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NEWTON-GMRES ALGORITHM APPLIED TO COMPRESSIBLE 
FLOWS 

&MI CHOQUET AND JOCELYNE ERHEL 
INRIA, Campus de Beaulieu, F-35042 Rennes, France 

SUMMARY 
This paper addresses the resolution of non-linear problems arising from an implicit time discretization in CFD 
problems. We study the convergence of the Newton-GMRES algorithm with a Jacobian approximated by a finite 
difference scheme and with restarting in GMRES. In our numerical experiments we observe, as predicted by the 
theory, the impact of the matrix-free approximations. A second-order scheme clearly improves the convergence in 
the Newton process. 
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1. INTRODUCTION 

Many scientific applications lead to a non-linear system of equations. We consider here the numerical 
simulation of steady state compressible flows. Implicit time discretizations allow us to use large time 
steps. On the other hand, at each time step a non-linear system of equations must be solved. Because of 
memory requirements, we want to use a so-called matrix-free algorithm. Several authors (see e.g. 
References 1 and 2) have considered inexact Newton methods where the Newton equations are solved 
approximately by an iterative solver. Moreover, since the Jacobian is required only through a matrix- 
vector product, it can be approximated by a finite difference scheme.334 The resulting matrix-free 
algorithm, which we call Newton-MF-GMRES, has been studied there with no restarting in GMRES. 

Here we extend these results to GMRES with restarting, denoted GMRES(m), as designed in 
Reference 5. Global convergence of Newton can be enhanced by a line search backtracking procedure 
provided that the approximate solution given by the iterative solver is a descent direction.6 We give a 
sufficient condtion on the stopping criterion of GMRES(m) to guarantee this result. The quadratic 
local convergence of the basic Newton iterations is no longer achieved with the Newton-MF-GMREiS 
method. As in Reference 3, but in the context of restarting, we give here sufficient conditions on the 
stopping criterion and the approximation of the Jacobian to obtain a linear local convergence. We 
introduce a centred second-order difference quotient to approximate the Jacobian. This scheme is more 
expensive than the usual first- order difference quotient, but it is more accurate and leads to a better 
Newton convergence. 

We apply the Newton-MF-GMRES(m) algorithm to the numerical solution of the compressible 
Navier-Stokes equations. We present results for two steady state problems. We study in detail the 
convergence of Newton and GMRES for one implicit time step and also for the stationary non-linear 
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problem with no time derivative. As expected, the Newton convergence is improved by using an 
accurate Jacobian approximation. The improvement comes mainly from the better approximation at 
each restart of GMRES. 

The paper is organized as follows. In Section 2 we describe the method under consideration and 
introduce an equivalent GMRES scheme. In Section 3 we study the global and local convergence of 
the Newton iterations. In Section 4 we present and analyse the numerical results. We give conclusions 
in Section 5 .  

Throughout the paper, 11.11 denotes the Euclidean norm 11.112. 

2. NUMERICAL METHOD 

We describe in this section the inexact Newton algorithm, combined with a GMRES solver with 
restarting and an approximation of the Jacobian. The problem to solve is to find u E RN satisfying 
F(u) = 0. The Jacobian is denoted J(u). 

Algorithm, Inexact Newton-MF-GMRES 

* r]  is the relative tolerance for the residual norm; 
convergence : = false; 
choose uo; 
i := 0; 
until convergence do 

* approximately solve J(ui)ai = - F(ui); 
call MF-GMRES(m, J(ui), F(ui), di); 
Ui+l = ui + 6i; 
if IIF(Ui+l) < Ilt~lIF(u~)ll then 
convergence := true; 
else 
i = i + l ;  
endif 

enddo 

At each Newton iteration the linear system is approximately solved by GMRES with restarting after 
m steps’ and a matrix-free Jacobian estimation. The algorithm is denoted MF-GMRES(rn, J, F, 6). 

