
A DEFLATION TECHNIQUE FOR LINEAR SYSTEMS OF
EQUATIONS∗

K. BURRAGE† , J. ERHEL‡ , B. POHL§ , AND A. WILLIAMS†

SIAM J. SCI. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 1245–1260, July 1998 011

Abstract. Iterative methods for solving linear systems of equations can be very efficient if the
structure of the coefficient matrix can be exploited to accelerate the convergence of the iterative
process. However, for classes of problems for which suitable preconditioners cannot be found or for
which the iteration scheme does not converge, iterative techniques may be inappropriate. This paper
proposes a technique for deflating the eigenvalues and associated eigenvectors of the iteration matrix
which either slow down convergence or cause divergence. This process is completely general and
works by approximating the eigenspace P corresponding to the unstable or slowly converging modes
and then applying a coupled iteration scheme on P and its orthogonal complement Q.
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1. Introduction. Computational techniques for solving linear systems of the
form

Ay = b, y ∈ Rm(1)

can be divided into two broad categories: direct and iterative methods. In the direct
case, elementary row operations are performed on the augmented matrix (A, b) in
order to reduce the system to a simpler form which can be more easily solved by
exploiting the architecture of the target machine. If pivoting techniques are used
then this process is usually a stable and reliable one, although in the case of sparse
systems the underlying algorithms and data structures can be complicated (see [2] for
example). For problems which have certain structures, pivoting may not be necessary,
as in the case for symmetric positive definite matrices. The question of when a
direct method or an iterative method should be used is hard to resolve, since an
informed answer will depend on both the structure of the problem and the target
computer architecture. It is certainly true that many iterative schemes have a simple
and conceptually appealing algorithmic structure in that they can often be written
very concisely in terms of level-1 and level-2 BLAS, as is the case for the Jacobi
and conjugate gradient methods, for example. Such iterative schemes are readily
parallelizable, and the structure of the algorithm does not change if A is full, banded,
or sparse.

On the other hand a different type of structure often has to be imposed on A
(such as diagonal dominance or symmetric positive definiteness or the property of
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an M -matrix) in order to guarantee the convergence of some iterative algorithms.
Furthermore, even if convergence is guaranteed it may be slow and may have to be
accelerated by a preconditioning process which may not be suitable to the underlying
computer architecture. A notable example of slow convergence occurs when solving
Laplace’s equation by the use of finite difference techniques on some mesh. If the
region is square and the mesh is uniform with a grid size of h = 1

N+1 , then the
spectral radii of the Jacobi and Gauss–Seidel iteration schemes are given by

ρ(HJ) = coshπ ≈ 1− 1

2
(hπ)2 +O(h4),

ρ(HG) = (coshπ)2 ≈ 1− (hπ)2 +O(h4),

respectively. As the grid size is reduced both the convergence of the Jacobi and
Gauss–Seidel schemes slow dramatically.

Of course approaches such as multigrid techniques can rapidly accelerate the
convergence of iterative schemes by using them as smoothers in various sequences of
coarsening and refining a discretization mesh. But this is at the cost of introducing
considerable computational complexity, and the multigrid approach is not always
appropriate when trying to exploit certain forms of parallelism.

In order to overcome some of these difficulties associated with iterative schemes,
we present here a completely general iterative technique for solving linear systems
of equations by adaptively deflating those eigenvalues of the iteration matrix, which
either slow convergence or cause divergence. A Newton-like method (or direct method
in the case of linear systems) is used on an invariant subspace corresponding to the
eigenvalues of the iteration matrix which are near the unit disk, and an iterative
scheme is used in the orthogonal subspace. As the iterations proceed, convergence
is accelerated since the eigenvalues in the orthogonal subspace can be made small
enough by deflation.

Since the iterative scheme is based on a splitting of the matrix, the matrix can
be nonsymmetric, and any storage can be used. The matrix can be dense, sparse, or
even a matrix-free technique is feasible.

The advantage of this approach is not only that it is conceptually very simple,
but, as will be seen later, it can prove to be remarkably efficient. In some sense
the deflation approach allows stationary methods such as Gauss–Seidel and Jacobi
iteration to compete on an equal footing with powerful Krylov subspace methods.

