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This paper is devoted to the numerical reliability and time requirements of the

Mixed Finite Element (MFE) and Mixed-Hybrid Finite Element (MHFE) methods.

The behavior of these methods is investigated under the influence of two factors: the

mesh discretization and the medium heterogeneity. We show that, unlike the MFE,

the MHFE suffers with the presence of badly shaped discretized elements. Thereat,

a numerical reliability analyzing software (Aquarels) is used to detect the instability

of a matrix-inversion code generated automatically by a symbolic manipulator. We

also show that the spectral condition number of the algebraic systems furnished by

both methods in heterogeneous media grows up linearly according to the smooth-

ness of the hydraulic conductivity. Furthermore, it is found that the MHFE could

accumulate numerical errors if large jumps in the tensor of conductivity take place.

Finally, we compare running-times for both algorithms by giving various numerical

experiments.

Keywords: elliptic/parabolic problems, flow in porous media, mixed and mixed-

hybrid methods, functional stability, symbolic programming.

1. Introduction

Various transient problems in the science and engineering fields, such as the

heat transfer, electromagnetic current, flow of fluids and transport of solute in

porous media [1] etc., are governed by coupled systems of time-dependent partial

differential equations. Due to the powerlessness of classical methods like the finite

element or finite difference methods in manipulating these systems where usu-

ally the primary variable and its derivative need to be approximated, the mixed

and mixed-hybrid finite element methods are developed to handle such problems.

The main favorable property of these methods is that both the primary unknown
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and its gradient are approximated simultaneously with the same order of conver-

gence. Besides, they fulfill the physics of the problem, i.e. conserve mass locally

and preserve the continuity of fluxes (see, e.g., [4,5]).

The foremost motivation of this work is to give a scrupulous examination of

the numerical reliability and time-consuming of the MFE and MHFE methods

applied to elliptic/parabolic problems. The Darcy’s law and the mass conserva-

tion equation describing a single phase fluid flow in porous media will be studied.

In the case of transient flow, the parabolic governing equations for the unknown

pressure head scalar function p and Darcy’s velocity vector function u are given

by

s(x)
∂p(x, t)

∂t
+ ∇.u(x, t) = f(x, t) in Ω × (0, T ],

u(x, t) = −K(x)∇p(x, t) in Ω × (0, T ],

p(x, 0) = p0(x) in Ω,

p(x, t) = pD(x, t) on ΓD × (0, T ],

u(x, t).ν = qN (x, t) on ΓN × (0, T ].

(1.1)

In the case of steady flow, the stationary problem of (1.1) is reduced to the

following second order elliptic equations

∇.u(x) = f(x) in Ω,

u(x) = −K(x)∇p(x) in Ω,

p(x) = pD(x) on ΓD,

u(x).ν = qN (x) on ΓN ,

(1.2)

where Ω is a bounded domain in Rd (d = 1, . . . , 3) with boundary ∂Ω = ΓD ∪ΓN ;

K = K(x) is the so-called hydraulic conductivity (permeability), it is assumed to

be a diagonal tensor with components in L∞(Ω); ν indicates the outward unit

normal vector along ∂Ω; f ∈ L2(Ω) represents the sink/source function; s is

the storage coefficient; pD and qN are respectively the Dirichlet and Neumann

boundary conditions.

It is well known that the MFE formulation, in approximating the stationary

problem (1.2), leads to a saddle point problem (see, e.g., [3,4,6,9]). Therefore, an

indefinite algebraic linear system is obtained and consequently cannot be solved

by direct usage of robust algorithms like Cholesky or Conjugate Gradient meth-

ods. The hybridization idea is exerted to overcome this problem, hereby new
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degrees of freedom are appended. The benefit of this approach is that it leads

to solve an equivalent linear system which is symmetric and positive definite. It

was shown in [6,10] that by using the lumped-mass technique the mixed formu-

lation with rectangular elements boils down to the classical cell-centered finite

differences. Nevertheless, in this work, we study the mixed formulations by using

analytic integrations and without any restrictions on the discretized elements.

It is found that, unlike the case of elliptic problems, the MFE method leads to

solve a symmetric, positive definite linear system in approximating pure transient

parabolic problems. Furthermore, we show that the MFE method is numerically

more accurate than the MHFE in approximating the fluxes, chiefly with the pres-

ence of flat mesh elements or large variations in the medium heterogeneity. By

discretizing the domain into triangular elements, the mixed-hybrid formulation

necessitates inverting a 3 × 3–dimensional matrix for each element. It is found

that flat triangles could blow up the conditioning of the corresponding matrices,

so one should be cautious in the way whereby these matrices are inverted. Incip-

iently, by using a matrix-inversion subroutine automatically generated by Maple

led sometimes to non-consistent results that are mostly obtained on relatively

flat elements. The matrix-inversion function of Maple is based on Cramer’s rule

which is well known to be numerically unstable [8]. Accordingly, the instability

of the Maple’s subroutine is shown by using a numerical stability detecting soft-

ware, Aquarels [18,19]. Comparisons with another matrix-inversion code based

on LDL–factorization method show that this code is stable, and is more efficient

than the former. On the other hand, by using the MFE method, the inversion of

such matrices is avoidable.

Generally, rough physical parameters in heterogeneous media could cause

shortcomings in the approximated solutions. The weak spot of classical methods

is that the velocity unknown u is approximated by numerical differentiation of the

primary unknown and then multiplication by an often rough tensor of conduc-

tivity. In the works presented in [11,13], numerous numerical experiments attest

that the MHFE method is numerically more reliable than the conforming finite

element method. However, in this work we inspect the behavior of the algebraic

systems and the resulting solutions fulfilled by both mixed methods. We prove

that the conditioning of the resulting algebraic linear systems grows up linearly

according to the ratio between the highest and lowest values of the hydraulic

conductivity of adjacent elements in heterogeneous media. Furthermore, we have
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detected that the MHFE algorithm could accumulate numerical errors if large

jumps in the tensor of conductivity take place. In accordance with the work pre-

sented in [6], it is found that the condition number of the linear system induced

by the MFE method is critically affected by the values of the storage coefficient s.

This paper is organized as follows. In the next section, after reviewing

the approximation spaces and the variational formulations of the equations (1.1),

(1.2), we present the elementary equations and the final algebraic systems derived

from both mixed methods. The aim in section 3 is to study the effect of the

mesh geometry on the approximated solutions. The numerical reliability of two

matrix-inversion subroutines is analyzed by using Aquarels. The properties of the

algebraic systems induced by both methods in simulating flow in heterogeneous

media are investigated in section 4. Finally, before ending with a conclusion,

we give in section 5 some numerical experiments comparing running-times of the

MHFE and MFE algorithms.

2. Mixed and Mixed-Hybrid Finite Element Discretizations

The essential idea of the mixed methods is to approximate individually the

Darcy’s law and flow equation and we get additionally the Darcy velocity u as an

unknown function. Thus, the variation formulations of the given PDEs systems

are chosen in a way to have the pressure and its gradient in the basic formulation.

Introducing the Hilbert spaces

H(div; Ω) = {χ ∈ (L2(Ω))2 | ∇.χ ∈ L2(Ω)},
Hg,N (div; Ω) = {χ ∈ H(div; Ω) | ν.χ = g on ΓN}

the mixed formulation of (1.1) can be stated as:

Find (u, p) ∈ HqN ,N (div; Ω) × L2(Ω), such that






∫

Ω

(K−1
u).χ dx +

∫

∂Ω

pD ν.χ dℓ =

∫

Ω

p∇.χ dx ∀ χ ∈ H0,N (div; Ω),
∫

Ω

s
∂p

∂t
ϕ dx +

∫

Ω

∇.u ϕ dx =

∫

Ω

f ϕ dx ∀ ϕ ∈ L2(Ω).
(2.1)

In order to state a finite element formulation of problem (2.1) it is necessary to

define finite dimensional subspaces of H(div; Ω) and L2(Ω). These spaces are, in

the simplest case, the Raviart-Thomas spaces of lowest order RT 0 and multiplier
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spaces M0.

We shall restrict our discussion to the case of two-dimensional triangular

discretization. The other spatial discretizations follow in a similar manner.

Throughout this paper, we denote by T
h

the set of triangular partitioned ele-

ments of Ω where h refers to the maximal mesh spacing (h = max
K∈T

h

diam(K)).

Let E
h

be the collection of edges of the grid not belonging to ΓD. By NE and NT

we denote the cardinals of E
h

and T
h
, respectively.