Algorithm. MF-GMRES(m, J E 6 )  

* This algorithm solves approximately J6 = - F; 
5 is the relative tolerance for the residual norm; 
convergence := false; 
choose 6,; 
until convergence do 

q 1  := appr(J*S0); 
ro := - F - ql; 

v1 := ro/j; 
f o r k =  1, ..., m d o  

B := Ilroll; 

qk+l := appr(J * 
P := q k + l ;  
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for{= 1, ..., kdo 
hlk := VTp; 
p := p - hlkV1; 

endfor 
hk+l,k := Ib112; 

4 + 1  :=Plhk+1,k; 
endfor; 
Y m  = ar~liny,Rm~~Sel 
6 ,  := 6, + vqm; 
P m  = 11P1 -Hm-YmII; 

if p m  .c 511Fll then 
convergence := true; 
6 := 6,; 

6, = 6,; 
else 

endif 
enddo 

The matrix fim-= (hlk) is an upper Hessenberg matrix of order (m + 1) x m. Usually a QR 
factorization of H, using Givens rotations is employed to solve the least squares problem 
minyERm llj?el - i?,,~)l. To simplify here, we have presented a version where each cycle goes until 
completion. Actually, the test of convergence is done also inside the cycle, but without computing &, 
only by estimating pk. Since the Jacobian is only approximated, the usual relations of GMRES are no 
longer satisfied, in particular the following. 

Remark I 

In the algorithm MF-GMRES it is possible to get 

2.1. Equivalence with a perturbed GMRES algorithm 

In order to study the convergence of the inexact Newton method, we will first prove that each cycle of 
GMRES with an approximation of J is equivalent to a cycle of GMRES with an exact matrix-vector 
product, but where the right-hand side and the matrix are perturbed. The perturbations are directly 
related to the errors in the approximation of J.  We follow the lines of Brown’s but we introduce 
also a perturbation of the right-hand side to take into account the restarting procedure. 

We define the matrix Zm = (cl, . . . ,om) with = qk+l - J v k  and the vector uo = q1 - J6,. 

Proposition 1 

GMRES(m, f E 6) with the same initial guess, where 
Each cycle of MF-GMRES(m, J, F, 6) with an initial guess 6 ,  is equivalent to a cycle of 

j = J+Z,V:;, 

assuming that the matrix 3 is non-singular. 

To prove this proposition, we will prove the following two lemmas where we denote with a tilde the 
variables occurring in GMRES(m, 3 

= F + co - ZmV:60, 

6). The proposition follows readily from these lemmas. 
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ProoJ First we show that the initial residuals are the same: 
- -  

?o = -F - J6o = -(F + 00 + J6o) = -F - 41 = ro. 

Thus we have = v l .  Then we show the lemma by induction on k. We first note that 

Lemma 2 

Assuming that 3 is non-singular, then pm = jj, and 6, = 8,. 

Proof 

Thus ym = Yrn as 3 is non-singular and 6, = 8,. 0 
This equivalence allows us to introduce an equivalent residual, the norm of which is used in MF- 

GMRES to test convergence. 

Definition 1 

At each cycle of MF-GMRES with an initial guess a0 the equivalent residual is given by 
- -  

r, = -F - J6,  with 6, = 6, + V,,,y, and Ilr,ll = p,. 

2.2. Impact of perturbations on the residual 

Since each cycle computes only an equivalent residual r,, it is in general different from the initial 
residual 6 at the following cycle. Thus the sequence pm in MF-GMRES is not necessarily non- 
increasing through the cycles. More precisely, we have the following result. 