The GMRES algorithm [6] is commonly used to solve large sparse nonsymmetric
systems. The convergence behavior is related to the convergence of the Ritz val-
ues, and superlinear convergence has been established in [8]. The deflation process
described in this present paper has the same effect.

We note that a similar approach to the deflation approach described here has
been developed in [3] in which a preconditioner is built by deflation for restarted
GMRESs based on approximating and updating an invariant subspace at each restart.
This approach gives a much more robust scheme than the usual restarted GMRES
algorithm and retains the superconvergence properties of full GMRES by the building
of an appropriate preconditioner.

This process of accelerating the convergence of iterative methods by a deflation
process which progressively extracts the largest eigenvalues (in magnitude) associated
with the Jacobian of the problem has been studied in [5] and [7]. It was applied in
[7] to the numerical solution of nonlinear parameter-dependent problems of the form

y = F (y, λ), F : Rm × R → Rm
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by a coupled iteration process which forces or accelerates the convergence of a fixed-
point iteration scheme and represents an extension of the technique proposed in [5]
for solving symmetric nonlinear problems. Recently, [4] has considered a different
approach which uses singular subspaces for splitting the fixed-point equation associ-
ated with systems of parabolic partial differential equations. In spite of considerable
applications of these projection techniques to nonlinear parameter-dependent prob-
lems, little appears to have been done in applying these techniques computationally
to linear systems of equations, and this is the focus of this paper. The notation that
will be used is the notation used in [7] which is very similar to the notation used in
[5] and [4]. Furthermore, we will only consider applying the techniques used by [7] to
linear systems, although the approach in [4] also seems a fruitful one.

The approach developed in [7], known as the recursive projection method, is based
on the fact that divergence or the slow convergence of the fixed-point iteration scheme

y(k+1) = F (y(k), λ)

is due to the eigenvalues of Fy∗ (the Jacobian of F evaluated at the fixed-point y∗)
approaching or leaving the unit disk. The recursive projection method recursively
approximates the eigenspace (P) corresponding to the unstable or slowly converging
modes using the iterates of the fixed-point iteration. A coupled iteration process
takes place by performing Newton iteration on P and fixed-point iteration on Q (the
orthogonal complement of P) where fast convergence is assured. The scheme will be
particularly effective if the dimension of P is small.

It should be noted that this approach has some similarities with partitioning
techniques for solving stiff systems of ordinary differential equations in which attempts
are made to split the system into stiff and nonstiff subspaces. For this reason we will
sometimes refer to P as the stiff subspace.

Thus the outline of the paper is as follows. In section 2 the deflation algorithm
will be described in full for linear systems of equations, and a new modification will
also be described. Convergence results will also be given. In section 3 various imple-
mentation techniques will be addressed. In section 4 some numerical results are given
in both Matlab (for investigating convergence issues) and Fortran (for comparing
computational performance). Both dense and sparse systems will be considered, and
comparisons will be made with other effective schemes such as LU factorization and
standard iterative schemes such as conjugate gradient techniques on a Cray YMP-2D
located at the University of Queensland. Section 5 will be devoted to the application
of deflation to areas of scientific computing such as the numerical solution of ordinary
differential systems and the generalized cross validation (GCV) techniques for the fit-
ting of nonsmooth data. These areas involve the repeated solution of successive sets of
linear systems in which the system matrix is repeatedly updated by a constant value
on the diagonal, and deflation can be shown to be very effective in this situation.

2. Deflation applied to linear systems. Consider the linear system given by
(1) and consider the splitting

My = Ny + b

with A = M −N, where M is nonsingular. The underlying iteration scheme that will
be considered in this paper will be of the form

My(k+1) = Ny(k) + b.(2)
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This of course can be written in fixed-point form

y(k+1) = F (y(k)),

where

F (y) = Hy +M−1b, H = M−1N.(3)

Now let P be a subspace of dimension r, Ir be the identity matrix of order r, and
Z be an orthonormal basis of P. Let Q and P be the projections on the orthogonal
of P and on P. We have

Q = I − ZZ>, P = ZZ>, Ir = Z>Z, QP = 0.

