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1. Introduction

In the last few years, the study of the possible

underground storage of high level nuclear wastes has

reinforced the need for an accurate modeling of the role

of fractures on flow and transport in a broad range of

geological media, in which fractures have been observed.

Homogenization and continuous approaches are the

most frequently used. Such approaches model the

heterogeneity caused by the presence of fractures by

homogeneous equivalent media. However they under-

estimate the effect of the heterogeneity among which the

observed scale increase of permeability and dispersivity

in natural fractured media (Clauser, 1992; Gelhar et al.,

1992). The scale effects must be known accurately as they

are at the heart of the modeling process of inferring field

scale characteristics from laboratory measurements.

Alternatively another approach, the discrete ap-

proach, has been developed (Snow, 1969). Fractures

are modeled by discontinuities (segments in 2D and

planar objects in 3D) having different physical proper-

ties from the surrounding unfractured media. Integrat-

ing progressively the broad variety of fractures, discrete

models become closer to physical processes and field

observations but increasingly complex and computa-

tionally demanding (de Dreuzy et al., 2001). The broad

variety of fractures comes especially from their widely

scattered fracture length distribution, generally modeled

by a power law without characteristic length scale apart

from its endmost limits (de Dreuzy et al., 2001):

nðlÞBla for lA½lmin; lmax�; ð1Þ

where lmin and lmax are the minimal and maximal

fracture lengths, respectively. Fig. 1A shows a typical

2D fracture network model having a power-law fracture

length distribution.

The multi-scale nature of the fracture networks

requires large networks to be simulated with a fine

resolution. Moreover, the lack of field data makes

necessary the use of a stochastic model and of Monte-

Carlo simulations. As a result, the discrete approach

must cope with the simulation of the hydraulic

phenomena in a large number of large fracture networks

made up often of several hundreds of thousands of

fractures. Limitations in the modeling capabilities

arise often from the execution time of the numerical

models.

We show in this paper two algorithms for the two first

modeling steps, which are the determination of the

connected part of the network and the computation of

the solution of the steady-state flow equation, that are

orders of magnitude faster than the classically used

algorithms. These two algorithms have been tested on

bi-dimensional networks. We discuss briefly their exten-

sion to 3D networks. Although simple and straightfor-

ward to implement, these algorithms have not been

described in previous reports, to the best of our

knowledge.

2. Determination of the connected cluster

Although apparently simple, the determination of the

connected cluster (i.e. the ensemble of fractures con-

nected to the limits of the system) may be time

consuming. Its limiting part is the search for the

intersections between fractures. Once the fracture
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intersections are determined, organizing n fractures in

clusters either connected or isolated from the edges of

the systems is an algorithm of complexity OðnsÞ; where ns

is the number of segments of the network relating two

consecutive points, the points of the network being the

fracture ends and intersections. Indeed, the algorithm is

the determination of the connected components of the

graph whose vertices are the network segments. This

algorithm is classical in graph theory and can be found

for example in Gondran and Minioux (1984, p. 14).

Once the graph organized in connected components,

each component is scanned to test if it is connected to

the boundary of the systems, which is an algorithm of

complexity OðnpÞ; where np is the number of network

points. The connected components that are connected to

the boundaries are retained and formed the ‘‘infinite

cluster’’ (Stauffer and Aharony, 1992) in which flow

takes place.

The classical search for intersections of a network

made up of n fractures is the straightforward algorithm

of complexity n2 that tests all couples of fractures. We

first describe and secondly study the complexity of a

faster algorithm that we call the ‘‘scanning algorithm’’

adapted from computational geometry algorithms (Pre-

parata and Shamos, 1985). The ‘‘scanning algorithm’’

consists in scanning the intersections of the system from

one side of the system to the other one as illustrated

in Fig. 2. The algorithm is made up of two successive

steps. In the first step, the ends of the fractures

are ordered by increasing x-coordinates (for example)

in a vector. Fractures are characterized by the vertical

band that they cover (Fig. 2). Fractures intersect only if

their vertical band overlap. The second step thus

consists in testing only the fractures whose vertical

bands overlap.

(A) (B) 

Fig. 1. (A) Model of fracture network having a power-law length distribution such as Eq. (2) with a ¼ 2:5: Minimal fracture length is

lmin; global size of system L is equal to 100lmin and maximal fracture length lmax is much larger than L: (B) Flow in steady state in

network shown in (A). Boundary conditions are a fixed head on sides of system and an imposed flow on central node. Gray color and

width of segments are proportional to flow.

