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1 IRISA-INIRA Rennes, France samih.zein@irisa.fr
2 Amerian university of beirut, Lebanon nn12@aub.edu.lb
3 IRISA-INIRA Rennes, France jocelyne.erhel@irisa.fr
4 IRISA-INIRA Rennes, France edouard.canot@irisa.fr

Summary. In this paper, we are interested in the estimation of the mechanical
parameters of a solid that are nonlinearly associated with the solution of a marine
geosciences problem governed by a system of partial differential equations. Such
estimation requires studying an “inverse wave propagation problem” consisting in
the determination of the properties of solid elastic medium in contact with a fluid
medium. The two-dimensional model being used is based on measuring the variation
of the pressure in the fluid while propagating a seismic wave. Two stochastic meth-
ods, Markov Chain Monte Carlo (MCMC) with an accelerated version and Stochastic
Perturbation Simultaneous Approximation (SPSA), are implemented and compared
with respect to cost and accuracy.

Key words: Continuous Model, Inverse Problem, Bayesian Inference Model,
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1 Introduction

Marine geosciences study genesis and dynamics of processes taking place at the
ocean-subsoil interface and the neighbouring solid sublayers. Such studies provide
a deeper knowledge of the impact of marine processes resulting from petroleum
industries, on the environment and the natural resources. To improve our knowledge
of these processes, it is necessary to have equipments capable of recognizing the
geological properties of the subsoil marine. This is made by seismic campaigns that
send punctual waves, then measure the reflection of these waves on each geological
layer.

1.1 The Forward Problem: a Two-Dimensional Model and its

Numerical Solution

Our study starts with a two-dimensional mathematical model that consists in finding
(p, vf , vs and σ) that verify the following system of partial differential equations and



1422 Samih Zein

over an infinite domain constituted by a solid medium (Ωs) and a fluid medium (Ωf )
and separated by an interface (Γ ):8>>>>>>>>>>>><>>>>>>>>>>>>:

∂p

∂t
+ c2

fρf div vf = 0 (Ωf ) (1.1)

ρf
∂vf

∂t
+ ∇p = 0 (Ωf ) (1.2)

A
∂σ

∂t
− ǫ(vs) = 0 (Ωs) (1.3)

ρs
∂vs

∂t
− div σ = 0 (Ωs) (1.4)

vs.n = vf .n (Γ ) (1.5)

σ.n = −p.n (Γ ) (1.6)

(1)

This system is constituted by two separate schemes coupled at the interface. Equa-
tions (1.1 , 1.2) are the acoustic wave equations in the fluid, equations (1.3 , 1.4)
are the elastodynamics equations in the solid, and they are coupled with equations
(1.5 , 1.6).
The unknowns are: p: the perssure field in the fluid medium, vf : the velocity field in
the fluid, σ: the stress tensor field in the solid and vs: the velocity field in the solid.
The physical parameters are: cf : the wave propagation speed in the fluid, ρf : the
fluid density, ρs: the solid density, and A: the inverse of the elasticity tensor which
is function of λ and µ, the Lame’s coefficients.

This model has been derived in [Diaz05], and the code which performs the com-
putations was developed by team ONDES at INRIA Rocquencourt.

1.2 The Bayesian Model and the Inverse Problem

In our model of the inverse problem, we will be using a given set of data y := {yij =
y(xi, tj)} representing measures of the pressure at a set of points {xi} in the fluid
and at instints tj to recover the mechanical properties of the solid θ = (ρ, λ, µ) which
are the coefficients of equations (1.3 , 1.4) of the system (1).
Specifically, let y = u + ǫ where u is the numerical solution and ǫ := {ǫij} is a set
of independent, identically distributed random variables, each following a Gaussian
law: N(0, s2); s2 is the fixed variance of the variables, taken to be a small percentage
of the minimum of {uij}.
Estimation of θ requires p(θ|y) the probability distribution of θ given y. It can be
deduced from Bayesian formula p(θ|y) = 1

p(y)
p(y|θ)p(θ) In what follows let Dθ =Q

i
[θi,min, θi,max] be the domain of acceptable values of θ. Use of (??) is coupled

with the following assumptions:

• The prior probability density (p(θ)):

p(θ) ∝
�

1 if θ ∈ Dθ

0 elsewhere
(2)

• The likelihood probability density (p(y|θ)) is:

p(y|θ) ∝ exp
�−1

2

X
i

�yi − u(xi, T, θ)

s

�2�
(3)
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The previous equations lead to the expression of the posterior probability density:

p(θ|y) ∝

8><>: exp
�

−1
2

P
i

�
yi−u(xi,T,θ)

s

�2�
if θ ∈ Dθ

0 elsewhere

(4)

On these basis, we implement the following estimators:

1. The first seeks the expectation of θ given y:

E(θ|y) =

Z
θ p(θ|y) dθ

This estimator is known to be optimal in the sense that it minimizes the prior
probability weighted average of the mean square error. It will be computed using
the MCMC method.