Now partition y as

y = (P +Q)y = Py + q = Zu+ q, u = Z>y;

then (2) and (3) imply




(Ir − Z>HZ)u = Z>M−1b+ Z>Hq,
q = Q(M−1b+Hq +HZu),
y = Zu+ q.

Here u represents the solution in the stiff subspace. A coupled iteration then can
be performed between u and q. In [7] only a Jacobi-type coupling was considered
but in fact other couplings are possible. These will be referred to as the Jacobi,
Gauss–Seidel (GS), and reverse Gauss–Seidel (RGS), couplings, and these can then
be written in the general iterative form




Wu(k+1) = Z>(M−1b+Hq(i)),

q(k+1) = Q(M−1b+Hq(k) +HZu(j)),
(4)

where

W = Ir − Z>HZ.

The relationships between i, j, and the coupling is given by

i j coupling,
k k Jacobi,
k k + 1 GS,

k + 1 k RGS.

In the last case it is understood that the q iteration is performed first.
It can be seen from (4) that GS and RGS couplings have very similar properties

in that they both compute the same sequence but with different starting and finishing
values.

There are a number of factors that should be borne in mind when considering
this deflation approach. The most significant is that r should be kept as small as
possible, since a linear system of dimension r has to be solved at each step of the
iteration process and since r vectors (the basis Z) must be stored. This of course
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has to be judged in terms of the number of iterations to attain convergence. We
recall here that H is the iteration matrix of the underlying iteration scheme, and this
underlying scheme can be chosen depending on both the problem and the computer
architecture. In the case of a parallel environment a Jacobi or block Jacobi iteration
may be appropriate in which case M will be diagonal or block diagonal, while in a
sequential environment GS or block GS or SOR schemes may be more appropriate as
this will lead to faster convergence but less parallelism depending on the ordering of
the components.

Before studying the convergence properties, we must ensure that this method is
well defined or, in other words, that W is nonsingular. We have the following result.

Proposition 2.1. W is nonsingular if and only if unity is not an eigenvalue of
PHP .

Proof. W is singular and is equivalent to unity being an eigenvalue of ZTHZ
which is in turn equivalent to unity being an eigenvalue of PHP .

Now let us assume that W is nonsingular. The convergence properties can be
analyzed by examining the iteration matrix associated with the fixed-point scheme.
Let

e(k) = (Zu(k)> − Zu>, q(k)
> − q>)>;

then

e(k+1) = Je(k).

In the case of the three couplings, Jacobi, GS, and RGS, the Jacobians associated
with these schemes can be written as

JJ =

(
0 C
E B

)
,

JG =

(
0 C
0 EC +B

)
,

JR =

(
B E
CB CE

)
,

where

E = QHP, B = QHQ, C = P (ZW−1Z>)PHQ.

Thus the spectra of the associated Jacobian matrices for a GS and RGS coupling
are, respectively, given by

σ(JG) = {0, σ(B + EC)} = σ(JR),

while in the case of Jacobi coupling the eigenvalues of JJ satisfy

Det(λ2I − λB − EC) = 0.

Now the idea of the deflation method is to choose an invariant subspace P corre-
sponding to the eigenvalues close to 1. We have the following theoretical result.
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Proposition 2.2. Let P be an invariant subspace for the matrix H, with an
orthonormal basis Z, Q, and let P be the projections on the orthogonal of P and on
P. Let us assume that 1 is not an eigenvalue of PHP and that ρ(QHQ) < 1, where
ρ(QHQ) is the spectral radius of QHQ. Then the method (4) is well defined and
convergent for all three schemes.

Proof. If P is an invariant subspace for the matrix H then

E = QHP = 0

and the spectral radii of all three schemes are exactly the same and are given by

ρ(B) = ρ(QHQ).

The conclusion follows readily.
Because the invariant subspace P is only approximated in practice, the matrix E

is not null but hopefully small. In the presence of inaccuracies in Z, GS, RGS, and
Jacobi couplings behave differently, as will be seen in section 4.