Proposition 2 

We consider two consecutive cycles. For the first cycle, let us denote by So the initial solution, ro the 
initial residual, r, the equivalent residual after the cycle, 6, = 60 + V,,,ym the solution obtained and uo 
and 2, = (al, . . . , a,) the perturbations induced by the approximation of the Jacobian. For the second 
cycle, let us denote by 6; = 6, the initial solution and 6 the initial residual with an approximation ub. 
The difference between 6 and r, is given by 

IIrb - r m I I  I I~o I I  + IIabII + IIxmIIIIYmtI* 



NEWTON-GMRES ALGORITHM FOR INCOMPRESSIBLE FLOWS 181 

ProoJ We use the definitions previously given to compute r, and 4: 
- -  

r, = -F - J6, 

= -F - 60 + EmV,T6o - (J + E,V,T)(So + V d , )  
= -F - 00 - J6o -JVdrn - Edrn,  

6 = -F - J(S0 + V d , )  - ah, 
rh - r, = go - a6 + Zd,. 

We simply get the result by taking the norms. 

The initial perturbations of the type 00 appear alone, whereas the subsequent perturbations, 
occurring during the basis construction, are multiplied by y,. Since lly, 11 is a multiple of f l  = llro 11, it 
becomes smaller and smaller at each restart. Therefore we can expect a larger impact of the 
approximation on the initial residual than of the approximation in the Krylov vectors. This conjecture 
will be confirmed numerically by the experiments of the next sections. 

Another way of measuring the impact of these perturbations is through the condition number of the 
Krylov subspace, as defined in Reference 7. We have shown, by equivalence with an exact GMRES, 
that Newton-GMRES builds a Krylov subspace k(m, GI, j), where GI = ro/llroll. Let us denote by 
k ( m ,  C, , J) the Krylov subspace generated by the exact GMRES cycle using the exact Jacobian J with 
the same initial solution 60. Here G1 = ~ o / ~ ~ ~ o ~ ~ ,  with ?o = ro + g o .  Adapting the definitions of 
Reference 7, the distance between the two Krylov subspaces is bounded using the Krylov condition 
number p as follows. 

Proposition 3 

k and the m e  Krylov subspace K is bounded at the first order in max(llaoll/llroll, ~ ~ E r n ~ ~ / I l J ~ ~ )  by 
For sufficiently small perturbations ah k = 0, . . . , m, the distance between the computed subspace 

d ( i ,  k) < P- m a ( a 1 1 ~ 0  I I / I I ~ ~  II 9 I I x m  II/ II JII), 

where p is the Krylov condition number and a is a constant. 

ProoJ Let 4 = max(llGl - C1 I), IJJ - ~ ~ ~ / ~ ~ J ~ ~ ) .  The definition of the condition number p implies 

d ( k ,  k) < Lu + 0(4)14. 
Clearly, IIJ - j l  = IIErnII and llG1 - G I I I  < a ~ ~ a o ~ ~ / ~ ~ r o ~ ~ ,  where o! is some constant, which gives the 
result. 

Here too the perturbation in the initial residual has more impact because it is divided by llro 11, which 
becomes smaller and smaller, whereas the impact of C, is reduced by (IJII. 

3. CONVERGENCE ANALYSIS 

Thus now, for each iteration i of the Newton method, we introduce the following notation: 60 is the 
initial guess in the last cycle of MF-GMRES, Ji=J(ui) and Fi=F(ui), ji and ki are the perturbed 
matrix and right-hand sides of the equivalent GMRES for this last cycle, di is the computed solution 
and ri is the equivalent residual. We then have the following. 
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Proposition 4 

The inexact Newton algorithm builds the following sequence: uo is given, 

ui+l = ui + di with Asi = -(ii + ri). 
We are now able to study the impact on the Newton convergence of the approximation of the 

Jacobian (given by the perturbations in the matrix and the right-hand sides) and the approximation of 
the solution (given by the estimated residual). 

3.1. Global convergence 

Quite often a line search backtracking technique is combined with the Newton iterations to improve 
the global convergence. This is possible in our framework if the solution given by GMRES is a descent 
direction. Indeed, we know that698 if ai evaluated by GMRES is a descent direction at ui, i.e. 