2. The second computes the maximum of the posterior probability p(θ|y):

θ∗ = arg max
θ∈Dθ

p(θ|y)

where arg provides the (unique) value of θ that optimizes the given objective
function (p(θ|y)). This estimator is also known to be asymptotically unbiased
and efficient. It will be computed using the SPSA method.

2 Markov Chain Monte Carlo (MCMC)

An approximation of E[θ|y] using a Monte Carlo mothod is done through draws
of n independent, identically distributed (i.i.d.) samples of θ, say θk, k = 1, . . . , n,
following a uniform distribution. The average of θkp(θk|y) is then computed, leading
to the estimate: E[θ|y] = 1

n

Pn

k=1 θkp(θk|y) + O(1/
√

n).
In a simple Monte Carlo integration scheme, points are sampled uniformly, waist-

ing considerable effort in sampling the tails of p(θ|y). Techniques for overcoming this
problem act to increase the density of points in regions of interest and hence im-
prove the overall efficiency. To compensate this draw-back Monte Carlo integration
is combined with a Markov chain process that can produce a sequence of dependent

samples having p(θ|y) as a limiting distribution (see [Robert96, Nicholls707SC]).
Thus, most of the drawn samples fall in the region of interest and no computing
samples from outside this region would be used and waisted. This is the essence of
the Metropolis-Hasting algorithm (see [Robert96,Nicholls707SC]). In what follows,
we introduce a slightly modified version of this algorithm that reduces significantly
the cost of the computations.

2.1 An Accelerated Version of MCMC

The Metropolis-Hastings algorithm generates a sequence of samples from the prob-
ability distribution of one or more variables (see [Robert96, Nicholls707SC]). Such
sequence is then used to compute the expected value integral.
The main idea for reducing the cost of computations is done through generating can-
didates that will likely be accepted. Thus we avoid computations for the candidates



1424 Samih Zein

that are likely to be refused by not evaluating p(C|y). The acceleration consists in
taking a proposal distribution q∗(.|θk) based on p∗(.|y) a linear interpolation of p(.|y)
and a random walk proposal distribution q(.|θk). The actual proposal distribution
is taken as:

q∗(C|θk) = αpred(C, θk)q(C|θk) + (1 − r(θk))δθk
(C) (5)

where r(θ) =
R

α(C, θ)q(C|θ) dC and δθk
(C) is the Dirac distribution not null

at θk (“e.g”. see [Robert96]). The construction of this interpolation needs knowing
some points of p(.|y). These points are obtained by running first the standard M-
H algorithm. The modification of the standard algorithm is in the insertion of an
intermediate step between the generation and the acceptance steps of the standard
M-H:

1. At θk generate a proposal C from q(·|θk).
2. With probability

αpred(C, θk) = min
n p∗(C|y)

p∗(θk|y)
, 1
o

(6)

promote C to be a candidate to the standard M-H algorithm. Otherwise, pose
θk+1 = θk.

3. With probability

α(C, θ) = min
n q∗(θk|C)p(C|y)

q∗(C|θk)p(θk|y)
, 1
o

(7)

accept θk+1 = C; Otherwise reject C, θk+1 = θk

2.2 Results with MCMC

With this method, only the case of a homogeneous solid medium is considered with
only three parameters (λ, µ, ρs) to be estimated. The wave source is placed at 50
m above the solid-fluid interface. A standard choice for the transmitted signal is
the first order derivative of a Gaussian. Its frequency is 100 Hz and its amplitude is
1000 Pa. The main results are for the accelerated version of MCMC shown in table
1 where we have the exact values of the parameters used to simulate the inverse
problem input data, a confidence interval for our parameter estimations and the
relative error between exact and computed values. Validation of the results is done
through four distinct tests.

Table 1. Results with 19000 samples of the Markov chain with the accelerated
version (6000 evaluations of p(C|y)) and a pressure error < 6%

θ Exact Value (SI) Confidence Interval % of error

λ 11.5×109 10.9×109±2.6% 5.2%
µ 6×109 6.5×109±2% 8%
ρ 1850 1867 ± 0.15% 0.9%
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1. Convergence of our estimate to E[θ|y]: We want to know if the number of
samples is sufficient to have a correct estimation of our parameters. The plot of
the average E[θ|y] = 1

n

Pn

k=1 θk with respect to the first n samples of the chain
is shown below (Fig. 1). One must see that this average becomes constant after
a certain value of n (see [Robert96]) so it can be considered that the convergence
is reached. One can notice in our case that this property is true for n > 15000
samples .

2. Sampling from p(θ|y): We need to check if the samples follow p(θ|y), the limiting
distribution of the Markov Chain. One must expect the same evaluation for the
parameters at the convergence with two different initial points (see [Robert96]).
Two Markov chains of length 19000 samples are run and the results are compared
in table 2. The two results are not the same but they are close enough to be able
to consider that a length of 19000 samples for the Markov chain is sufficient and
the samples are quite distributed according to p(C|y).