3. Implementation issues. An important question that must be addressed is
the computation of Z. The matrix Z in fact can be recursively updated. If the
subspace P is invariant, then QHZ = 0 and (4) can be written as

q(k+1) = Q(M−1b+Hq(k))

so that

∆q(k+1) = q(k+1) − q(k)= (QHQ)∆q(k).(5)

This implies, using the power method, that asymptotically {∆q(k)} will lie in
the dominant eigenspace of B = QHQ (assuming ∆q(1) has a nonzero component
in this direction). This eigenspace is the eigenspace of H for remaining dominant
eigenvalues, so that the basis Z can be increased with new vectors. Although the
subspace used is not exactly invariant, other terms in the expansion of ∆q(k+1) are
hopefully negligible.

Equation (5) can now be used to approximate the dominant eigenspace of B
by computing the Krylov subspace spanned by a window of wind difference vectors
{∆q(k)}jj−wind+1 as the fixed-point iterations proceed and then computing an or-
thogonal basis S of this subspace. The Schur vectors T of the dominant eigenspace
of STHS are computed and ST approximates Schur vectors of H.

There are a number of ways that this deflation algorithm can be implemented.
Currently the user is allowed to specify the size of the Krylov subspace (denoted wind),
the (constant) number of eigenvalues that are deflated at each outer iteration (de-
noted def), the (constant) frequency at which these eigenvalues are deflated (called
freq), and the maximal number of deflated eigenvalues (denoted numeig). Two com-
plex conjugate eigenvalues are always extracted together so that wind is at least 2
and def = 1, for example, means deflation using one real eigenvalue or two complex
conjugate eigenvalues.

A more sophisticated implementation is currently under development in which a
cost function is developed which allows for automatic and adaptive deflation. This
cost function can be interrogated to see at which points in the iteration process the
dimension of Z can be increased. However, this approach is not reported on in this
paper.
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Of course, this deflation method requires slightly more memory than the under-
lying splitting scheme. The memory overhead is to store the basis Z and the window
S. Typically, as will be seen in section 4, Z contains 30 to 50 vectors and S contains
less than 4 vectors.

The following represents an outline of the deflation algorithm. It is written here
for the Jacobi splitting and the RGS coupling.

Algorithm Jacobi–RGS–deflation

* Jacobi splitting *
M = diag(A), N = M −A,H = M−1N, c = M−1b
* First : usual Jacobi iterations *
choose some y(0)

do k=0,freq−1
y(k+1) = c+Hy(k)

∆(k+1) = y(k+1) − y(k)

enddo
Z = ∅
test of convergence
* deflated iterations until convergence *
* initialization *
y(0) = y(freq)

u(0) = ZT y(0)

q(0) = y(0) − Zu(0)

t(0) = c+Hq(0)

k = 0
while not converged

* extract Schur vectors if Z is not maximal *
* and if mod(k, freq) = 0 *
if size(Z) < numeig

S = {∆(freq), . . . ,∆(freq−wind+1)}
orthogonalize S
compute STHS
compute def Schur vectors T
Z1 = ST
Z = (Z,Z1)
orthogonalize Z
W = I − ZTHZ

endif
* fixed-point deflated iterations (RGS coupling) *
q(k+1) = (I − ZZT )(t(k) + (HZ)u(k))
t(k+1) = c+Hq(k+1)

u(k+1) = W−1ZT t(k+1)

∆(k+1) = q(k+1) − q(k)

y(k+1) = Zu(k+1) + q(k+1)

k = k + 1
test of convergence

endwhile
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4. Numerical results and discussions. In this section a number of results
are presented to show the efficiency of the deflation process previously outlined. In
particular, four different problems are chosen for which extensive results are presented.

We will use a Matlab implementation on a Sparc10 workstation purely to compare
the number of iterations needed to obtain suitable convergence for various numerical
methods. In order to compare computational performance we will use one CPU of
a two processor YMP-2D located at the University of Queensland, which has a peak
performance of approximately 330 Mflops on each processor, using Fortran77.

Problems 1 and 2 are solved to very high precision and then we use the “exact”
solutions to build a stopping criterion based on the relative error in the solution. Of
course, this is not a practical test. The stopping criterion could be based as often on
the residual

‖r(k)‖ ≤ tol,

but it would require us to compute r, involving another matrix–vector product. We
chose the classical test with splitting methods which is based on the difference of two
successive iterates

‖y(k+1) − y(k)‖ ≤ tol,

where tol is a user-defined tolerance parameter. This is implemented for Problems 3
and 4 except when comparing the method with other iterative schemes. In order to
have a fair basis of comparison, we then used in all the methods the same stopping
criterion based on the residual.