FTASi < 0, 

there exists p > 0 satisfying 

I IF (u i  + P6i)II < IIFilI. 
In Reference 4 it is shown that with no restarting and with an exact Jacobian the solution given by 

GMRES is a descent direction. In Reference 3 a condition is given for the solution of MF-GMRES 
with an approximation of the Jacobian but no restarting to be a descent direction. Here we extend 
this result to GMRES with restarting and we express the condition using the estimated norm of the 
residual p,. 

Proposition 5 

non-singular, then 6 ,  = do + V d ,  is a descent direction for J if 
We consider here a cycle of MF-GMRES(m, 4 F, 6) with an initial guess do. Assuming that is a 

P m  < llFll2 - 1100112 - l l ~ r n l l ~ l l ~ m l l ~ ~  

Proof 

J6, = J6o +JV,,y,,, 
= -(F+co+ro)+JV~, 
= -F - o0 - r, - &,y,,,, 

FTJ6m I I F I I ~ ( I I ~ ~ I I ~  + 1100112 + IILII~IIY~II~ - 11~112). 
The proposition follows. 0 

Provided that the residual in GMRES is small enough, we can use the following backtracking 
algorithm at each Newton iteration. 

Algorithm. Backtmcking 

* Let f (u) = F(u)~F(u) and 6 be a descent direction at u, 
this algorithm computes a scalar p satisfying f (u + p6) < f (u). 
choose a E (0, $) 
p = l  
while f (u + p6) > f (u) + paFTJ6 do 
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3.2. Local convergence 

The basic Newton method is known to converge quadratically near the solution, whereas inexact 
Newton methods where the linear system is solved iteratively are known to converge only linearly or at 
most superlinearly. Here we prove also a local linear convergence when using the MF-GMRES linear 
solver. 

Theorem 1 

Let l? R" + R" be continuously differentiable in an open convex set D c R". Assume that there 
exists u, and 1 > a > 0 such that 

' Mu,, a) c D, 
F(u,) = 0, 
J(u,)-' exists with IIJ(u,)-' 11 = M', 
J E Lip,(W,, a)), 
M = SUPUeN("*,a) IIJ(u)ll, 
M,(y+M)a < f ,  

, Ml(y + 6M)a < 1. 

Let a sequence u l ,  u2, . . . be generated by 

Pmoj We prove the theorem by recurrence, assuming ui E N(u,, a), which is true for i = 0. 

1. First we show that 4 is non-singular. We have llFill < Mllui - u,II < M a  and 

IIJ(g*)-'[Ji -J(u*)III < IIJ(u*)-' IIIIDi -JJI + [Ji - J(~JIII 
G Ml(IIJ'ill + ~ a )  
< Ml(M + y)a 
i f ,  

so that j i  is non-singular and, using Reference 6, Ilj;' II < 2M1. 



184 R. CHOQUET AND J. ERHEL 

2. Therefore ui+l is well defined and 
- 

ui+l - u, = ui - U, - JLIFi - Jr17i 

= J:'[F(u,) - Fi - J~(u ,  - ui) + (Ji - j i)(u,  - ui) + (Fi - Pi) - ri]. 
Since J E  Lip,(N(u,, a)), we have 

Y 
IIF(U*) - Fj - ~ ( u ,  - ui)II G IIU~ - ~* I I * .  

It should be noted that the inequality above is the quadratic term in the exact Newton procedure. 
Now we deal with the errors due to the inexact Jacobian and to the approximate solution by 
GMRES. By (AlHA3) we get 

II(Ji - JJ(u, - ui) +Fi - Fi - rill < 311Filla. 

Thus 

IIui+l - u*II G M~(Y + W a l l u j  - u*II. 

From this theorem we readily get a convergence result for our framework. 

Corollary I 

Under the same assumptions as above on J, the inexact Newton-MF-GMRES algorithm builds a 
sequence of iterates ui which is well defined and convergent to the solution u, provided that uo is close 
enough to u,, that the approximation of J is accurate enough and that the tolerance 5 in MF-GMRES is 
small enough. 

