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We discuss the application of an augmented conjugate gradient to the solution of a
sequence of linear systems of the same matrix appearing in an iterative process for the
solution of scattering problems. The conjugate gradient method applied to the first system
generates a Krylov subspace, then for the following systems, a modified conjugate gradient
is applied using orthogonal projections on this subspace to compute an initial guess and
modified descent directions leading to a better convergence. The scattering problem is treated
via an Exact Controllability formulation and a preconditioned conjugate gradient algorithm
is introduced. The set of linear systems to be solved are associated to this preconditioning.
The efficiency of the method is tested on different 3D acoustic problems.
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1. Introduction

In this paper, we discuss an application of the Augmented Conjugate Gradient
algorithm proposed by Erhel and Guyomarc’h in [11]. This algorithm concerns a
sequence of symmetric linear systems of the form

Ax(i) = b(i),

where A is an N × N symmetric positive definite matrix and where the different
right-hand sides b(i) are computed sequentially; this situation arises for instance when
a new right-hand side depends upon previous solutions.

The basic idea of this conjugate gradient method is to use a Krylov subspace
generated by the first system to define an initial guess and modified descent directions
to solve the following systems. An analogous idea has been applied to the Lanczos
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method in [21] and to the conjugate gradient in [13,20], see also [10] and the references
therein. When the different right-hand sides are known a priori, then block-conjugate
gradient methods are efficient. In [8], block-CG is combined with a seed projection
method which generates a Krylov subspace for the so-called seed system and projects
the residuals of other systems onto this subspace. Similar ideas are developed in [16].

The method studied in this paper has been validated in [11] on academic test
problems; we intend here to test it on larger problems.

We discuss the application of the augmented conjugate gradient method in an
iterative process applied to the solution of acoustic problems. They concern the scat-
tering of harmonic planar waves by purely reflecting bodies. We propose an Exact
Controllability approach; a least-squares formulation is introduced and solved by a pre-
conditioned conjugate gradient algorithm (see [4,5]); so at each iteration of this outer
conjugate gradient, we have to solve a linear system for the preconditioner. For 2D
applications, these linear systems are solved by a direct method (Cholesky), the matrix
being factorized once for all. For the 3D applications discussed here, the matrices
are too large to allow a direct method, so an iterative method is necessary and we
have used a conjugate gradient. In order to increase the efficiency of this conjugate
gradient, we apply the augmented conjugate gradient method; for each of these lin-
ear systems, the matrix is the same and the right-hand sides depend on the previous
solutions. Conjugate gradient is used at two levels, the inner is an augmented one.

The format of this paper is as follows. In section 2, we describe the augmented
conjugate gradient. In section 3, we present the scattering problem and the solution
algorithm; in section 4, we give some details on the numerical implementation. The last
section is devoted to numerical results with emphasis on the efficiency of the augmented
conjugate gradient to solve the linear systems associated to the preconditioner.

2. Augmented conjugate gradient algorithm

We present here the algorithm for two successive linear systems to be solved; let
A be a symmetric positive definite matrix of RN ,N , we consider the systems

Ay= c, (2.1)

Ax= b. (2.2)

We assume that a classical Conjugate Gradient algorithm (CG) is used to solve
the first system (2.1). In what follows, (·, ·) denotes the Euclidean scalar product and
| · | the associate norm; to set the notations, we write CG as follows:

Initialization

y0 given, (2.3)

compute

s0 = c−Ay0, (2.4)
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set

w0 = s0. (2.5)

Iterations
For j > 0, yj , sj , wj being known, compute yj+1, sj+1, wj+1 as follows:

γj =
|sj|2

(wj ,Awj)
, (2.6)

yj+1 = yj + γjwj , (2.7)

sj+1 = sj − γjAwj . (2.8)

If

|sj+1|
|c| 6 ε, (2.9)

take m = j + 1, y = yj+1; else, compute

δj+1 =
|sj+1|2
|sj|2

, (2.10)

wj+1 = sj+1 + δj+1wj . (2.11)

Do j + 1→ j and return to (2.6).

Let

S= (s0, s1, . . . , sm), (2.12)

W = (w0,w1, . . . ,wm) (2.13)

be the set of residuals and descent directions generated. Recall that

S∗S = ∆, W ∗AW = D, span(S) = span(W ) = Km(A, s0), (2.14)

where ∆ and D are diagonal matrices and Km(A, s0) is the Krylov subspace of di-
mension m+ 1 generated by the initial residual s0.