Problem 1 arises from the solution of a two-dimensional Poisson equation on the
unit square with Dirichlet boundary conditions. This leads to the solution of a system
of linear equations of order m = N2 given by (1) in which A is symmetric, sparse,
and block tridiagonal of the form A = (I, T, I). Here I is the identity matrix of order
N and T is the tridiagonal matrix T = (−1, 4,−1). It is known that both the Jacobi
method and the GS method will converge for this problem and that the spectral norms
of the iteration matrices are, respectively,

ρ(HJ) = cos
π

N + 1
, ρ(HG) =

(
cos

π

N + 1

)2

.

Problem 2 is artificially constructed so that the iteration matrix H associated with
Jacobi splitting has evenly distributed eigenvalues. We choose H = V −1DV , where
V is a random matrix (using the function rand in Matlab) and D is the diagonal
matrix defined by Di = i/(n+ 1). Then we choose M = D−1 so that N = M ∗ J and
A = M −N . We did other experiments with different eigenvalue distributions (other
matrices D) with similar results. Here the matrix A is stored as a dense matrix.

Problem 3 is again an artificial problem in which A is a dense and symmetric
positive definite matrix with randomly generated elements in [0,1] (using a random
number generator from public domain). On the diagonal the value (i + 1)/2 + d is
added to the random Aii element. The conditioning can be controlled by varying the
parameter d. Two values of d will be considered, namely,

d = 2.0, d = −0.149,

which correspond to the condition number of approximately 400 and 450,000, respec-
tively.
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Problem 4 arises from the fitting of surfaces to rainfall data obtained from a set
of sparsely scattered meteorological stations in Queensland, Australia [1], [9]. The
matrix A is a dense symmetric positive definite matrix of the form A = A0 + λI.
Here λ > 0 is a surface fitting parameter which is minimized within a cross-validation
algorithm (see [9]), but in the results presented here it will be used to control the
conditioning of the problem, with a large λ implying a well-conditioned problem.

The problem size can vary from a few hundred to almost 10,000. Here just three
test sets are chosen of dimension 550, 1076, and 1500 because of memory limitations
on the Cray YMP-2D.

Problem 1. For this problem we investigate how the convergence depends on
the number of eigenvalues numeig and the frequency freq with which the eigenvalues
are deflated. It is assumed that at most two eigenvalues are deflated at any given
time (wind = 2, def = 1).

The results given in the next four tables represent the number of iterations needed
to achieve convergence for a problem of dimension m = 144 and a tolerance of 10−10

(for the error in the solution).
The results in Tables 1–3 correspond to Jacobi, GS, and RGS couplings, respec-

tively, given that the underlying splitting (defined by the matrix M) is the Jacobi
method. Table 4 was calculated using the same three deflation techniques but with
an underlying GS splitting and with one or two eigenvalues being deflated every 15
iterations (freq = 15).

The number of iterations required to obtain convergence for the unaccelerated
Jacobi and GS, respectively, are 772 iterations and 389 iterations.

From Tables 1–3 it can be seen that only about eight eigenvalues need to be
deflated at a frequency of one every 10 iterations to reduce the number of iterations
by a factor of 10 (from 772 to 71). It can also be seen that there are some perfor-
mance differences between the three couplings especially if eigenvalues are deflated
too frequently but that as the frequency becomes longer there is very little difference
between couplings, which is to be expected from the theoretical results given in sec-
tion 3. However, of these three couplings the GS and RGS couplings appear to be the
most robust when Jacobi splitting is used.

Another important point to note here is that the eigenvalues when deflated are
often fairly inaccurate (this is why the Jacobi technique diverges if only a few eigen-
values are deflated too quickly) but that as the iterations proceed these eigenvalues
themselves become more and more accurate.