Define the Raviart-Thomas spaces

RT 0(K) = {s ∈ (P1(K))2 | s = (a + b x1, c + b x2), a, b, c ∈ R},
RT 0(T

h
) = {φ ∈ L2(Ω) | φ/K ∈ RT 0(K) ∀K ∈ T

h
},

RT 0
g,N (T

h
) = RT 0(T

h
) ∩ Hg,N (div; Ω),

where Pd(K) is the space of polynomials of total degree d defined on K.

Further, the multiplier space M0(T
h
) is defined as

M0(T
h
) = {ϕ ∈ L2(Ω) | ϕ/K ∈ P0(K), K ∈ T

h
}.

The lowest order Raviart-Thomas mixed discretization of problem (2.1) reads as

follows:

Find (u
h
, p

h
) ∈ RT 0

qN ,N
(T

h
) ×M0(T

h
), such that






∫

Ω

(K−1
u

h
).χ

h
dx +

∫

∂Ω

pD ν.χ
h
dℓ =

∫

Ω

p
h
∇.χ

h
dx ∀ χ

h
∈ RT 0

0,N (T
h
),

∫

Ω

s
∂p

h

∂t
ϕ

h
dx +

∫

Ω

∇.u
h
ϕ

h
dx =

∫

Ω

f ϕ
h
dx ∀ ϕ

h
∈ M0(T

h
).

(2.2)

On the other hand, in the MHFE formulation, u
h

is sought in the enlarged

Raviart-Thomas space RT 0(T
h
). The continuity of the normal flux across the

interelement boundaries is enforced by Lagrange multipliers on the space of con-

stant functions N 0(E
h
) over the edges. Define the multiplier spaces

N 0(E
h
) = {λ ∈ L2(E

h
) | λ/E ∈ P0(E) ∀E ∈ E

h
},

N 0
g,D(E

h
) = {λ ∈ N 0(E

h
) | λ = g on ΓD}.

Then the mixed hybrid discretization reads as:
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Find (u
h
, p

h
, tp

h
) ∈ RT 0(T

h
) ×M0(T

h
) ×N 0

pD,D
(E

h
) such that






∫

Ω

(K−1
u

h
).χ

h
dx +

∑

K∈T
h

∫

∂K
tp

h
ν

K
.χ

h
dℓ =

∑

K∈T
h

∫

K
p

h
∇.χ

h
dx ∀ χ

h
∈ RT 0(T

h
),

∫

Ω

s
∂p

h

∂t
ϕ

h
dx +

∫

Ω

∇.u
h
ϕ

h
dx =

∫

Ω

f ϕ
h
dx ∀ ϕ

h
∈ M0(T

h
),

∑

K∈T
h

∫

∂K
u

h
.ν

K
λ

h
dℓ =

∫

∂Ω

qN λ
h
dℓ ∀ λ

h
∈ N 0

0,D(E
h
).

(2.3)

2.1. Local basis functions

The Raviart-Thomas basis functions of the 3-dimensional space RT 0(K) are

defined as

w
K,E

i
=

1

2|K|

(
x1 − x1i

x2 − x2i

)
i = 1, . . . , 3, (2.4)

where |K| is the measure of the triangular element K and the (x1i, x2i)’s are its

vertices (see Fig. 1).

2

3

1

1

E

w

q

E2
E

3

3 3

q ν

3

q
2 ν2

q
i

wi
νi

’s

ν

w2
w1

 are the Raviart-Thomas basis functions
 Values of the Pressure and its Gradient

  Values of the Pressure

   is the unitary normal vector on E
1 1  is the flux through E i

 i

Figure 1. Nodal points and basis functions on triangular elements.

Therefore, for every χ
K

∈ RT 0(K), K ∈ T
h
, it can be written as χ

K
=∑

E⊂∂K

q
K,E

w
K,E

. Furthermore, the following properties are satisfied.

i. ∇.χ
K

is constant over K.

ii.

∫

E
ν

K,E
.χ

K
dℓ = q

K,E
is constant on each E ⊂ ∂K.
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Hence, u
K

is uniquely determined by the normal fluxes q
K,E

across the edges of

K, where ν
K,E

denotes the outer normal vector on E with respect to K.

2.2. Mixed-Hybrid Finite Element formulation

The finite dimensional space RT 0(T
h
) is spanned by linearly independent

vector basis functions w
K,E

, E ⊂ ∂K, K ∈ T
h
, such that w

K,E
has its support in

K (supp(w
K,E

) ⊆ K) and

∫

E′
w

K,E
.ν

K
dℓ = δEE′ , E, E′ ⊂ ∂K.

These functions can be chosen as the local bases functions given in (2.4). Thus,

a function u
h
∈ RT 0(T

h
) has three degrees of freedom per element which are the

fluxes across the element’s edges

u
h
(x) =

∑

K∈T
h

∑

E⊂∂K

q
K,E

w
K,E

(x), x ∈ Ω.

The two spaces M0(T
h
) and N 0(E

h
) are spanned respectively by the linearly

independent scalar basis functions ϕ
K

, K ∈ (T
h
), and λ

E
, E ∈ (E

h
), such that

ϕ
K

(x) = δK,K′ , x ∈ K ′, K, K ′ ∈ T
h
,

λ
E
(x) = δE,E′ , x ∈ E′, E, E′ ∈ E

h
.

Thus, a function p
h
∈ M0(T

h
) (resp. tp

h
∈ N 0(E

h
)) has one degree of freedom of

constant value per element K ∈ T
h

(resp. E ∈ E
h
), such that

p
h
(x) =

∑

K′∈T
h

p
K′ ϕ

K′ (x) = p
K

, x ∈ K,

tp
h
(x) =

∑

E′∈E
h

tp
E′ λ

E′ (x) = tp
E
, x ∈ E.

Now, we individually investigate the underlying equations in (2.3), which

can be integrated over the element level.

2.2.1. Discretization of Darcy’s law

By taking successively for test functions χ
K

the basis functions w
K,E

, the

discretized equation of Darcy’s law (the first equation in (2.3)) becomes
∫

K
(K−1

K
u

K
).χ

K
dx +

∑

E⊂∂K

∫

E
tp

K,E
χ

K
.ν

K,E
dℓ =

∫

K
p

K
∇.χ

K
dx, (2.5)
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where K
K

is a piecewise approximation of the conductivity tensor over K, and

tp
E

= tp
K,E

=





tp

K′,E
if E = K ∩ K ′

pD
E

if E ∈ ΓD
, E ∈ E

h
∪ ΓD, K, K ′ ∈ T

h
.

By integrating (2.5) and by making use of the Raviart-Thomas space basis prop-

erties, the following equations come into view
∑

E′⊂∂K

(B
K

)
E,E′ q

K,E′ = p
K
− tp

K,E
, E ⊂ ∂K, K ∈ T

h
. (2.6)

They can be written in the matrix form

B
K

Q
K

= p
K

e − TP
K

, K ∈ T
h
, (2.7)

where

Q
K

and TP
K

are 3– dimensional vectors containing respectively the fluxes q
K,E

and the traces of the pressure tp
K,E

on each E ⊂ ∂K;

e refers to the elementary divergence vector. It is of dimension 3 with unitary

entries;

B
K

is a 3 × 3 symmetric positive definite matrix whose elements are

(B
K

)
E,E′ =

∫

K
wT

K,E
K−1

K
w

K,E′ dx. (2.8)

It should be noted that these integrations are all evaluated exactly.

The last equation in (2.3) is equivalent to
∫

E
u

K
.ν

K,E
dℓ +

∫

E
u

K′ .νK′,E
dℓ = 0 if E = K ∩ K ′,

∫

E
u

K
.ν

K,E
dℓ = qN

E
if E ∈ ΓN ,

where qN
E

=
∫

E
qN dℓ.

Hence, the normal components of u
h

are continuous across the interelement

boundaries, i.e.

q
K,E

=





−q

K′,E
if E = K ∩ K ′,

qN
E

if E ∈ ΓN .
(2.9)

By inverting the matrix B
K

and using (2.9), it is possible to eliminate the flux

unknown (in the numerical experiments we shall investigate in details the way

whereby these matrices are inverted). As a result, the reduced algebraic system,
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obtained by discretizing Darcy’s law with unknowns the cell pressure head P and

the edge pressure head TP , becomes

R
T

P − M TP + V = 0, (2.10)

where

R
T

is the transpose matrix of R which is a sparse matrix of dimension NE ×NT

with nonzero elements given by

(R)
K,E

= α
K,E

=
∑

E′⊂∂K

(B
−1

K
)

E,E′ , E ⊂ ∂K;

M is a NE × NE sparse matrix with nonzero entries defined as

(M)
E,E′ =

∑

∂K⊃E,E′

(B
−1

K
)

E,E′ ;

V is a NE–dimensional vector corresponding to the Dirichlet and Neumann

boundary conditions.