We now want to use this information to speed up the solution of the second sys-
tem (2.2), so we use the following Augmented Conjugate Gradient (AugCG) proposed
in [11]:

Initialization

x0 given, (2.15)

compute

r0 = b−Ax0. (2.16)

For j = 1, . . . ,m, do

x0 = x0 +
(r0,wj)

(wj ,Awj)
wj , (2.17)
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r0 = r0 −
(r0,wj)

(wj ,Awj)
Awj . (2.18)

Set

z0 = r0, (2.19)

for j = 1, . . . ,m, do

z0 = z0 −
(z0,Awj)
(wj ,Awj)

wj , (2.20)

and set

p0 = z0. (2.21)

Iterations
For k > 0, xk, rk, zk, pk being known, compute xk+1, rk+1, zk+1, pk+1 as follows:

αk =
(rk, zk)

(pk,Apk)
, (2.22)

xk+1 = xk + αkpk, (2.23)

rk+1 = rk − αkApk, (2.24)

µk+1 =
(rk+1,Awm)
(wm,Awm)

, (2.25)

zk+1 = rk+1 − µk+1wm. (2.26)

If

|(rk+1, zk+1)|1/2

|b| 6 ε (2.27)

take x = xk+1; else, compute

βk+1 =
(rk+1, zk+1)

(rk, zk)
, (2.28)

pk+1 = zk+1 + βk+1pk. (2.29)

Do k + 1→ k and return to (2.22).

This algorithm computes an initial guess x0 such that the initial residual r0

is orthogonal to the Krylov subspace Km(A, s0) and an initial descent direction p0

conjugate to the descent directions W ; then the new descent direction pk+1 is enforced
to be A-orthogonal to the last vector wm of the initial system and to the previous
descent direction pk.

Remark 2.1. We do not store wj and Awj , but directly wj/
√

(wj ,Awj) and
Awj/

√
(wj ,Awj). Generally to avoid a too important memory size increase, the

vectors wj , Awj , j = 1, . . . ,m, are stored in a secondary memory. Then to compute
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the initial terms x0, r0, z0, we have to read twice the vectors stored in the secondary
memory, and only the last ones (wm,Awm) are kept in main memory for the iterations.

Remark 2.2. As proposed in [11], we have used this form (2.15)–(2.29) of the Aug-
mented Conjugate Gradient algorithm, using Modified Gram–Schmidt processes to
ensure stability.

We refer to [11] for a study of the properties of AugCG and particularly for the
demonstration that the asymptotic rate of convergence of AugCG is better than the
classical CG one.

3. Application to 3D acoustic scattering problems

In this section, we shall discuss an application, in an iterative process, of the
methodology introduced in the above section. It concerns the scattering of monochro-
matic incident waves by purely reflecting bodies.

3.1. Formulation of the scattering problems

Let us consider a scattering body B of boundary γ = ∂B, illuminated by an
harmonic incident wave. The scattered field satisfies

utt − ∆u= 0 in
(
R3 \B

)
× (0,T ), (3.1)

u= g on σ = γ × (0,T ). (3.2)

The unknown u represents the pressure. The boundary condition (3.2) can be
replaced by a Neumann one.

We have bounded R3 \ B by an artificial boundary Γ and we denote by Ω the
region of R3 between γ and Γ (see figure 1) and by Q the domain Ω× (0,T ) .

We prescribe on Γ an approximate Sommerfeld condition such that

∂u

∂n
+
∂u

∂t
= 0 on Σ = Γ× (0,T ); (3.3)

Figure 1.
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the first order absorbing condition (3.3) can be replaced by a second order one (see,
e.g., [5]) leading to better accuracy and efficiency.

Suppose that the harmonic wave hitting B is of period T ; we have then g(x, t) =
−Re(e−iktG(x)) with k = 2π/T and after some transition we shall reach a time-
periodic regime of period T . From a computational point of view we have two
classical possibilities.

With the first one we use a separation of variable method based on

u(x, t) = Re
(
e−iktU (x)

)
which leads to the following Helmholtz problem

∆U + k2U = 0 in Ω,
U = G on γ,
∂U

∂n
= ikU on Γ;

(3.4)

we shall not pursue that direction; for classical Helmholtz equation solvers, see,
e.g., [17] and the references therein.