Pmoj We simply need to check the assumptions (AlHA3) for the last cycle of MF-GMRES. We 
have 

The assumptions on J contain the term M,M which actually reflects the condition number of the 
Jacobian. It indicates that a good preconditioner would improve the convergence of the Newton 
iterations. 

The errors a0 and ak which appear when approximating the Jacobian must be small not only to 
ensure a local convergence but also to get a descent direction. We study now these errors when using a 
finite difference scheme to approximate the Jacobian. 

4. APPROXIMATION OF THE JACOBIAN BY A FINITE DIFFERENCE SCHEME 

A finite difference scheme introduces a step z to approximate J(u)v. This parameter should be small 
enough to get an accurate approximation. However, it is well known that, because of rounding errors, 
this step must be large enough compared with the machine precision E .  We consider in the following a 
first-order and a centred second-order scheme. 
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4.1. First-order jinite diference scheme 

We use the first-order approximation 

F(u + zu) - F(u) J(u)v 
z 

In the absence of rounding errors, if J(u) is Lip,(N(u,, z)), then6 

185 

(1) 

However, rounding errors are of the order of &/z, so that, as in Reference 6, we advocate choosing 

JE (UTV) 

llvllz 
z =  

to get a global error l l r ~ ~ I I  = O(,/E). 

accurate second-order scheme. 
This error may be too large and may slow down the convergence. Therefore we study a more 

4.2. Second-order finite diference scheme 

Now we introduce a centred second-order scheme defined by 

F(u + ZV) - F(u - W )  

22 
J(u)v % 

If J(u) is sufficiently regular, the approximation error is of the order of z2 whereas rounding errors are 
of the order of E/z. Thus now we choose 

to get a global error Ilc-rkll = O ( E ~ / ~ ) .  
The smaller error is obtained at a larger CPU time, since this scheme involves twice as much work 

as the first-order scheme above. We now study the effects of both schemes with numerical examples. 

5.  NUMERICAL. EXPERIMENTS 

5.1. Equations and numerical schemes 

terms. The Navier-Stokes equations governing the flow are written in the conservative form 
We consider the implicit solution of a compressible, Newtonian and viscous fluid without source 

aP - + div(pU) = 0 
at 

a(pV) at + div(pU 8 V) + Vp = div(,uS), (3) 

ae - + div[(e +p)V]  = div(pSU) + div(~VT). 
at 

Here p is the density, U is the velocity, T is the temperature, e = p(T + 11 V1l2)/2) is the total energy 
density, p = (7 = 1)pT is the pressure, S = (VV + VUT) - $ div(U)I is the deformation tensor and 
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K = yp/Pr is defined via the parameters y = 1.4, Pr=O.72 for air and p = 1/Re given by the 
Sutherland law 

T, + 110 

where the subscript co denotes reference quantities. 
To solve (3), we use the conservative variables @, p V ,  e).9 The convective terms are upwinded 

thanks to a finite volume formulation for the Euler part of the equations. The Riemann problem at each 
interior interface is solved by approximating the flux with the Osher scheme." This scheme is 
differentiable if and only if U - v # 0 (where U and v are respectively the value of the velocity and the 
normal at each interface). We also use the Steger-Warming flux splitting" to approximate the flux at 
the freestream boundary. For the diffusive term we use a standard PI finite element formulation. 
Roughly speaking, after a mixed finite volume/finite element PI formulation we have to solve 

u , ~  + G(u) = 0, (4) 

where u E RN is composed of blocks of the variables (p ,  p V ,  e)  and G is a non- linear function in RN. 
Of course, G depends on the space discretization used. 

Here we consider only steady state solutions of (4). We have used the software developed at JNRIA9 
where time is discretized by an explicit Euler scheme given by 

u(n + 1) = u(n) + At,G(u). 

~ ( n  + 1) + At,G(u(n + 1)) - ~ ( n )  = 0, 

(5 )  

(6) 

Then we have implemented an implicit backward Euler scheme given by 

where each time step gives rise to the non-linear problem F(u) = 0, where F(u) = u + At,G(u) - u(n). 
Assuming that IIaG(u)/&ll is bounded, we can always find a time step At,, such that the Jacobian 
J(u) = Z + At,aG(u)/& of (6) is non-singular. 