There is a considerable difference in terms of iteration count between using an
underlying Jacobi splitting compared with GS as can be seen from comparing Table 4
with Tables 1–3. In particular, if only a small number of eigenvalues are deflated, GS
splitting appears to be much more efficient in terms of the number of iterations than
Jacobi (by at least a factor of two). As the number of eigenvalues that are deflated
increases this ratio between the two schemes appears to approach about two which is
the situation when no deflation is used for this problem.

Of course a reduction in the number of iterations by a large factor does not in itself
necessarily imply a similar reduction in time because of the additional computational
overheads imposed by the deflation process.

In order to see the performance of the deflation process on a larger problem the
dimension of the heat equation problem was increased to 900 and a tolerance of 10−8

used as a relative error convergence test. A RGS coupling was used with an underlying
Jacobi splitting. Unaccelerated Jacobi took 3519 iterations to converge to the same
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Table 1
Problem 1 (m = 144)—Number of iterations.

Jacobi splitting—Jacobi coupling—wind=2—def=1

numeig 1 2 3 4 5 6 7 8 9 10

freq = 5 ∞ ∞ ∞ ∞ 252 252 169 169 134 134

freq = 10 541 464 464 169 169 99 99 77 77 66

freq = 15 444 302 302 121 121 93 93 73 73 73

Table 2
Problem 1 (m = 144)—Number of iterations.

Jacobi splitting—GS coupling—wind=2—def=1

numeig 1 2 3 4 5 6 7 8 9 10

freq = 5 599 599 391 391 193 193 100 100 78 78

freq = 10 529 186 186 169 169 111 111 71 71 62

freq = 15 432 326 326 116 116 89 89 71 71 71

Table 3
Problem 1 (m = 144)—Number of iterations.

Jacobi splitting—RGS coupling—wind=2—def=1

numeig 1 2 3 4 5 6 7 8 9 10

freq = 5 600 600 380 380 176 176 99 99 72 72

freq = 10 532 215 215 151 151 98 98 74 74 64

freq = 15 438 254 254 119 119 92 92 72 72 72

Table 4
Problem 1 (m = 144)—Number of iterations.

GS splitting—freq = 15—wind=2—def=1

numeig 1 2 3 4 5 6 7 8 9 10

RGS 167 86 86 69 47 47 47 47 47 47

GS 169 82 82 64 46 46 46 46 46 46

Jacobi 169 88 88 70 47 47 47 47 47 47

Table 5
Problem 1 (m = 900)—Number of iterations and Matlab time.

Jacobi splitting—RGS coupling—wind=2—def=1—numeig=m
#eig = final no. of eigenvalues—#iter = no. of iterations

time = CPU time given by Matlab (seconds)

freq 5 10 15 20 25 30 35 40 45

#eig 52 33 25 21 19 17 15 15 13

#iter 132 172 196 240 253 272 294 332 356

time 75.3 48.9 36.7 33.9 31.6 29.1 29.8 32.5 29.8
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Fig. 1. Problem 1 (m = 900)—Matlab speedups.

tolerance in 95.79 seconds on a Sparc10 workstation. The deflation results are given
in Table 5 and speedups in time and iteration over unaccelerated Jacobi are given in
Figure 1.

Here speedups in time close to 3.5 are achieved, but again this speedup is under-
estimated due to the way Matlab is implemented and also due to the sparse matrix
representations. In fact Matlab is not an appropriate vehicle for comparing times
of different codes as there are high overheads associated with loop structures within
Matlab. Thus for Problems 3 and 4 computational performance will be compared
using Fortran77 on a Cray YMP-2D.

Problem 2. For this problem a dimension of 200 was chosen and an error in
the solution less than 10−8 was required. RGS coupling was used with an underlying
Jacobi iteration. As many eigenvalues as necessary (numeig = m) are extracted in
order to attain convergence with either 1 or 2 eigenvalues (def = 1, wind = 2) being
extracted every freq iterations. The actual number of eigenvectors stored is given by
#eig in Table 6.

The unaccelerated Jacobi method took 4208 iterations and a time of 102.3 seconds
to attain convergence. All calculations were again done in Matlab. Results are given
in Table 6.