Table 2. Parameter estimation with two different starting points and a pressure
error < 6% (19000 samples)

θ Confidence Interval with θmin Confidence Interval with θmax

λ 11.1×109±2.8% 10.8×109±2.7%
µ 5.82×109±2.5% 6.14×109±2.6%
ρ 1827 ± 0.21% 1911 ± 0.4%

3. Uniqueness of the solution: the plot of the frequency of the states taken by the
chain is shown in Fig. 2 from which one can verify that the posterior probability
has one mode which means that the inverse problem has a unique solution.

4. Accuracy of our estimation: The estimate of the posterior mean of parameters
θ is the average of n correlated samples from a Markov chain, its variance is
calculated as if the samples are independent and multiplied by the integrated
autocovariance time: var(θMC) = τ var(θ)

n
(see [Nicholls01]). One can estimate

τ with this formula: τ = 1 + 2
PM

s=1 ρ(s) where ρ(s) is the autocovariance
function given by C(s) = cov(θk, θk+s) and ρ(s) = C(s)/C(0) and which is
shown in fig.4, and M is the smallest integer such that ρ(M) = 0 (see [Nicholls01,
Nicholls707SC]).

The accelerated MCMC version will also require a large number of simulations
of the system (1): 6000 siulations for a chain of a 19000 samples length with the
accelerated version instead of 19000 simulations for the standard MCMC. Thus, we
have preferred another approach, the simultaneous perturbation stochastic approx-
imation method which will require only hundreds of simulations.

3 Simultaneous Perturbation Stochastic Approximation
(SPSA)

In the SPSA method, the estimator for θ is obtained by minimizing the loss function
L(θ), where L(θ) = log p(θ|y).
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Fig. 1. Convergence of the estimators
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Fig. 2. Mode of the posterior distribution
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the Markov chain

However, given that the expression of the gradient of L(.) is not available, we com-
pute approximations for ∂L/∂θ using measurements of L(θ) through simulations of
the direct model (1).

3.1 Unconstrainted Optimization

The SPSA algorithm is of the form:

θ̂k+1 = θ̂k − akĝk(θ̂k) (8)

where ĝk(θ̂k) is an estimation of the true gradient g(θ) ≡ ∂L/∂θ. In the SPSA
method, one uses a special approximation for the gradient that requires only two
evaluations of L(θ). All the variables are perturbed at the same time by drawing
two random points centered at θ̂k to form the gradient approximation:

ĝk(θ̂k) =
L(θ̂k + ck∆k) − L(θ̂k − ck∆k)

2ck

[∆−1
k1 , ∆−1

k2 , . . . , ∆−1
kp ]T (9)
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where ∆k is the perturbation random variable vector of mean zero, ak and ck

are two positive sequences (see [Spall03]).

3.2 Implementation of SPSA

The SPSA algorithm is sumarized in the following steps (see [Spall03]):

1. Initialization step: With the SPSA, the sequences ak and ck are of the form
ak = a/(A + k)α and ck = c/kγ . Set counter index k=1. Pick values for the
non-negative coefficients a, c, A, α, and γ. The choice of the gain sequences (ak

and ck) is critical to the performance of SPSA.
2. Generation of the simultaneous perturbation vector: Generate a p-

dimensional random perturbation vector ∆k, where each of the p components of
∆k are independently generated from a Bernoulli distribution with probability
of 1/2 for each outcome.

3. Loss function evaluations: Obtain two measurements of the loss function L(.)
based on the simultaneous perturbation around the current θk: L(θk + ck∆k)
and L(θk − ck∆k) with the ck and ∆k from Steps 1 and 2.

4. Gradient approximation: Generate the simultaneous perturbation approxi-
mation to the unknown gradient g(θk) from (9).

5. Updating θ estimate: Use (8), the standard SA form, to update θk to a new
value θk+1.

6. Iteration or termination: Return to Step 2 with k+1 replacing k. Termi-
nate the algorithm if there is little change in several successive iterates or the
maximum allowable number of iterations has been reached.

3.3 Results with SPSA

The configuration for the solid and the seimic source is considered the same as above.
The results are shown in table 3. This algorithm demands only 600 iterations while
MCMC required 6000 simulations.

Table 3. Pressure measures with error < 6% (300 interations)

θ Exact Values (SI) Confidence Intervals Errors

λ 11.5×109 12.2×109±6.12% 6.6%
µ 6×109 5.4×109±7.2% 9.5%
ρ 1850 1868 ± 0.83% 1%

4 Concluding Remarks

In this paper we describe two methods to determine the density and the elasticity
of a homogeneous solid medium from the variation of the pressure in the fluid due
to the transmission of a seismic wave.
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Two statitical methods are considered. MCMC gives an estimation with an accept-
able error but its very costly in computations. SPSA, gives approximately the same
accuracy and has the advantage to be much less expensive in computations. This
method will be considered in the case of a solid with multiple layers.
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