We have also implemented the resolution of the stationary non-linear problem with no time 
derivative (corresponding to an infinite time step): 

G(u) = 0. (7) 
Here we cannot prove that the Jacobian aG/& is non-singular. 

In both cases, since the Jacobian is not explicitly known, we solve (6) and (7) by the inexact matrix- 
free algorithms given in Section 2, including a backtracking strategy. 

For numerical purposes we consider the following two steady state problems in two-dimensional 
space: problem l-a viscous flow at Mach 0-8 and Re = 5000 around an NACAOO12 aerofoil with an 
incidence of 3"; problem 2-an inviscid flow at Mach 1.2 around an NACA0012 aerofoil with an 
incidence of 7". We discretize the domain by a finite element mesh with 801 nodes and 15 16 triangles; 
thus N =  3204. All the computations are done on a SPARC-IPX workstation. 

5.2. Numerical studies of the backward Euler integration 

The explicit Euler scheme (5 )  is used during the first 100 steps where the solution varies greatly, 
with a local time step denoted At,,(exp). Reasonably large time steps At,(imp) = CFLAt,(exp) can then 
be used in the implicit scheme (6) while guaranteeing the convergence of Newton iterations. We 
analyse in detail the first implicit non-linear problem (6) where u(n) is given by the last explicit 
iteration. We use the inexact Newton-MF-GMRES algorithm where GMRES is restarted up to four 
times and every m iterations. The convergence threshold in GMRES is chosen to be = We want 
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to study the impact of the approximation in the Jacobian on both the GMRES and the Newton 
convergence. We first approximate the Jacobian by the first-order scheme (1). Then we replace the 
approximation by the second-order scheme (2), first only for the initial residual, then also in the 
Arnoldi process. In order to measure the impact of the approximation, we compare at the end of each 
restart the equivalent residual p, = Ilr, 11 given by the least squares problem with the true residual (also 
approximated) II - F - appr(JS,)Il. These quantities should be equal if the Jacobian was computed 
exactly (see Remark 1). We also compute the gradient FTJS/llGII to check whether backtracking can be 
applied. 

The first results are given in Tables I-VII, with the following contents in each column: 

1. the number of the Newton iteration i; a letter ‘b’ indicates a backtracking to decrease llFTFill 
2. the relative residual llFi/F,,ll before the iterate i 
3. the equivalent residual pm/~~Fill after each cycle of MF-GMRES 
4. the true residual approximated by 11 - Fi - appr(J,S,)(I/IIFill 
5 .  the gradient ~iTJid,/lld,ll. 

Tables I and I1 give the results for both problems with a first-order scheme. We observe that the 
equivalent residual is completely different from the true residual. In that case the convergence of 
Newton is rather slow. Results when using a second-order scheme for the initial residual at each 
restarting are given in Tables I11 and N For both problems the Newton convergence is improved with 
no requirement for backtracking. In problem 1 the equivalent residual of MF-GMRES now estimates 
accurately the true residual. In problem 2 there is still a large difference. Finally, Tables V and VI give 
the results when using a second-order scheme in all approximations of the Jacobian. The effect is not 
so impressive as in Tables I11 and N 

Finally, we increase the local time steps for problem 2 so that the assumptions for the local 
convergence of Newton are not satisfied. We see through Table VII that backtracking is necessary in 
the first Newton iterations. 