The speedups in timing and iteration are presented in Figure 2. In this case a
speedup in time of about 8 is much better than for Problem 1. One reason for this
is that the iteration matrix H is a dense matrix whereas for Problem 1 it is a sparse
matrix. The overhead due to deflation relative to the cost of Jacobi is higher in the
sparse case, so that the same speedup in iterations leads to a smaller speedup in time.
But again timings in Matlab are only an indication of what can be expected.

Problem 3. Here a problem of dimension m = 1000 is solved to a tolerance of
10−8 for the residual with different conditionings corresponding to different values of d
as described above. Results on one processor of a Cray YMP-2D are given in Table 7
for Jacobi with and without deflation, GS with deflation, and conjugate gradient
without preconditioning.

The original iterative scheme (in this case Jacobi) was either diverging or had not
converged after 500 iterations. Not only did deflation in conjunction with a Jacobi
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Table 6
Problem 2 (m = 200)—Number of iterations and Matlab time.

Jacobi splitting—RGS coupling—def=1,wind=2—numeig=m
#eig = final no. of eigenvalues—#iter = no. of iterations

time = CPU time given by Matlab

freq 2 4 6 8 10 12 14 18 25 50

#eig 160 84 62 50 46 39 37 31 27 17

#iter 161 170 188 204 232 251 272 292 352 452

time 61.6 22.6 17.1 15.0 14.7 14.8 14.6 13.3 16.8 16.3
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Fig. 2. Problem 2 (m = 200)—Matlab speedups.

iteration cause rapid convergence, but for both values of the parameter d deflation
with Jacobi was more effective than conjugate gradient. It should also be noted that
deflation with GS needed fewer iterations than deflation with Jacobi to attain the
given accuracy. However, the times on a Cray were substantially higher because of
the poor vectorizing capabilities of the GS iteration compared with Jacobi.

We had to store wind = 3 vectors for the window (the matrix S). The total
number of extracted eigenvalues was less than 20, so that we had to store less than
20 vectors for the approximated invariant basis Z.

Problem 4. For this problem, we will compare our deflation scheme with the
conjugate gradient iterative method and with the LU direct method. We first experi-
ment with a problem of dimension m = 1500 and for λ = 0.173. In this instance, the
underlying iterative scheme is Richardson iteration; the coupling is RGS.

Figure 3 shows a plot of the error in the solution versus the number of iterations.
The effects of the periodic eigenvalue extractions can be clearly seen here, as the error
in the current iterate reduces noticeably. In this case, three eigenvalues are extracted
every eight iterations (def = 3, wind = 3, freq = 8).

Table 8 compares the performance on one processor of the Cray YPM-2D of
Richardson and Jacobi iterations with and without deflation with a conjugate gradi-
ent for the same problem, using RGS coupling and (def = 3, wind = 3, freq = 5).
The stopping criterion here relies on the residual with a tolerance 10−8. Although
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Table 7
Problem 3 (m = 1000)—Results on a Cray YMP-2D.

RGS coupling—freq 5—def 3—wind 3—numeig 20
d = 2.0 d = −0.149

Method Iterations Seconds Iterations Seconds
Jacobi ∞ - ∞ -

Jacobi (deflation) 21 0.45 36 0.73
GS (deflation) 20 1.92 30 2.60

Conjugate gradient 80 0.69 187 1.57
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Fig. 3. Problem 4 (m = 1500, λ = 0.173)—Residual.

the convergence of deflated Richardson in terms of the number of iterations is impres-
sive, it cannot compete with conjugate gradient. However, when the Jacobi iteration
is used conjugate gradient and deflation give more or less the same computational
performance.

In order to compare the computational performance of deflation with a direct
method, three different weather data sets of dimension 550, 1025, and 1500 were
solved on one processor Cray YMP-2D. The values for λ were given by

λ =
1

5
, λ =

5

64
.

In the first case the problem is well conditioned, and in the second case there is
a modest ill conditioning, with a condition number for A in the range (160–425)
depending on the size of the dimension m.

The deflation implementation was based on RGS coupling with an underlying Ja-
cobi splitting with tolerance 10−8 (the stopping criterion here used the difference
between two iterates) with one eigenvalue deflated every three iterations (def =
1, wind = 2, freq = 3). In all tests, the final size of the basis Z was less than
50. We used Cray library routines for LU factorizations with backward and forward
substitution. The speedups over the direct solve are given in Figure 4.
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Table 8
Problem 4 (m = 1500, λ = 0.173)—Results on a Cray YMP-2D.