2.2.2. Discretization of the mass conservation equation

By integrating the mass conservation equation (the second equation in (2.3))

where the test functions φh are successively replaced by the basis functions of M0,

we get

s
K
|K| ∂p

K

∂t
+
∑

E⊂K

q
K,E

= f
K

K ∈ Th, (2.11)

where s
K

and f
K

are respectively the approximations of the storage coefficient

and the sink/source term over K.

Therefore, by using (2.7) to replace the sum of fluxes in (2.11), we obtain an

ordinary differential system which is given in its matrix form

S
dP

dt
+ D P − R TP = F, (2.12)

where

S is a NT × NT diagonal matrix with entries (S)
K,K

= s
K
|K| ;

D is also a NT × NT diagonal matrix whose coefficients are

(D)
K,K

= α
K

=
∑

E⊂∂K

α
K,E

;

F is a vector of dimension NT , it corresponds to the source/sink function as well

as to the imposed pressure given by the Dirichlet boundary conditions.
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2.2.3. The derived algebraic systems

The spatial discretization of the governing equations obtained by applying

the mixed-hybrid formulation led to two systems. The first one, given in (2.10), is

an algebraic system of unknowns P and TP and the second is an ordinary system

of first order differential equations in time (2.12). They can be written in matrix

form



S 0

0 0








dP

dt
dTP

dt


+

(
D −R

−RT M

)

 P

TP



 =



F

V



 . (2.13)

Since exact time integrations for solving (2.13) is computationally very consuming

[14], a temporal discretization of the differential operator is required. Using for

the sake of simplicity the first-order backward Euler (implicit) scheme, denoting

by ∆t the sampling time-step and using the superscript n to refer to the nth time

level, we obtain the following system for each n > 0

(L + ∆tJ )



P
n

T
n

P



 = L


P
n−1

T
n−1

P



+ ∆t



F
n

V
n



 , (2.14)

where L =

(
S 0

0 0

)
, J =

(
D −R

−RT M

)
.

2.2.4. Properties of the algebraic systems

Here, we present some properties of the algebraic systems induced by the

MHFE formulation.

Lemma 2.1. For any triangular element K, the elementary matrix B
K

has e =

(1 1 1)T as an eigenvector with 3/α
K

the corresponding eigenvalue. Moreover,

α
K,E

= 1/3 α
K

, ∀E ⊂ ∂K.

Proof. Let K be any element in T
h

(see Fig.1) with vertices (x1i, x2i) and edges

Ei, i = 1, . . . , 3. We denote by (x̄1, x̄2) the barycenter of K.

Let β
K,E

=
∑

E′⊂∂K

(B
K

)
E,E′ , ∀E, E′ ∈ ∂K. By using the shape functions given in

(2.4), we have

β
K,Ei

=
3∑

ℓ=1

∫

K
wT

K,Ei
K−1

K
w

K,Eℓ
dx
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=

∫

K
wT

K,Ei
K−1

K

3∑

ℓ=1

w
K,Eℓ

dx

=
3

2|K|

∫

K
(x1 − x1i x2 − x2i)K

−1

K
(x1 − x̄1 x2 − x̄2)

T dx for i = 1, . . . , 3.

Then ∀ i, j ∈ {1, 2, 3}, i 6= j, we finally obtain

β
K,Ei

− β
K,Ej

=
3

2|K|

∫

K
(x1j − x1i x2j − x2i)K

−1

K
(x1 − x̄1 x2 − x̄2)

T dx

=
3

2|K| (x1j − x1i x2j − x2i)K
−1

K

(∫

K
(x1 − x̄1) dx

∫

K
(x2 − x̄2) dx

)T

= 0.

One can easily verify that
∫
K(x1 − x̄1) dx =

∫
K(x2 − x̄2) dx = 0.

Thus, e is an eigenvector of B
K

and consequently it is also an eigenvector of

B−1
K

. �

Lemma 2.2. The matrix M is symmetric, positive definite.

Proof. For any nonzero y ∈ R
NE , we have

yT My =
∑

E,E′∈E
h

y
E
M

E,E′yE′

=
∑

K∈T
h

∑

∂K⊃E,E′

y
K,E

(B
−1

K
)

E,E′yK,E′

=
∑

K∈T
h

yT
K

(B
−1

K
) y

K
,

where y
K

= (y
K,E

)
E⊂∂K

∈ R
3.

From lemma 2.1, B
−1

K
is positive definite and so is M . �

Proposition 2.3. With the presence of Dirichlet boundary conditions, the ma-

trix

J =

(
D −R

−RT M

)

is positive definite, otherwise it is semi-definite.

Proof. For any nonzero vector (x y) ∈ R
NT × R

NE , we have

(xT yT )J
(

x

y

)
= xT D x − 2 xT R y + yT My.
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D is a diagonal matrix, then

xT D x =
∑

K∈T
h

x2

K
α

K
, where x = (x

K
)NT

.

Let e = (1 1 1)T and y = (y
E
)NE

= (yT
K

)NT
with y

K
= (y

K,E
)E⊂∂K ∈ R

3, then we

get

xT R y =
∑

K∈T
h

∑

E⊂E
h

x
K

R
K,E

y
E

=
∑

K∈T
h

∑

E⊂∂K

x
K

α
K,E

y
K,E

=
∑

K∈T
h

x
K

α
K

3
eT y

K
.

We set z
K

= y
K
− ζ

K
e with ζ

K
=

∑

E⊂∂K

y
K,E

, then

yT M y =
∑

K∈T
h

yT
K

(B
−1

K
) y

K

=
∑

K∈T
h

[
α

K
ζ2

K
+ zT

K
(B

−1

K
) z

K

]
.

By simple calculations, we get

(xT yT )J
(

x

y

)
=
∑

K∈T
h

[
α

K
(x

K
− ζ

K
)2 + zT

K
(B

−1

K
) z

K

]
. (2.15)

Thus, (2.15) is strictly positive whenever z
K

6= 0 or x
K

6= ζ
K

for some K ∈ T
h
.

Therefore, J is positive semidefinite.

Now, suppose that ΓD 6= ∅ so there exists a boundary element K
D ∈ T

h
and

E
D ⊂ ∂K, such that E

D ∈ ΓD. We will prove that J becomes definite positive.

By taking z
K

= 0 and x
K

= ζ
K

, ∀K ∈ T
h
, K 6= KD, (2.15) is reduced to

(xT yT )J
(

x

y

)
= x2

KD
α

KD
− 2 x

KD

α
KD

3
eT y

KD
+ yT

KD
(B

−1

KD
) y

KD
.

We have

y
KD,E

=

{
x

KD
if E 6= ED,

0 otherwise,



H. Hoteit et al. / Mixed and Mixed-Hybrid methods 173

since the row and the column corresponding to the imposed edge (ED) are elim-

inated from J . Thus, one can easily verify that

yT

KD
(B

−1

KD
) y

KD
= x2

KD

(
α

KD

3
+ (B

−1

KD
)

ED,ED

)
.

Finally, we get

(xT yT )J
(

x

y

)
= x2

KD
α

KD
− 4 x2

KD

α
KD

3
+ x2

KD

(
α

KD

3
+ (B

−1

KD
)

ED,ED

)

= x2

KD
(B

−1

KD
)

ED,ED
> 0.

Hence, J is positive definite. �

Corollary 2.4. The matrix

(L + ∆tJ ) =



S + ∆t D −∆t R

−∆t RT ∆t M





is positive definite.

Proof. Let z = (x y)T be a nonzero vector in R
NT × R

NE . The two matrices S

and J are positive definite and semi-definite matrices, respectively. Thus, we get

zT (L + ∆tJ )z = xT S x + ∆t zTJ z > 0

since by taking x = 0, the quantity zTJ z is strictly positive (see the proof of

(2.3). �

Since the matrix G = (S + ∆t D) is diagonal, it can be easily inverted.

Hence, by eliminating P
n

from (2.14), the following Schur complement system is

obtained




(M − ∆t R

T

G
−1

R)T
n

P = R
T

G
−1

(S P
n−1

+ ∆tF
n

) + V
n

.