Fig. 2. Illustration of intersection tests by scanning method. In

configurations (a) and (b), intersection is carried out because

fractures cut same vertical zone underlined in dark gray. On

other hand, in configuration (c), with fractures in different

vertical zones, intersection between fractures is not tested.
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The ordering algorithm for n fractures is of typical

complexity n log n: For each fracture, the number

of intersection tests is proportional to the number of

fractures intersecting the vertical band covered by

the fracture. The width of the vertical band is of the

order of the fracture length l and the average number of

fractures per unit length is equal to n=L where L is the

system site. By integrating over all fractures and by

taking the mean fracture length /lS; the number of

intersection tests for all fractures is of the order of

n2/lS=L: The intersection tests of complexity n2 remain

thus the limiting factor over the ordering algorithm of

order n log n: The scanning algorithm of complexity

n2/lS=L is faster than the classical search algorithm

of complexity n2 by the factor L=/lS: When a is larger

than 2, which is the most current case (Bonnet et al.,

2001), the average fracture length /lS scales as the

minimal fracture length lmin (Bour and Davy, 1997),

which is orders of magnitudes smaller than the system

size L: The scanning algorithm is expected to be orders

of magnitude faster than the classical algorithm.

We have compared both algorithms for a network

made up of 200 000 fractures having a size ratio L=lmin ¼
1000 and generated with the power-law fracture-length

distribution of Eq. (1) characterized by the exponent a ¼
2:5: On a standard workstation, the determination of

the fracture intersections took 3 h with the classical

algorithm and 42 s with the scanning algorithm.

The scanning algorithm is around 250 times faster

than the classical algorithm, which is lower than

the L=lmin ¼ 1000 times expected, but still far more

efficient.

The scanning algorithm was accelerated by using the

cross-product test (Cormen et al., 1990), which makes it

possible to distinguish the configurations (a) and (b)

from Fig. 2 without seeking the intersections explicitly.

The cross product of two vectors u and v; noted u � v; is
a vector whose algebraic value is equal to juj � jvj � sinðyÞ;
where y is the angle between u and v: If the two vectors u

and v are beginning at the same origin, a positive

algebraic value of the cross product means that v is

obtained from u by a rotation having a positive angle

whereas if the algebraic value of the cross product is

negative, it means that the rotation angle is negative.

Provided that two segments M1M2 and N1N2 cross

overlapping vertical bands, they intersect if and only if

the algebraic value of their cross products M1M2 �
M1N1 and M1M2 � M1N2 have opposite signs, which

means that the two points N1 and N2 are on each other

side of the segment M1M2:
The scanning algorithm can be extended to 3D

fracture networks with the same complexity rules as

those derived for 2D networks. We have verified that, as

for the bi-dimensional networks, the scanning algorithm

is much faster than the classical algorithm for 3D

networks of disks. For example, for a network made up

of 50 000 disks and of size L=lmin ¼ 50; the classical

algorithm took 14 min whereas the scanning algorithm

took 22 s; i.e. 40 times less, whereas the expected gain of
time is 50 times.

3. Numerical solution of the steady-state flow equation

The flow equation in steady state is (de Marsily,

1986)

rðKð~rrÞrhÞ ¼ Qð~rrÞ; ð2Þ

where~rr is the position vector, h is the hydraulic head, Q

is the source term, and K is the fracture permeability.

The flow domain in which we solve Eq. (2) is the

irregular grid made up of the fractures such as the

one shown in Fig. 1A. The fracture properties intervene

through the permeability K ; which will be considered

here as constant within a fracture and variable

from fracture to fracture. We set the boundary condi-

tions to mimic a well test made at constant flow rate Q:
The flow Q is injected on the closest fracture to the

center and a fixed head is given to the end points of the

fractures located on the system edges. The flow

corresponding to the network of Fig. 1A are presented

on Fig. 1B.

