results. We have obtained asymptotic behaviour and can
now analyze the macro dispersion. Two examples of simulation are illustrated on Figure
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1, for two values of the variance (0% = 0.5 and 0? = 3) and the same size (L, = 512),
with no molecular diffusion. Although the permeability fields (top left) have the same
geometric distribution, the colour scales are different, with a much larger interval for
0? = 3; the heterogeneity has as strong impact on the velocity field (longitudinal bottom
left, transversal bottom right) and on the cloud of particles, which are clearly distinct
(top right). We use 10 000 particles in our simulations, leading to results which do not
vary more than 1% for 100 simulations. In the next subsections, we present performance
results for a domain size ranging from L, = 256 to L, = 4096 and for a variance ranging
from 02 = 0.5 to 02 = 6. All tests are performed on a SUN cluster composed of two
nodes of 32 computers each. Each computer is a 2.2 Ghz AMD Opteron bi-processor with
2 Go of RAM. Inside each node, computers are interconnected by a Gigabit Ethernet
Network Interface, and the two nodes are interconnected by a Gigabit Ethernet switch
(CISCO 3750). This cluster is a component of the Grid’5000 computing resource installed
at INRIA in Rennes, see Figure 2. For our simulations, we have used up to 128 processors.

o,

T
§'l"“ i 3 o

Figure 1: Examples of simulation with 02 = 0.5 (left) and 02 = 3. Top left is the permeability field,
bottom left is the longitudinal velocity, bottom right is the transversal velocity, top right is the cloud of
particles.

4.2 Complexity analysis

To analyze the complexity, we fix the variance ¢ = 1 and the number of processors
P = 2 and vary the domain size, thus the matrix order N. Figure 3 represents timings and
memory requirements with PSPASES. As predicted by the theory [13, 11], we observe on
Figure 3 left, that the number of nonzeros in the Cholesky factor L is roughly proportionoal
to Nlog N (we could also conclude to N), but much larger than the number of nonzeros
in the original matrix A, which is 5N. Clearly , the most CPU-intensive task is linear
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Figure 2: Architecture of the cluster and the grid used for simulations.

solving. Other tasks, such as matrix generation, have a linear complexity, while the direct
sparse linear solver has a complexity in O(N'3). This is observed on Figure 3 right and
confirms the theory for regular grids [13, 11]. Figure 4, left, represents the number of
V-cycles in the multigrid method HYPRE/SMG, which is a measure of the convergence
rate. The residual threshold is fixed to 107® and the number of V-cycles is limited to
1000. The number of V-cycles slightly increases with the domain size (the behaviour is
roughly logarithmic), so that the CPU time (Figure 4, right) increases not only because
of the system size but also because of the slower convergence. However, the complexity
is here roughly linear in O(N). We can conclude that, with a bi-processor computer, a
multigrid method is more efficient than a direct method for very large matrices and small
variances. Moreover, memory requirements are much lower, with a linear complexity in

O(N).

4.3 Scalability analysis

Now, we study the performances of both solvers on parallel computers. We keep the
variance fixed o = 1 and the domain size fixed (ranging from N = 512 to N = 2048) and
we vary the number of processors P. CPU timings are represented on Figure 5 (left, small
and medium size, right, large and very large size). For a small size, PSPASES is more
efficient than HYPRE, for any number of processors. For a moderate size, both solvers
give similar timings for a small number of processors, then PSPASES becomes faster. For
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Figure 3: Complexity of PSPASES; memory requirements (left) and CPU time (right). Variable matrix
order N, variance ¢ = 1, number of processors P = 2.

HYPRE HYPRE

70 ! 300
T
-
65 L -
- 250
60 _-
-
_-
55 _--
8 _-- 200
S 50 ’ o
I 4 £
> ’ 5
S 45+ , 5 150 .
5 ’ o P
8 o -
E 40F 7 -
5
g ' 100 P
351 , — -
1 -
30t j _-"
' 50+ -
-
25 E Pie
i -
-
20 L L L L L L L L 0 - L L L L L L L L
0 0.5 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 4 45
matrix size X 106 matrix size X 106

Figure 4: Complexity of HYPRE/SMG; convergence (left) and CPU time (right). Variable matrix order
N, variance o = 1, number of processors P = 2.

a large size, HYPRE is faster with a few processors and slower with many processors
(the threshold is here at 32 processors and depends on the size and the architecture).
For a very large size, PSPASES can run only on many processors because of memory
requirements and is much slower than HYPRE.