G P
n

= S P
n−1

+ ∆t R T
n

P + ∆t F
n

.
(2.16)

Proposition 2.5. The Schur complement matrix (M −∆t R
T
G

−1
R) is positive

definite.

Proof. let y ∈ R
NE be a nonzero vector, then

yT (M − ∆t R
T

G
−1

R)y = yT My − ∆t yT R
T

G
−1

R y
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=
1

∆t
(xT yT )(L + ∆tJ )

(
x

y

)
> 0,

where x is chosen to be ∆t G
−1

R y.

Therefore, our proposition holds by applying corollary (2.4). �

As a result, the MHFE formulation leads to compute, at every time step, first

TP by solving a linear system with symmetric, positive definite coefficient matrix,

then P by solving a diagonal linear system. As a matter of fact, experimen-

tal inspections showed the adaptability and the robustness of the preconditioned

conjugate gradient method in solving such systems [11].

The principal steps of the MHFE algorithm can be illustrated as follows.

Algorithm 2.6. Principal steps of the MHFE algorithm.

1– Initialize geometry and physical parameters of the problem.

2– Create the Schur complement matrix.

3– Iterations on the time–steps.

4– Find TP by solving the first system in (2.16).

5– Find P by solving the second system in (2.16).

6– Loop on the number of cells.

7– Evaluate and invert BK .

8– Calculate the flux QK by solving (2.7).

9– Write the outputs P and Q.

It should be noted that at each time step we have to invert BK (as appears in

Algo. 2.6) which could be very time-consuming. On the other hand, if one stores

the matrices B−1
K for each element K, this will relatively exhaust the memory

capacities.

2.2.5. Discretization of the time independent problem

In the approximation of the time independent problem (1.2), the derived

algebraic system (2.13) is reduced to

J


 P

TP



 =



F

V



 . (2.17)
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By inverting D, the Schur complement system becomes





(M − R

T

D
−1

R)TP = R
T

D
−1

F + V,

DP = R TP + F.
(2.18)

Once again, by using proposition (2.3), one can easily show the positive definitive-

ness of the Schur complement matrix (M − R
T
D

−1
R). Furthermore, it is found

that this system is efficiently solved by the preconditioned conjugate gradient

method [11,15].

2.3. Mixed Finite Element formulation

The last equation in (2.3) ensures the continuity of the normal components

of u
h

across the interelement boundaries, i.e. u
h
∈ RT 0

pD,N
(T

h
). Therefore, if

(u
h
, p

h
, tp

h
) ∈ RT 0(T

h
)×M0(T

h
)×N 0

pD,D
(E

h
) is the solution of (2.3) then (u

h
, p

h
)

is also the solution of (2.2) (see, e.g., [3]). Thus, the two methods are in fact two

different formulations of the same numerical approximation. Hence, the MFE

solution (u
h
, p

h
) can be simply deduced from that of the MHFE by eliminating

the pressure traces tp
h

and taking as main unknowns the pressure and the fluxes

across the mesh edges.

In order to fulfill the pressure and flux continuity constraints, we introduce a

scalar sign indicator ǫ
K,E

similar to that used in [3,6],

ǫ
K,E

=

{
ν
K

.ν
K,E

if E ⊂ ∂K,

0 if E 6⊂ ∂K,
(2.19)

where ν
E

is an arbitrary chosen unitary normal vector on E, and ν
K,E

is the outer

unitary normal vector on E with respect to K.

This definition serves to guarantee opposite sign values for ǫ
K,E

and ǫ
K′,E

, i.e.

ǫ
K,E

= −ǫ
K′,E

= ±1, ∀ E = K ∩ K ′. Thus, continuities of pressure and flux are

satisfied by imposing for every E = K ∩ K ′ the following

q
E

= ǫ
K,E

q
K,E

= ǫ
K′,E

q
K′,E

, (2.20)

ǫ
K,E

tp
K,E

+ ǫ
K′,E

tp
K′,E

= 0. (2.21)

By multiplying the algebraic equations (2.6) by ǫ
K,E

, we get

ǫ
K,E

tp
K,E

= ǫ
K,E

p
K
−

∑

E′⊂∂K

(B
K

)ǫ

E,E′
q

E′ E ⊂ ∂K, (2.22)
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where (B
K

)ǫ
E,E′

= ǫ
K,E

(B
K

)
E,E′ ǫ

K,E′ and q
E′ = ǫ

K,E′ qK,E′ .

Therefore, it is possible to eliminate the unknowns tp
K,E

by plugging (2.22) into

(2.21). By taking into account the boundary conditions, the algebraic system

with unknowns the pressure vector P and the flux vector Q can be written in the

matrix form

R̃
T

P − M̃ Q − Ṽ = 0, (2.23)

where

R̃
T

and M̃ are two matrices whose structures are similar to those defined in

(2.10). ∀E, E′ ∈ E
h
, K ∈ T

h
, their entries are given by

(R̃)
K,E

= ǫ
K,E

, (M̃)
E,E′ =

∑

∂K⊃E,E′

(B
K

)ǫ

E,E′
;

Ṽ is a vector corresponding to the Dirichlet and Neumann boundary conditions.

For the discretized mass conservation equation (2.11), it can be written in the

matrix form as follows

S
dP

dt
+ R̃ Q = F̃ , (2.24)

where S is the same matrix as that defined in (2.12), and F̃ corresponds to

the source/sink function as well as to the imposed fluxes given by the Neumann

boundary conditions.

2.3.1. Properties of the algebraic systems obtained from the MFEM

The two systems (2.24) and (2.23) can be globally written in the matrix

form

L




dP

dt
dQ

dt


− J̃



P

Q



 =



 F̃

Ṽ



 , (2.25)

where J̃ =

(
0 −R̃

−R̃T M̃

)
.

In a similar process as in the MHFE, we use backward Euler scheme for the

temporal discretization of (2.25) to get

(
L − ∆t J̃

)


P
n

Q
n



 = L


P
n−1

Q
n−1



+ ∆t



 F̃
n

Ṽ
n



 . (2.26)
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It should be noted that the choice of a numerical solver of the above system is

restrained by the fact that its coefficient matrix (L − ∆t J̃ ) is symmetric but

indefinite. Since the diagonal matrix S is invertible, it is easy to separate the

unknowns P and Q by constructing the Schur complement system, i.e.




(M̃ + ∆t R̃

T
S

−1
R̃)Qn = R̃

T
(Pn−1 + ∆t S

−1
F̃n) + Ṽ n.

S Pn = S Pn−1 − ∆t R̃ Qn + ∆t F̃n.
(2.27)

Lemma 2.7. The matrix Bǫ
K

is positive definite.

Proof. Let x ∈ R
3 be a nonzero vector, then

xT Bǫ
K

x =
∑

E,E′⊂∂K

x
E
ǫ

K,E
(B

K
)

E,E′ ǫ
K,E′ x

E′ = x̃T B
K

x̃ > 0,

where x̃ = (x
E
ǫ

K,E
)

E⊂∂K
.

Further, one can easily show that ẽ
K

= (ǫ
K,E

)
E⊂∂K

is an eigenvector of Bǫ
K

and
3

αK
is the corresponding eigenvalue. �

Lemma 2.8. The matrix M̃ is positive definite.

Proof. Similar to lemma (2.2). �

Proposition 2.9. The Schur complement matrix (M̃ + ∆t R̃
T
S

−1
R̃) is positive

definite.

Proof. Since M̃ is positive definite and ∆t(R̃
T
S

−1
R̃) is semi-definite then the

Schur complement matrix is positive definite. �

As a result, the problem is reduced to solve at each time step two linear

systems of similar properties to those derived by the MHFE formulation.

The principal steps of the MFE algorithm are illustrated in (Algo. 2.10).

Algorithm 2.10. Principal steps of the MFE algorithm.

1– Initialize geometry and physical parameters of the problem.

2– Create the Schur complement matrix.

3– Iterations on the time-steps.

4– Find Q by solving the first system in (2.27).

5– Find P by solving the second system in (2.27).

6– Write the outputs P and Q.
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As a matter of fact, not having to invert the elementary matrix B
K

is an im-

portant advantage of the MFE over the MHFE from a computational point of

view.

2.3.2. Discretization of the time independent problem

In a similar manner, the algebraic system of the time independent problem

(1.2) derived from the MFE approximation is given by
(

0 −R̃

−R̃T M̃

)

P

Q



 =



 F̃

Ṽ



 . (2.28)

This linear system is relatively large compared to (2.17). Furthermore its res-

olution is restricted by the fact that the coefficient matrix is symmetric but

indefinite.