5.3. Numerical studies of the non-discretized problem 

Then we solve the problem G(u) = 0 with no time discretization using an initial guess given by the 
first 100 steps of the explicit Euler scheme for problem 1 and the first 1000 steps of the explicit Euler 
scheme for problem 2. We compute 10 steps of the inexact Newton-MF-GMRES algorithm where 
GMRES is restarted up to four times and every m = 20 iterations steps, with the same convergence 
threshold. The results for the full test cases are given in Tables VIII and IX. The tables show the 
influence of the order of the finite difference scheme (given in the first column) on the relative residual 

Table I. Observations for problem 1 with a first-order scheme, m = 15, CFL = 5-0 

1 IIFillIllFo II PmlllFill II - Fi - appr(J, ~ m ) l l / l l F i l l  F:J,SmIIIJm II 
0 1 a 0  1.681793E-04 1.68 1 824E-04 
- 7.998507E-05 7.999422E-05 - 0.496986 
1 1.380937E-03 2-058242E-02 2.058544E-02 
- 2.29724lE-04 3.788322E-04 
- 9-358031E-05 3.062475E-04 - 1-140616E-03 
2 4-228783E-07 8.09734OE-03 0.477054 
- 9.451777E-3-04 0.470251 
- 1 * 126 173E-03 0-499369 
- 1.089406E-03 0.515916 -6.242091E-07 
3 2-182093E-07 
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Table 11. Observations for problem 2 with a first-order scheme, m = 15, CFL = 5.0 

~~ ~ 

0 1 .o 3.01 8444E-04 3.018057-04 

- 
4 

9.337 1 74E-05 
I .339627E-02 8.692537E-03 

7.533453E-05 
3.01 33 12E-05 3.898022E-03 

1.863874E-03 
3.398747E-03 
4.955945E-03 

1.595999E-05 3.795039E-03 
1.40761 3E-02 
1 -492283s-02 
3~563932E-03 

1.224939E-05 

9.339440E-05 - 0.202629 
8.945976E-03 
2.25 1 1 17E-03 
0.519220 
0.808648 
1.288501 
0.529647 - 2.8 1397 1E-05 
3.567834 
3.724042 
1.007644 
0.767542 - 1~33962OE-05 