The second approach consists in time-integrating the original problem (3.1)–(3.3)
starting from initial conditions on u and ut until a T-periodic regime has been reached.
We shall follow this second approach; however, since the asymptotic convergence as
t→ +∞ can be slow, particularly for nonconvex reflectors, the idea is to speed it up
using control methods.

The control methods will be applied to system (3.1)–(3.3) completed by the
following T-periodicity conditions:

u(0) = u(T ), ut(0) = ut(T ). (3.5)

3.2. Exact controllability and least-squares formulations

Solving problem (3.1)–(3.3), (3.5) is equivalent to finding a pair {e0, e1} such
that

{
u(0) = e0, ut(0) = e1,
u(T ) = e0, ut(T ) = e1,

(3.6)

with u the solution of (3.1)–(3.3).
Problem (3.1)–(3.3), (3.6) is an exact controllability problem which can be solved

by methods directly inspired by Lions’ Hilbert Uniqueness Method (HUM) (see,
e.g., [14,18,19]).

To apply these methods, the right choice for the space E containing e = {e0, e1}
is fundamental; an appropriate choice is

E = Vg × L2(Ω), (3.7)

with Vg = {ϕ | ϕ ∈ H1(Ω), ϕ | γ = g(0)}.
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A least-squares formulation of (3.1)–(3.3), (3.6) is then given by

min
v∈E

J(v), (3.8)

with

J(v) =
1
2

∫
Ω

[∣∣∇(y(T )− v0
)∣∣2 +

∣∣yt(T )− v1
∣∣2] dx, ∀v = {v0, v1}, (3.9)

where, in (3.9), the function y is the solution of

ytt − ∆y = 0 in Q, (3.10)

y = g on σ, (3.11)

∂y

∂n
+
∂y

∂t
= 0 on Σ, (3.12)

y(0) = v0, yt(0) = v1. (3.13)

Remark 3.1. The choice of J as cost function is fairly natural once we realize that the
energy E(t) associated to the wave equation (3.10) is precisely

E(t) =
1
2

∫
Ω

[∣∣∇y(t)
∣∣2 +

∣∣yt(t)∣∣2] dx.

Remark 3.2. It has been shown by Bardos and Rauch [1] that functional J may fail
to be strongly “elliptic” (coercive) in some situations with trapping rays and they
have proposed an alternative functional with better coercivity properties. However,
the functional J has given satisfactory computational results as shown in [3–5] and its
implementation is simpler, so we have here used the functional J . For comparisons
of the two approaches, see [6].

Problem (3.8) can be solved by a preconditioned conjugate gradient algorithm, so
we need the gradient J ′(v), ∀v ∈ E. We refer to [3,4] for the details of the computation
of J ′(v), we give here only the result:〈

J ′(v),w
〉

=

∫
Ω
∇
(
v0 − y(T )

)
· ∇w0 dx+

∫
Γ
p(0)w0 dΓ

−
∫

Ω
pt(0)w0 dx+

∫
Ω

(
v1 − yt(T )

)
w1 dx+

∫
Ω
p(0)w1 dx,

∀w = {w0,w1} ∈ E0, (3.14)

with the adjoint state p defined by

ptt − ∆p = 0 in Q, (3.15)

p = 0 on σ, (3.16)
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∂p

∂n
− ∂p

∂t
= 0 on Σ, (3.17)

and the final conditions

p(T ) = yt(T )− v1, (3.18)∫
Ω
pt(T )z dx =

∫
Γ
p(T )z dΓ−

∫
Ω
∇
(
y(T )− v0

)
· ∇z dx, ∀z ∈ V0. (3.19)

In (3.14), 〈·, ·〉 denotes the duality pairing between E′0 and E0, where

E0 = V0 × L2(Ω) with V0 =
{
ϕ | ϕ ∈ H1(Ω), ϕ = 0 on γ

}
. (3.20)

3.3. Conjugate gradient solution of the least-squares problem (3.8)

A conjugate gradient algorithm for the solution of problem (3.8) is described
below:

Step 0: Initialization

e0 = {e0
0, e0

1} ∈ E is given. (3.21)

Solve the following forward wave problem:

y0
tt − ∆y0 = 0 in Q, (3.22)

y0 = g on σ, (3.23)

∂y0

∂n
+
∂y0

∂t
= 0 on Σ, (3.24)

y0(0) = e0
0, y0

t (0) = e0
1. (3.25)