RGS coupling—def 3, wind 3, freq 5

Method Flop count Flop rate Iterations Time
(Millions) (Mflops) (CPU seconds)

Richardson 1334 309 294 4.32
Richardson (deflation) 637 286 66 2.23
Jacobi diverges
Jacobi (deflation) 131 233 15 0.556
Conjugate gradient 171 303 36 0.57
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Fig. 4. Problem 4—Speedup over LU.

5. Deflation applied to a sequence of linear systems. So far we have only
considered the solution of single linear systems, but one very important area where
deflation can prove extremely effective is when a sequence of equations of the form

(A+ sI)y = b(6)

has to be solved. This can arise in many areas; some of them are quoted below.

1. If an implicit method is used to solve a stiff system of differential equations,
the nonlinear implicit equations are solved by some variant of the Newton
method. If the Jacobian of the problem is kept constant over a number of
steps but the stepsize varies, then a sequence of linear systems of the form
given by (6) have to be solved in which only the value of s changes.

2. If the inverse power method is being used to find an approximation to an
eigenvalue near a given value, the systems of the form (6) have to be solved
at each step.

3. In a surface fitting application which requires a GCV process in order to find
a minimization parameter which gives a tradeoff between a least squares fit
and a smooth surface, a sequence of systems of the form (6) has to be solved
(see [9]).
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Fig. 5. Linear solver iterations versus GCV evaluations.

Thus if systems of the form Ax = b and (A + sI)x = b have to be solved in
succession, then the iteration matrices for a Richardson scheme are given by

H1 = I − 1

ω1
A,

H2 =

(
1− s+ ω1

ω2

)
I +

ω1

ω2
H1,

and the eigenspaces of these two matrices are clearly related by a very simple equation.
This enables deflation with a Richardson iteration to be carried across these systems
of equations. This is not the case for more sophisticated iterative schemes such as
Jacobi or GS as then there is no particular relation between the eigenspaces of H1 and
H2. Because direct methods such as LU factorization cannot exploit any structure in
this case, deflation with Richardson extrapolation could prove very useful when such
sequences of linear systems need to be solved.

Figure 5 compares the performance of a Richardson deflation code with that of
the conjugate gradient code in solving a sequence of linear systems of dimension 1500
of the form given by (6) at each GCV function evaluation (this figure only shows the
iterations required to solve the first of the two systems that must be solved at each
evaluation). In this case RGS coupling is used with def = 3, wind = 3.

As can be seen for the first five GCV evaluations, reducing the estimate of the
smoothing parameter (which is the parameter added to the diagonal of the coefficient
matrix) directly increases the number of conjugate gradient iterations required to
solve the system, as a reduction in s causes an increase in the condition number.
For the later iterations, a significantly more accurate initial guess can be calculated
and this helps the conjugate gradient method’s performance. As Figure 5 illustrates,
the deflation technique is able to accumulate information about the eigenspace of
the systems being solved and becomes distinctly more efficient with each successive
system. Indeed as the minimization parameter converges, the number of iterations
needed to solve the system is only two or three.
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6. Concluding remarks. Usually iterative schemes based on a splitting do not
converge very fast. We have designed a new method which boosts these methods by
deflating the eigenvalues slowing down the convergence. This method is very general
and useful for any large nonsymmetric, dense, or sparse matrix. The deflation provides
a distinct advantage for ill-conditioned systems where the underlying iterative scheme
would either diverge or converge very slowly. For systems where the underlying scheme
is already converging reasonably well, then the accelerated convergence provided by
deflation is not worth the extra work required. We did several numerical experiments
to demonstrate the efficiency of our method. A suitable conclusion to be drawn
from these results is that deflation can be a very robust and efficient procedure when
solving large linear systems of equations. It can turn a divergent iterative scheme
into a rapidly converging one and can outperform conjugate gradient methods for
some problems. In many cases the number of eigenvalues that have to be extracted
in order to get good performance is often modest so that the memory requirements
are kept small. Whether Krylov subspace methods or deflation techniques are more
economical will in general be problem dependent.
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