-4.33621 1E-03 

~~~ ~ ~ 

Table 111. Observations for problem 1 with a second-order scheme at each restarting, m = 15, CFL = 5.0 

1 

- 
3 

1 .o 1.681793E-04 
7.999014E-05 

1.38091 3E-03 2.058248E-02 
2.294992E-04 
8.559659E-05 
1 -34654 1 E-02 
1.1 16557E-04 
9.1 11 143E-05 

1.1 76692E-07 

6.2240364E- 10 

II - Fi - appr(J, am)ll/llFill 

1.68 1890-04 
7.9990 13E-05 - 0.496986 
2.058245E-04 
2.294790E-04 
8.559996E-05 - 1.140582E-03 
1.45255 1E-02 
7.522575E-03 
7.323 161E-03 - 5.954292E-08 

FiTJiSm/IISm II 

Table I\! Observations for problem 2 with a second-order scheme at each restarting, m = 15, CFL = 5.0 

0 1 .o 3.018444E-04 3.018499E-04 
- 9.338585E-05 9.338578E-05 - 0.202629 
1 1.3 3 962 8E-02 8.677930E-03 8-677844E-03 
- 9'624604E-05 9.675667E-05 -4.336226E-03 
2 2.069862E-06 8.260932E-03 8.696502E-03 
- 7.655946E-05 3.732129E-03 - 7.566524E-07 
3 5.747445E-09 

Table \! Observations for problem 1 with a second-order scheme, m = 15, CFL = 5.0 

1-0 1.681898E-04 
7.998903E-05 

1,380904E-03 2.058 190E-02 
2.295504E-04 
8.560229E-05 

1.176182E-07 1.349783E-02 
1.1 3 1854E-04 

8.4940 13E-05 7.531063E-03 
6.262193E-10 

1.68 1898E-04 
7.998903E-05 - 0.496986 
2.058190E-02 
2-295210E-04 
8-560299E-05 - 1.140587E-03 
1 445929E-02 
7.5 18289E-03 

- 5.9493 19E-08 
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Table VI. Observations for problem 2 with a second-order scheme, rn = 15, CFL = 5.0 

i IIFill/llF~ II 
0 1 .o 
1 1 -339629E-02 
- 

- 
2 2.055026E-06 

3 6.038253E-09 

Pm/llFjll II -Fi - ~ P P ~ ( J ,  dm)II/IIFiII FiTJidm/IISm II 
3.0 18737E-O4 3.01 8737E-04 
9.340862E-05 9.340853E-05 - 0.202629 
8.59015 1E-03 8.59001 1E-03 
9.478208E-05 9.505118E-05 - 4-336222E-03 
8.093605E-03 8.707604E-03 
8.024169E-05 3.960275E-03 -7.527701E-07 

Table VII. Observations for problem 2 with a second-order scheme at each restarting, m = 15, CFL = 500.0 

i llFi II/ IIFo I1 Pm/ llFi II II -Fi - ~ P P ~ ( J ,  fim)ll/llFill F?Jidm/ I Idm I I  
0 1 .o 0.330659 0.330659 
- 0-213414 0.213414 
- 0,142027 0.142028 
- 8.50 1748E-02 8.501752E-02 - 11 1.572 
Ob 2.98 12 1 1 
1 0.777835 0.555933 0.555934 
- 0.347357 0.347357 

0.2 12065 0.2 12065 - 
- 0-155792 0.1 55792 - 147.262 
l b  0.91 7935 
2 0.465581 0.52573 1 0.535731 

0.382918 0.382918 
- 0.254039 0.254039 
- 0.188227 0.188227 - 100.297 
3 0.254054 0.332741 0.33274 1 
- 0.212985 0.212985 
- 0.141447 0.14 1447 
- 9.725 137E-02 9.725 147E-02 - 113.915 
4 3.632507E-02 0.468 147 0.468147 
- 0.347019 0.347019 
- 0.220597 0.220597 
- 0.153951 0.15395 1 - 7.786406 
5 5.43 1 169E-03 

- 

~ ~ G ~ , , ~ ~ / ~ ~ G , , ~ ~  (given in the second column) and also show the cost (number of fimction evaluations of 
G(u) and CPU time). The second-order scheme is only applied at each restarting for the case 2 and 
applied also during the Arnoldi process for the case 2f. 

The use of a second-order scheme is of no help for problem 1, as observed in Table VIII. On the 
other hand, Table IX for problem 2 shows clearly the drawback of the first-order finite difference 
scheme. As in the previous test cases, the true residual in GMRES does not converge rapidly, slowing 
down the convergence in the Newton process. Here too the main improvement comes from applying 
the second-order scheme at each restarting. This adds a small overhead in time which can benefit the 
global convergence. 
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Table VIII. Direct solution with backtracking for problem 1 

Order of FD scheme IIGloll/llGoll # (evaluations) CPU time (s) 
1 5.49E-03 861 343 
2 5 33E-03 891 361 
2f 5-32E-03 1691 613 

Table IX. Direct solution with backtracking for problem 2 

Order of FD scheme ~ ~ G , o ~ ~ / ~ ~ G o ~ ~  # (evaluations) CPU time (s) 

1 7.60E-04 861 324 
2 1.14E-04 891 344 
2f 1.llE-04 1691 620 

6. CONCLUSIONS 

In this paper we studied the convergence of a Newton-Krylov method where the linear system 
involving the Jacobian at each Newton iteration is solved by a restarted GMRES linear solver. We 
showed that the solution given by GMRES is a descent direction if the tolerance for convergence in 
GMRES is sufficiently small. A linear local convergence of Newton is guaranteed if this tolerance is 
small and also if the approximation of the Jacobian is accurate enough. These results can be applied to 
any matrix-free iterative linear solver. 

We applied this algorithm to the numerical simulation of compressible flows, using an implicit time 
discretization. Numerical results on two problems confirm the theoretical study. In the light of our 
experiments we advocate the use of a second-order finite diffience scheme to approximate the initial 
residual at each restart of GMRES. It clearly improves the convergence of Newton at a low CPU cost in 
each iteration. 
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