3. Effects of mesh geometry on mixed and mixed-hybrid solutions

The gradual evolution of symbolic programming languages has enriched not

only the technical computing but also the numerical computations in solving

various problems in applied sciences. However, many drawbacks are still restrict-

ing this programming technique. Commonly, symbolic computation programs

are regarded as fairly limited in solving PDEs where analytical solutions may

not exist and therefore may not be implemented in the symbolic computation

packages. Furthermore, numerical computations in symbolic languages (being

interpreted languages) are limited in use for large scale problems, since, in com-

parison with compiled languages, symbolic computing usually involves high com-

putational overhead. Subsequently, one approach to get benefits of technical

languages is to translate the symbolic code into a more efficient computational

environment and this can also be done automatically. Thus, the outfitted trans-

lated routine can be thrown in the compiled language (e.g. C or Fortran) and

even can be treated as a black-box. Although the theoretical results of the al-

gorithm are correct, one cannot guarantee the accuracy of the numerical results

since the algorithm may fail to preserve its numerical stability.

3.1. Velocity elimination in the MHFE method

This section is devoted to inspect the numerical reliability of two matrix-

inversion subroutines used to compute and invert the elementary matrices B
K
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defined in (2.8). The first one, which was originally utilized in our Fortran 77

MHFE program, was generated automatically by using mainly the two Maple

functions inverse and fortran. The matrix-inversion function of Maple is based

on Cramer’s rule which is well known to be unstable (see [8]). Accordingly, we

have detected many numerical examples where non-consistent results obtained

by the MHFE code are mainly caused by this subroutine. On the other hand,

our reconstructed subroutine is based on the LDLT –factorization method.

Being B
K

a symmetric matrix, it can be decomposed into the form B
K

= LDL
T

where L is a lower triangular matrix with unitary diagonal and D is a diagonal

matrix. Consequently, the inverted matrix B−1
K

can be easily computed by solving

respectively lower, diagonal and upper linear systems of the form

B−1

K
= (L−T D−1L−1).

In this case, the positive definiteness of B
K

ensures the numerical stability of this

method (see, e.g., [7]). Nevertheless, the total number of arithmetic operations

is reduced by this method to about 110 while it was about 230 arithmetic opera-

tions in the former method. Accordingly, it is found that the LDL-subroutine is

at least two times faster than Cramer-subroutine.

Despite the fact that the convergence of the MFE/MHFE method does not neces-

sitate the Delaunay triangulation conditions [15], we give some numerical exam-

ples showing that the MHFE method suffers from the presence of badly shaped

discretized elements. In contrast, the MFE method does not face this numerical

difficulty.

3.2. Numerical experiments

In the numerical example depicted in Fig.2, the domain is discretized into

a nonuniform mesh of triangular elements. Throughout the incoming tests the

domain is taken to be homogeneous with unit conductivity tensor and storage

coefficient and without sink/source terms, the boundary conditions are time-

independent constant functions (see Fig.2), and the simulation sampling time

interval is ]0, 3]. These numerical tests intend to study the consequences in the

case of bad mesh quality, i.e. meshes containing badly shaped elements which are

often obtained by automatic or adaptive refinements. According to the definition

given in [17], the quality of a triangular element K is evaluated by

Q(K) = θ
ρ

K

h
K

, (3.1)
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Figure 2. Nonuniform mesh with two flat triangular elements,

with T = 3, ∆t = 1, s = 1, K = I
2×2

, f = 0.

where h
K

is the element diameter (the length of its longest edge), ρ
K

is the in-

radius and θ is a scaling factor such that the quality of an equilateral triangle is

1 (θ = 2
√

3).

Thus, a triangle quality varies in the interval ]0, 1], at worst close to 0, at best

equal to 1. The mesh quality is measured by the qualities of its worst elements

and their geometrical distribution. The two shaded triangles appearing in Fig.2

are artificially constructed so that we can increase their flatness by decreasing

their common edge.

(a) Cramer - Method, Mesh quality ≈ 0.2
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(b) LDL - Method, Mesh quality ≈ 0.2
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Figure 3. MHFE numerical results obtained by using Cramer and LDL–subroutines.

In Fig.3, we compare the computed results obtained by the MHFE code where
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the two matrix-inversion subroutines are used, the first (Fig.3a) is the one gener-

ated automatically by the symbolic language and the second (Fig.3b) is based on

the LDL–factorization method. For a mesh quality about 0.2, the velocity flow

and pressure contour obtained by both methods are apparently undifferentiated.

However, by lessening the mesh quality to ≈ 10−5 in Fig.4, we can clearly notice

that, unlike the LDL–method (Fig.4b), the other code (Fig.4a) brings on sense-

less results. The cause of this shortcoming is the instability of Cramer-method

where mistaken results can be obtained especially when inverting ill-conditioned

matrices.

(a) Cramer - Method , Mesh quality ≈ 10-5
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(b) LDL - Method, Mesh quality ≈ 10-5
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Figure 4. MHFE numerical results obtained by using Cramer and LDL–subroutines.

3.3. Stability analysis with the Aquarels software

This section is devoted to check out the stability of the two subroutines

by using Aquarels which is a software toolbox used to evaluate the reliability

of numerical algorithms [18,19]. One of the tools available in Aquarels depends

on functional stability analysis so that the instability of a given program is au-

tomatically detected by using perturbation techniques. In this case, the code is

treated as a black-box, some directives are added to declare the input parameters

to be perturbed and the output variables to be analyzed. This approach has the

practical advantage of being easy to use and flexible in order to test general nu-

merical algorithms. The amplitude of perturbations is specified by indicating the

number and the position of bits in the variable mantissa to be changed. Thus, by
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executing the code several times according to a specified number of samples, the

code stability can be estimated by examining the problem conditioning as well

as the forward errors. These perturbed samples of the code are automatically

generated and analyzed by Aquarels.

In order to eschew from any numerical interventions, the two subroutines are

investigated individually and independently of their main code. The stability

analysis of Aquarels is based on perturbing the inputs which are the three ver-

tices of a triangle and analyzing the output which is the inverted matrix. The

graphical results depicted in Fig.5 are automatically generated by Aquarels and

the numerical errors are tabulated in table 1. The number of perturbation sam-

ples is chosen to be 16. In practice, a numerical algorithm is expected to be

stable for a given problem if a linear interpolated line is obtained, i.e. slope is

close to one (Regularity = 1)(see Fig.5). In test 1, an almost equilateral triangle

is taken (triangle quality ≈ 0.9). In this case, both routines are stable and even

they seem equivalent (Regularity ≈ 1). On the other hand, the instability of

Cramer-subroutine is clearly detected by increasing the flatness of triangles in

tests 2 and 3, while the other subroutine is always stable.

Table 1

Absolute and relative errors of the two methods measured by using ‖.‖∞.

Absolute Error Relative Error

Cramer’s Method LDL Method Cramer’s Method LDL Method

Test 1 1.7 × 10−15 4.4 × 10−16 5.9 × 10−16 1.5 × 10−16

Test 2 1.6 × 10+03 4.7 × 10−03 1.1 × 10−04 3.3 × 10−10

Test 3 3.5 × 10+07 2.7 × 10−02 1.6 × 10−01 1.2 × 10−10

In table 1, the absolute and relative errors of the three numerical experiments are

estimated by comparing the subroutines solutions with the solutions computed

formally with very high-precision arithmetic. It is clear that the numerical errors

caused by the instability of Cramer’s rule could indeed affect the output of the

main algorithm.

3.4. A comparison between MFE and MHFE methods

Despite the fact that the subroutine based on the LDL–method is stable,

unfortunately, big direct errors may also be obtained since ill-conditioned prob-
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Figure 5. Different stability tests analyzed by Aquarels.
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lems could accumulate errors and consequently no numerical algorithm with fixed

precision floating point computation is able to guarantee very accurate results.

In Fig.6a, the MHFE code leads to inconsistent results even with the use of

LDL–subroutine. In this example, the triangle quality is about 10−8 and the

condition number of the matrix to invert is about 1015 which is close to limits of

machine precision. Nevertheless, the aim of presenting this example is to show

that even with such elements of very bad quality which afflict the MHFE algo-

rithm, this does not cause any shortcoming of the accuracy of results obtained

by the MFE code (see Fig.6b) simply because the inversion of the elementary

matrices is needless.

(a) MHFE- Method, Mesh quality ≈ 10-8
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(b) MFE - Method, Mesh quality ≈ 10-8
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Figure 6. Numerical results computed by using MHFE and MFE codes.