Speed-ups are reported in Figure 6; since PSPASES must run on at least 2 processors,
the speed-up is taken as 27°(2)/T(P), where T'(P) is the time with P processors. Also,
the speed-up with HYPRE and the very large size is taken as 47'(4)/T(P). The speed-
up increases with the size, because both solvers are in some sense scalable. However,
PSPASES has a better parallel efficiency than HYPRE. This explains why CPU curves
intersect on Figure 5. We have estimated the efficiency of PSPASES by computing the
ratio R = (N'?/(PT(P))), which is approximately proportional to the efficiency £ =
T(1)/PT(P). In Table 1, we observe that this ratio, thus the efficiency, is roughly constant
when N/P is kept constant. This is in good agreement with the theoretical result about
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the isoefficiency of PSPASES [13, 11], showing that this solver is scalable in the sense
that the efficiency is constant for a constant ratio N/P [15]. As far as HYPRE/SMG is
concerned, our results do not allow to conclude to some isoefficiency or scalable speed-up.
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Figure 5: Parallel CPU time of PSPASES (blue solid lines) and HYPRE (red dotted lines). Variable
number of processors P, variance o = 1, small matrix order N (left), large matrix order N (right).
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Figure 6: Speed-up of PSPASES (blue solid lines) and HYPRE (red dotted lines). Variable number of
processors P, variance o = 1, small matrix order N (left), large matrix order N (right).

4.4 Impact of heterogeneity analysis

Up to now, we simulated moderately heterogeneous media; now, we study highly het-
erogeneous permeability fields, with a variance ranging from o2 = 0.5 to 02 = 6. We keep
the matrix order N and the number of processors P fixed. In Figure 7, left, we plot the
number of V-cycles in the multigrid HYPRE/SMG solver. It increases very rapidly, from
a few dozen up to more than 1000, which was the limit value in our settings. Accordingly,
the CPU time (Figure 7, right, red dotted line) increases very rapidly. On the other hand,
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Pl N [T, | R
2 | 262144 | 5.60 | 11977373
8 | 1048576 | 11.33 | 11844656
32 | 4194304 | 25.70 | 10443374
4 | 262144 | 2.92 | 11502234
16 | 1048576 | 6.06 | 11079774
64 | 4194304 | 13.08 | 10535895

Table 1: Values of the parameter R for various values of (P, N) and for PSPASES.

the CPU time of the direct PSPASES solver (Figure 7, right, blue solid line) remains con-
stant, showing that the variance has almost no impact on the performance. We observe a
small increase of the residual (one order of magnitude). However, the condition number
increases with the variance, so we can expect a loss of accuracy in the solution. The
first conclusion drawn from this experiment is that the multigrid method (as used in our
simulations) is not efficient at all for a high variance. The direct solver remains efficient,
but still requires heavy computations and memory space with very large domain sizes.
There are several ways to improve accuracy and convergence of the multigrid method.
A first step will be to scale the matrix in order to reduce the condition number [25]. A
second step will be to use other multigrid methods, with a smoother tuned for heteroge-
neous data. A third step will be to use domain decomposition methods, with interface
conditions also adapted to a highly heterogeneous permeability field or Krylov iterative
methods with deflation [10, 18, 17].

HYPRE PSPASES and HYPRE

1000 10

1
—— PSPASES
900 ) .

800} ‘A ’

700
600 A 1 .

500 ’

CPU time
=
ON
N

400+ ! ] .

number of V-cycles

3001 1 -

200 e

100+

--

PR 0 1 2 3 n 5 6
Figure 7: Convergence of HYPRE/SMG (left) and CPU time (right) of PSPASES (blue solid line) and

HYPRE/SMG (red dotted line). Variable variance o2, matrix order N = 1024 * 1024 = 1.0410°¢ (left),
number of processors P = 4.
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5 CONCLUSION

Thanks to our parallel software, we can simulate flow and transport in 2D highly
heterogeneous porous media with very large size. In our simulations, the direct solver
PSPASES appear to be very efficient for small to moderate sizes whereas the iterative
multigrid solver HYPRE/SMG is faster for very large sizes. But PSPASES gives better
parallel performances, so that the threshold between both methods depends on the number
of processors. Also, SMG is very sensitive to the degree of heterogeneity, which increases
the condition number, and becomes less efficient than PSPASES for highly heterogeneous
media. We plan to investigate in more details this sensitivity and to test different meth-
ods, such as diagonal scaling, other smoothers, domain decomposition. We are currently
gathering the statistical outputs in order to analyze the macro-dispersion effects. Also we
plan to develop a 3D version and to run samples of Monte-Carlo simulations on several
clusters interconnected in a computational grid.
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