Because of the medium complexity, Eq. (2) can

only be solved numerically. We show how the hetero-

geneities of the medium intervene in the choice of

the most efficient numerical method. We underline

that our goal is to compare existing numerical methods

in order to find efficient, precise and flexible tools

of simulation. We thus used the free software PETSc1

and UMFPACK2 specialized in sparse linear systems,

to perform and compare different algorithms. Matrices

where stored in a sparse format implemented within

the software used. This approach of using existing

software allows to have efficient and validated tools

of simulation with a minimum cost and time in-

vestment.

We discretize Eq. (2) on the irregular grid formed

by the fracture network. Each node of the grid is either

the intersection of two fractures or the end of a fracture.

The discretization leads to a linear system of equations

A � h ¼ b of size equal to the number np of nodes of

the network. The coefficients of the matrix A and of

the second term b depend both on the configuration of

the network and on the fracture permeabilities:

1The Portable, Extensible Toolkit for Scientific Computa-

tion, PETSc home page, 2001, http://www.mcs.anl.gov/petsc.
2A package implementing the Unsymmetric MultiFrontal

method, UMFPACK home page, 2001, http://www.cise.ufl.e-

du/research/sparse/umfpack/.
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if i and j are connected ðiajÞ and ieL and jeL

Aði; jÞ ¼ kij=dij

otherwise

Aði; jÞ ¼ 0

if ieL

Aði; iÞ ¼
P

j neighbors of i kij=dij

bðiÞ ¼
P

j neighbors of i and jAL kij=dij � h0

if iAL

Aði; iÞ ¼ 1

bðiÞ ¼ h0

ð3Þ

with kij and dij the permeability and the length of the

fracture between the two connected nodes i and j and h0
is the fixed head on the limit L:With this formulation, A

is symmetric positive definite. Iterative conjugate-gra-

dient methods were tested and compared to the LU

factorization. Iterative conjugate-gradient methods were

implemented within PETSc (see footnote 1). They were

either not preconditioned or preconditioned with either

Jacobi’s method or the incomplete LUs method. The

direct decomposition method was implemented within

UMFPACK (see footnote 2), a multifrontal decomposi-

tion method. Multifrontal methods are right-looking

methods where the pivots can be selected both on the

basis of sparsity and numerical accuracy. The factoriza-

tion is performed in a sequence of frontal matrices which

are small dense submatrices (Davis and Duff, 1999).

For all 2D fracture networks tested, the direct method

was several orders of magnitude faster than the iterative

methods whatever the preconditioning. For the network of

Fig. 1A, the direct method is more than 3.5 orders of

magnitude faster than the conjugate gradient precondi-

tioned by an incomplete LU decomposition. Direct

methods require an additional storage which is close to

the space used to store the matrix A; whatever the network
type. For a network made up of 700000 points, the

iterative methods solves the system in 36 h whereas the

multifrontal method takes 73 s; i.e. around 2000 times less.
Direct methods are classically faster than iterative

methods but require more memory. In the example

studied here, the additional memory storage is accep-

table even for large networks. However the large

difference of performance between iterative and direct

methods was not expected. It comes from the broad

spectrum of matrix A: The matrix spectrum is the range

covered by the eigenvalues of the matrix. It conditions

the performance of the iterative methods. The largest is

the spectrum, the slowest are iterative methods. For the

network shown in Fig. 1, the spectrum of A spans

several orders of magnitude (Fig. 3). Quantitatively, the

width of the spectrum can be estimated by the condition

number of A as given by the Matlab function ‘‘condest’’.

It is equal to 108 when all fractures have the same

permeability and to 1013 when fracture permeabilities

are lognormally distributed with a logarithm standard

deviation sðlog KÞ equal to 1. These large values of the

condition number of A are found for all fracture

networks, whatever their number of fractures, fracture

length and permeability distributions. They can be

explained by the direct calculation of the eigenvalues

corresponding to the nodes located at the end of the

fractures. As on the line corresponding to one of these

points there is only one non-zero off-diagonal element,

the eigenvalue is equal to the diagonal element kii=dii

(Eq. (3)). The broad range of distances between nodes dii

and the large variability of the fracture permeabilities kii

explain the large spectrum of eigenvalues.

As fracture length and aperture variabilities are

typical characteristics of fractured media whatever the

dimension of the network, we expect direct algorithms to

be faster than iterative algorithms in 3D as well as in 2D.

However, the number of neighbors per fractures could

increase so much in 3D networks that the space

requirements of the direct methods might be prohibitive.

We are currently studying the steady-state flow problem

for 3D networks.
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