4. Behavior of MFE and MHFE methods on heterogeneous media:

theoretical analysis

In the previous section, we have investigated the numerical difficulties in-

duced by the mesh geometry. This section is devoted to the numerical behavior

of the approximated solutions of the mixed methods in heterogeneous media.

We are interested in the case of rough physical parameters, specifically physical

problems to which large jumps in the tensor of conductivity or small values of

the storage coefficients are imposed. It is found that such problems affect the

numerical accuracy and time requirements of the MFE and MHFE algorithms,

differently. The first common numerical difficulty, which is caused by sharp leaps
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of the conductivity tensor, is the growth of the conditioning of the algebraic linear

systems to solve.

Suppose henceforth that the heterogeneous domain Ω is composed of a set of

sub-domains Ωi, i = 1, . . . , n, according to their conductivity tensors Ki, i.e. each

Ωi has a homogeneous conductivity (see Fig.7). We assume that Ω is uniformly

Ω

Ω κ

Ω

κ2 2

1 1

Figure 7. Decomposition of the domain according to the permeability values.

discretized and the medium is isotropic, i.e. the tensor of conductivity is equal

to a scalar function times the unit tensor. By κi, we denote the scalars such that

Ki = κi I2×2 . We also set

κ2

κ1

= max

{
κi

κj
|Ωi ∩ Ωj 6= Ø, i 6= j, i, j = 1, . . . , n

}
.

For the sake of simplicity, we suppose that Ω = Ω1 ∪Ω2. The aim here is to give

some estimations of the conditioning of the algebraic systems induced by both

mixed methods.

First, let us prove the following lemmas.

Lemma 4.1. Let A (resp. B) be a non-singular (resp. singular) matrix, then

the condition number X (A) of A is bounded by the following inequality

X (A) ≥ ‖A‖
‖A − B‖ .

Proof. Since B is a singular matrix, there exists a nonzero vector x such that

Bx = 0, then we can write

‖Ax‖= ‖(A − B)x‖ ≤ ‖A − B‖‖x‖,
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‖x‖= ‖A−1Ax‖ ≤ ‖A−1‖‖Ax‖.

Hence, the lemma is a direct consequence of these inequalities. �

In the runs, we’ll use the norms ‖.‖1 or ‖.‖∞ and assume that the fraction κ2
κ1

≫ 1.

4.1. Condition number estimations of MHFE algebraic systems

Lemma 4.2. Let Jκ1,κ2 denote the matrix J in the algebraic system (2.14)

obtained by the MHFE formulation over the heterogeneous domain Ω (Fig.7).

Similarly, we use the notation Jκi
if the medium is homogeneous with hydraulic

conductivity κi, i.e Ωi = Ω. Then, we get

‖Jκ1‖ is O(κ1), ‖Jκ1,κ2‖ is O(κ2).

Proof. By expressing explicitly the hydraulic conductivity parameter κ
K

in the

definition of B
K

given in (2.8), we get

B
K

=
1

κ
K

B̂
K

, (4.2)

such that, B̂
K

is independent of κ
K

.

In a similar manner, ∀K, K ′ ∈ T
h
, E ⊂ ∂K, E′ ⊂ ∂K ′, we can write

R
K,E

= κ
K

α̂
K,E

,

D
K

= κ
K

α̂
K

,

M
E,E′ =





κ

K
(B̂

−1

K
)

E,E′ E 6= E′,

κ
K

[(B̂
−1

K
)

E,E
+

κ
K′

κ
K

(B̂
−1

K′
)

E,E
] E = E′.

(4.3)

Then, in the homogeneous medium case, it is clear that ‖Rκ1‖, ‖Dκ1‖ and ‖Mκ1‖
are O(κ1) and so is ‖Jκ1‖. Similarly, in the heterogeneous medium case, by using

∞-norm (or 1-norm), one can easily verify that ‖Rκ1,κ2‖, ‖Dκ1,κ2‖, ‖Mκ1,κ2‖ and

‖Jκ1,κ2‖ are O(κ2). �

Proposition 4.3. The condition numbers of the algebraic systems resulting from

the MHFE method have the following bounds:

1. X (Jκ1,κ2) ≥
‖Jκ1,κ2‖

‖Jκ1‖
, which is O(κ2

κ1
).

2. X (L − ∆tJκ1,κ2) is O
(
max

{
1

∆t
‖S‖
κ1

, κ2
κ1

})
.

3. X (Aκ1,κ2) is O(κ2
κ1

), where Aκ1,κ2 = (M − ∆t R
T
G

−1
R)κ1,κ2 is the Schur

complement matrix for the time dependent problem given in (2.16).
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4. X (Bκ1,κ2) is O(κ2
κ1

), where Bκ1,κ2 = (M −R
T
D

−1
R)κ1,κ2 is the Schur comple-

ment matrix for the time independent problem given in (2.18).

Proof.

Proof of 1. Referring to (4.3), it is evident to see that for i = 1, 2, we have

Rκ1,κ2 = Rκ
i

Dκ1,κ2 = Dκ
i

in Ωi,

Mκ1,κ2 =

{
Mκ

i
in Ωi,

Mκ1,κ2
on Ω1 ∩ Ω2.

Accordingly, Jκ1,κ2 can be expressed as

Jκ1,κ2 =

{
Jκ

i
in Ωi, i = 1, 2,

Jκ1,κ2 on Ω1 ∩ Ω2.

Now, let’s define the following matrix

Jκ1,κ2 =






0 in Ω1,

Jκ2 − Jκ1 in Ω2,

Jκ1,κ2 − Jκ1 on Ω1 ∩ Ω2.

This matrix is constructed in such a way that Jκ1,κ2 −Jκ1,κ2 = Jκ1 . To prove

the singularity of Jκ1,κ2
, it is sufficient to find one edge in Ω1 not belonging to

Ω2, then the corresponding row in Jκ1,κ2
is null. Hence, the sought inequality

is a direct consequence of lemma 4.1. Furthermore, by applying lemma 4.2,

the condition number X (Jκ1,κ2) is O(κ2
κ1

).

Proof of 2. Since ‖Jκ1,κ2‖ = O(κ2), there exists C ∈ R such that ‖Jκ1,κ2‖ =

C κ2. It follows that

‖L − ∆tJκ1,κ2‖≤ ‖L‖ + ∆t ‖Jκ1,κ2‖
≤ ‖S‖ + C ∆t κ2

≤ 2 max {‖S‖, C ∆t κ2}.

Thus, ‖L − ∆tJκ1,κ2‖ is O (max {‖S‖, ∆t κ2}).
On the other hand, we can easily show that

(L − ∆tJκ1,κ2) + ∆tJκ1 = L − ∆t(Jκ1,κ2 − Jκ1)
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is a singular matrix (similar to the previous proof). Therefore, the sought

inequality is a direct conclusion of lemma (4.1), i.e.

X (L − ∆tJκ1,κ2) ≥
‖(L − ∆tJκ1,κ2)‖

∆t ‖Jκ1‖
= O




max

{
1

∆t
‖S‖, κ2

}

κ1



 .

Proof of 3. ∀K ∈ T
h
, E, E′ ⊂ ∂K, we have

| (Aκ1
)

E,E′ |= | κ1 M̂
E,E′ −

∑

∂K⊃E,E′

(
∆t κ1

s
K

+ ∆t κ1

R̂
K,E′ R̂

K,E
) |

≤ κ1(| M̂
E,E′ | +

∑

∂K⊃E,E′

1
s
K

∆t κ1
+ 1

| R̂
K,E′ R̂

K,E
|)

≤ κ1(| M̂
E,E′ | +

∑

∂K⊃E,E′

| R̂
K,E′ R̂

K,E
|).

Thus, ‖Aκ1
‖ is O(κ1). In the heterogeneous case, we can also verify that

‖Aκ1,κ2
‖ is O(κ2). Hence, our proposition holds by showing that (Aκ1,κ2

−
Aκ1

) is a singular matrix then applying lemma 4.1.

Proof of 4. Similar to the previous proof.

�

4.2. Condition number estimations of MFE algebraic systems

Proposition 4.4. The condition numbers of the algebraic systems induced by

the MFE method have the following bounds:

1. X (J̃κ1,κ2) ≥
‖J̃κ1,κ2‖

‖J̃κ2‖
, which is O(κ2

κ1
).

2. X (L − ∆t J̃κ1,κ2) is O
(
max

{
κ2
∆t

‖S‖, κ2
κ1

})
.

3. X (Ãκ1,κ2) is O
(

max

{
κ1 ∆t ‖S−1‖, κ2

κ1
(1+κ1 ∆t ‖S

−1
‖

1+κ2 ∆t ‖S−1‖
)

})
, where Ãκ1,κ2 =

(M̃κ1,κ2 + ∆t R̃
T
S

−1
R̃) is the Schur complement matrix for the time depen-

dent problem given in (2.27).

Proof.

Proof of 1. In a similar manner to (4.2) and (4.3), we can write

Bǫ
K

=
1

κ
K

B̂ǫ
K

, M̃
E,E′ =






1
κ

K
(B̂ǫ

K
)

E,E′ E 6= E′,
1

κ
K

((B̂ǫ
K

)
E,E′ +

κ
K

κ
K′

(B̂ǫ
K′

)
E,E

) E = E′,
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such that, B̂ǫ
K

is independent of κ
K

.

Thus, one can easily verify that ‖J̃κ2‖ and ‖J̃κ1,κ2‖ are O( 1
κ2

) and O( 1
κ1

),

respectively. Moreover, the matrix

J̃κ1,κ2 − J̃κ2 =

(
0 0

0 M̃κ1,κ2 − M̃κ2

)

is singular. Therefore, by applying lemma 4.1, we get

X (J̃κ1,κ2) ≥
‖J̃κ1,κ2‖
‖J̃κ2‖

= O(
κ2

κ1

).

Proof of 2. We have

‖L − ∆t J̃κ1,κ2‖≤ ‖L‖ + ∆t ‖J̃κ1,κ2‖

≤ ‖S‖ + ∆t
C

κ1

≤ 2 max

{
‖S‖, ∆t

C

κ1

}
, for some C ∈ R.

Consequently, ‖L − ∆t J̃κ1,κ2‖ is O
(
max

{
‖S‖, ∆t

κ1

})
. On the other hand, the

matrix (L− ∆t J̃κ1,κ2) + ∆t J̃κ2 is singular, then by applying lemma 4.1, we get

X (L − ∆t J̃κ1,κ2) ≥
‖L − ∆t J̃κ1,κ2‖

‖∆t J̃κ2‖
= O

(
max

{
κ2

∆t
‖S‖, κ2

κ1

})
.

Proof of 3. We have

‖Ãκ1,κ2‖≥ ‖M̃κ1,κ2‖ + ∆t ‖R̃T

S
−1

R̃‖ = O(
1

κ1

+ ∆t ‖S−1‖).

Since the matrix Ãκ1,κ2−M̃κ1,κ2 = ∆t R̃
T
S

−1
R̃ is rank deficient (not of full rank),

so it is singular. Thus, by applying lemma 4.1, we get

X (Ãκ1,κ2)≥
‖Ãκ1,κ2‖
‖M̃κ1,κ2‖

=
O
(

1
κ1

+ ∆t ‖S−1‖
)

O
(

1
κ1

) = O
(
κ1 ∆t ‖S−1‖

)
. (4.5)
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On the other hand, the matrix Ãκ1,κ2 − Ãκ2 = (M̃κ1,κ2 − M̃κ2) is singular, where

Ãκ2 = M̃κ2 + ∆t R̃
T
S

−1
R̃). Thus, we also get

X (Ãκ1,κ2)≥
‖Ãκ1,κ2‖
‖Ãκ2‖

=
O
(

1
κ1

+ ∆t ‖S−1‖
)

O
(

1
κ2

+ ∆t ‖S−1‖
) = O

(
κ2

κ1

1 + κ1 ∆t ‖S−1‖
1 + κ2 ∆t ‖S−1‖

)
. (4.6)

Therefore, the sought inequality is a conclusion of (4.5) and (4.6). �

Remark 4.5. Proposition 4.3 indicates that the value of the storage coefficient s

has a critical effect on the solution of the linear system (2.27) associated to the

MFE formulation. As s tends to zero, the condition number of the coefficient

matrix in (2.27) blows up to infinity. In this case, it is preferred to solve the

symmetric indefinite linear system (2.26). While on the contrary, the MHFE

formulation does not face this difficulty.

Remark 4.6. Suppose that the mesh is made up of right angle triangles that are

constructed by subdivisions of rectangular elements, then in (4.2), we can bring

out a term which depends on the geometry of the elements (see [14]), i.e. (4.2)

can be expressed as

B
K

=
1

κ
K

∆x
K

∆y
K

⌢

BK
,

such that,
⌢

BK
is independent of the element geometry.

Hence, one can notice that the ratio
∆x

K

∆y
K

, which is related to the element quality,

plays a similar role as the conductivity parameter κ
K

. In other words, large

variations among the qualities of the elements enlarge the conditioning as well.

4.3. Accumulation of numerical errors in the MHFE method

The mixed finite element methods have gained a big popularity chiefly for

two superior advantages. First, the two physical quantities, the pressure and the

flux, are computed with very accurate approximations and with the same order

of convergence. Secondly, they conserve mass locally. Unfortunately, numerical

experiments showed that the accumulation of numerical errors could break down

the theory. In this section, we address another computational difficulty which

could afflict the accuracy of the computed flux as well as the local mass balance
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property. This numerical problem concerns specifically the MHFE algorithm

and it is mostly caused by large jumps in the permeability parameters. After

computing the pressure and its traces, the flux, in the MHFE formulation, is

computed by the local equation (2.7). By rewriting this equation ∀K ∈ T
h
, E ⊂

∂K, we get

q
K,E

= κ
K



α̂
K,E

p
K
−

∑

E′⊂∂K

(B̂
−1

K
)

E,E′ tp
K,E′ + ξ

K,E





= q̄
K,E

+ κ
K

ξ
K,E

, (4.7)

where q̄
Ki,E

is supposed to be the exact value of the flux across E, and ξ
K,E

denotes

the numerical errors accumulated while computing q
K,E

, i.e. it is the roundoff

error plus the truncation error coming out from solving the linear systems. Thus,

the sum of fluxes through the edges of K becomes
∑

E⊂∂K

q
K,E

=
∑

E⊂∂K

[
q̄

K,E
+ κ

K
ξ

K,E

]
. (4.8)

As the simulation time increases, the transient solution converges toward the

stationary one. Theoretically, the local mass conservation property necessitates

that the sum of fluxes over each element be equal to the imposed local sink/source

term (2.11). However, with the presence of numerical errors, this can be expressed

as follows



∑

E⊂∂K

q
K,E

− f
K



 = κ
K

∑

E⊂∂K

ξ
K,E

. (4.9)

Consequently, the numerical difficulty in computing (4.7) and then (4.9) is

twofold.

1. The hoped for computed results may not be so reliable since multiplications

by rough conductivity parameters could afflict the approximated fluxes.

2. The flux over the grid elements is not calculated with the same order of

accuracy. This can be expressed in the following proposition.

Proposition 4.7. The condition number of the algebraic system whereby the

flux is computed is O
(
(κ2

κ1
)2
)
.

Proof. By inverting B
K

in (2.7), we obtain

Q
K

= κK B̂
−1

K
(p

K
e − TP

K
), K ∈ T

h
. (4.10)
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These equations can be gathered in the matrix form

Q = B (P̃ − T̃P ), (4.11)

where

P̃ and T̃p are 3N
T
–dimensional vectors, such that

P̃ = (p
K

e)
K∈T

K
, T̃p = (TP

K
)

K∈T
K

;

B is a 3N
T
× 3N

T
block-diagonal matrix, such that each block corresponds to

an element K ∈ T
K

and is equal to (κ
K

B̂
−1

K ).

By using lemma 4.1, one can easily verify that X (B) = O(κ2
κ1

). On the other

hand, proposition 4.3 indicates that the conditioning of computing (P − Tp) is

O(κ2
κ1

). Therefore, (4.11) yields that the flux Q is calculated with a conditioning

of order O
(
(κ2

κ1
)2
)
. �

5. Behavior of MFE and MHFE methods on heterogeneous media:

numerical experiments

5.1. Experiment 1: stationary problem

We consider a two-dimensional elliptic boundary value problem on the unit

square Ω where the boundary conditions, the permeability distribution and the

value of the source term are graphically given in Fig.8. In order to flee from

1012

102

Source term

Permeability

10

ΓN = 0

ΓN = 0

ΓD = 0

ΓD = 0

* * 
* 

Figure 8. Triangulation of the unit square.
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any numerical shortcomings that might be caused while inverting the elementary

matrices, the domain is discretized into a regular grid of right angle triangular

elements. In this case, the inverses of these matrices are known analytically

(see [6,14]). The solution of this problem is approximated by using both mixed

methods. In the MHFE, the preconditioned conjugate gradient method is used to

solve the positive definite linear system (2.18), whereas, in the MFE, the Symmlq

solver (see [22,23]) is used to solve the indefinite system given in (2.28).

a) Results computed by MHFE method
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b) Results computed by MFE method
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Figure 9. Numerical results computed by using MHFE and MFE codes.

Figure 10. Absolute error obtained over the grid.

Even though the approximated pressures by both methods are nearly alike, one

can clearly notice the senseless values of the velocity field in the lower left corner of

the domain (Fig.9a) which are obtained by the MHFE method. This shortcoming

is due to the numerical errors indicated in (4.7). To evaluate the intensity of

these errors, in Fig.10, we compute the absolute value of equation (4.9) over each



194 H. Hoteit et al. / Mixed and Mixed-Hybrid methods

Figure 11. Relative errors obtained over the grid.

element in the mesh. The relative errors depicted in Fig.11 are locally computed

with respect to the sum of the absolute value of the fluxes across the element

edges. In Fig.10a, we can notice that the absolute errors in the two regions of

higher permeability (the two unshaded regions in Fig.8) have nearly the same

order. However, the big relative errors appearing in Fig.11a, which are due to

feeble values of fluxes, cause the pointless results in (Fig.9a). In contrast, the

MFE is free from this difficulty.

108

100

10−2

ΓN = 0

ΓN = 0

ΓD = 1

ΓD = 1

Permeability

Figure 12. Permeability distribution and boundary conditions,

T =]0, 1], ∆t = 1
10

, s = 1, f = 0.

5.2. Experiment 2: parabolic problem

In Fig.13, we compare the transient solution of a parabolic problem approxi-

mated by using the two mixed methods. The simulation time interval is ]0, 1] with
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time-step ∆t = 1/10, the boundary conditions and permeability values are given

graphically in Fig.12. In a similar behavior as that in the elliptic case given in

the former example, one can clearly notice (Fig.13a) numerical confusions in the

velocity field obtained by the MHFE over the spots of high permeability. On the

other hand, the MFE solution does not face this numerical difficulty (Fig.13b).

a) Results computed by MHFE method
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b) Results computed by MFE method
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Figure 13. Numerical results computed by using MHFE and MFE codes.

5.3. Computing time

To illustrate the theoretical results obtained in propositions 4.3, 4.4, we give

some computational measurements comparing the MHFE and MFE algorithms.

The domain of simulation Ω =]0, 20[×]0, 20[ is divided into two sub-domains

Ω2 =]5, 10[×]5, 10[ and Ω1 = Ω \ Ω2. The domain is uniformly discretized into

a 20 × 20 grid (40 × 40 triangular elements). Let si, κi be respectively the stor-

age coefficient and the permeability parameter over Ωi, i = 1, 2. The imposed

boundary conditions are ΓD = 1 on the left and floor sides of Ω, and ΓN = 0 on

the rest of the boundary.

The CPU running-time, the condition numbers and the number of iterations,

needed to fulfill the desired termination criterion of the PCG (Preconditioned

Conjugate Gradient) and symmlq solvers, are tabulated below. These computa-

tions were done in double precision on a Sun Ultra30 workstation. In Table 2, the

domain is supposed to be homogeneous such that si = κi = 1, while we vary the
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time-steps. Here, the PCG algorithm is used to solve the two Schur complement

systems (2.16), (2.27). In this case, the MFE algorithm is about 30% faster than

the first one.

Table 2

si = κi = 1, i = 1, 2, PCG solver.

MHFE method MFE method

# Time-steps CPU Cond. Num. # Iter. CPU Cond. Num. # Iter

10 2.25 11.1 15–14 1.50 6.9 14–13

102 21.2 10.3 11–10 14.6 4.4 12–9

103 212.9 10.3 12–10 144.7 4.6 13–9

By increasing the ratio between the highest and lowest conductivities in table

3, we see that the condition numbers grow up almost linearly with the fraction
k2
k1

. Similar remarks can be noticed by using symmlq (see table 5) to solve the

indefinite system (2.26) induced by the MFE formulation.

Table 3

∆t = 1/10, si = 1 i = 1, 2, PCG solver.

MHFE method MFE method

κ2/κ1 CPU Cond. Num. # Iter. CPU Cond. Num. # Iter

102 2.2 10.2 ×102 22–21 1.8 4.3 ×102 33–31

104 2.3 10.9 ×104 24–23 2.1 4.2 ×104 42–40

106 2.4 10.7 ×106 26–25 2.4 4.5 ×106 55–54

Finally, as appears in table 4, the conditioning of the MFE linear system (2.27)

grows up linearly with the quantity ∆t ‖S−1‖. On the other hand, the condition-

ings of the MHFE system (2.16) (table 4) and the MFE system (2.26) (table 5)

stay invariant as the storage coefficient tends to zero.

It should be noted that symmlq is used without preconditioner. The chal-

lenging point is therefore the construction of a suitable preconditioner for the

indefinite system (2.26). This is an ongoing work.
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Table 4

∆t = 1/10, κi = 1 i = 1, 2, PCG solver.

MHFE method MFE method

s CPU Cond. Num. # Iter. CPU Cond. Num. # Iter.

10−2 2.2 50.9 20–19 2.4 65.1×101 30–29

10−4 2.2 55.1 20–19 3.2 68.3×103 51–50

10−6 2.2 55.1 20–19 3.9 68.3×105 84–83

Table 5

MFE Method, Symmlq solver.

∆t = 1/10, si = 1 i = 1, 2. ∆t = 1/10, κi = 1 i = 1, 2.

κ2/κ1 CPU Cond. Num. # Iter. s CPU Cond. Num. # Iter.

102 3.9 20.2×102 71 10−2 4.5 63.4 90

104 3.9 19.3×104 71 10−4 4.7 64.8 92

106 4.3 19.6×106 75 10−6 4.7 64.8 92

Conclusion

In spite of the fact that the MFE and MHFE formulations are algebraically

equivalent, it is found that in many applications their numerical solutions behave

differently. In this work, our ultimate intention was to check out the numerical

reliability of both algorithms under the influence of two factors: the geometry

of the mesh and the medium heterogeneity. As a result, the following topmost

points can be drawn.

The MHFE formulation necessitates inverting the elementary matrices. In view of

the fact that flat elements could blow up the conditioning of their corresponding

elementary matrices, one should be careful in choosing a stable matrix-inversion

solver. While in contrast, the MFE formulation is free from this numerical diffi-

culty since the inversion of these matrices is needless.

In heterogeneous media, it is found that the conditioning of the pressure head

obtained by the MHFE method is proportional to the ratio between the highest

and the lowest values of permeability parameters between adjacent subdomains,

i.e. O(κ2
κ1

). Beyond, the conditioning of the computed fluxes is O((κ2
κ1

)2). On the

other hand, the MFE formulation leads to two approaches by which the unknown
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variables can be approximated. The first one, which is possible in the case of pure

parabolic problem, is to solve the Schur complement system (2.16). This system

is positive definite but its condition number depends on ‖S−1‖. Thus, small

values of the storage coefficients have a critical effect on its resolution, which is

commonly the case. The second approach leads to solve system (2.26) whose

coefficient matrix is indefinite besides its large size compared to the first one.

Practically, the accuracy of the velocity field of a variety of groundwater flow

problems, such as transport problems, is crucial. As we have seen, the MHFE

formulation leads sometimes to senseless values in the velocity field, especially

when large jumps in the hydraulic conductivity take place or with the presence

of flat discretized elements. While on the contrary, by using the MFE method,

the pressure head and the velocity field are computed with the same order of

convergence. Throughout all the tested numerical experiments, no lapses in the

approximated MFE solutions have been reported. As a conclusion the choice of

a method is one of the cases tabulated in table 6.

Table 6

Choice between the MHFE and MFE formulations.

(κ2

κ1

)2 small ‖S−1‖ small ‖S‖ small

MHFE ×

MFE(1) ×

MFE(2) ×

MFE(1): is the first approach that leads to solve the Schur complement system (2.27).

MFE(2): is the second approach which leads to solve the indefinite system (2.26).

The time-consuming of the MFE and MHFE algorithms strongly depends on the

geometrical and physical parameters of each problem and on the linear systems

to solve, so no preferences can be given for one over the other.
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