Solve the following backward wave problem:

p0
tt − ∆p0 = 0 in Q, (3.26)

p0 = 0 on σ, (3.27)

∂p0

∂n
− ∂p0

∂t
= 0 on Σ, (3.28)

with p0(T ) and p0
t (T ) given by

p0(T ) = y0
t (T )− e0

1, (3.29)∫
Ω
p0
t (T )z dx =

∫
Γ
p0(T )z dΓ−

∫
Ω
∇
(
y0(T )− e0

0

)
· ∇z dx, ∀z ∈ V0, (3.30)

respectively.
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Define next g0 = {g0
0, g0

1} ∈ E0 = V0 × L2(Ω) by∫
Ω
∇g0

0 · ∇z dx=

∫
Ω
∇
(
e0

0 − y0(T )
)
· ∇z dx

−
∫

Ω
p0
t (0)z dx+

∫
Γ
p0(0)z dΓ, ∀z ∈ V0, (3.31)

g0
1 = p0(0) + e0

1 − y0
t (T ), (3.32)

and then

w0 = g0. (3.33)

For k > 0, suppose that ek, gk, wk are known; we then compute their updates ek+1,
gk+1, wk+1 as follows:
Step 1: Descent
Solve

ȳktt − ∆ȳk = 0 in Q, (3.34)

ȳk = 0 on σ, (3.35)

∂ȳk

∂n
+
∂ȳk

∂t
= 0 on Σ, (3.36)

ȳk(0) = wk0 , ȳkt (0) = wk1 . (3.37)

Solve the following backward wave problem

p̄ktt − ∆p̄k = 0 in Q, (3.38)

p̄k = 0 on σ, (3.39)

∂p̄k

∂n
− ∂p̄k

∂t
= 0 on Σ, (3.40)

with p̄k(T ) and p̄kt (T ) given by

p̄k(T ) = ȳkt (T )− wk1 , (3.41)∫
Ω
p̄kt (T )z dx =

∫
Γ
p̄k(T )z dΓ−

∫
Ω
∇
(
ȳk(T )− wk0

)
· ∇z dx, ∀z ∈ V0, (3.42)

respectively.
Next, define ḡk = {ḡk0 , ḡk1 } ∈ V0 × L2(Ω) by∫

Ω
∇ḡk0 · ∇z dx=

∫
Ω
∇
(
wk0 − ȳk(T )

)
· ∇z dx

−
∫

Ω
p̄kt (0)z dx+

∫
Γ
p̄k(0)z dΓ, ∀z ∈ V0, (3.43)
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ḡk1 = p̄k(0) + wk1 − ȳkt (T ), (3.44)

and then ρk by

ρk =

∫
Ω[|∇gk0 |2 + |gk1 |2] dx∫

Ω(∇ḡk0 · ∇wk0 + ḡk1w
k
1 ) dx

. (3.45)

We update ek and gk by

ek+1 = ek − ρkwk, (3.46)

gk+1 = gk − ρkḡk. (3.47)

Step 2: Test of the convergence and construction of the new descent direction
If (∫

Ω
(
|∇gk+1

0 |2 + |gk+1
1 |2

)
dx
)1/2(∫

Ω
(
|∇g0

0 |2 + |g0
1 |2
)

dx
)1/2

6 ε1

take e = ek+1; else, compute

γk =

∫
Ω
(
|∇gk+1

0 |2 + |gk+1
1 |2

)
dx∫

Ω
(
|∇gk0 |2 + |gk1 |2

)
dx

(3.48)

and update wk by

wk+1 = gk+1 + γkw
k. (3.49)

Do k = k + 1 and go to (3.34).

Remark 3.3. Algorithm (3.21)–(3.49) looks complicated at first glance. In fact, it is
not that complicated to implement since each iteration requires basically the solution of
two wave equations such as (3.34)–(3.37) and (3.38)–(3.42) and of an elliptic problem
such as (3.43).

4. Numerical implementation

4.1. Space–time discretization

The practical implementation of the above algorithm relies on fairly classical
time discretization and finite element approximations. The wave equation is time
discretized by a centered second order explicit finite difference scheme combined to
piecewise linear finite element approximations for the space variables.

To be more precise, the basic wave problem

utt − ∆u = 0 in Q, (4.1)

u = g on σ, (4.2)
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∂u

∂n
+
∂u

∂t
= 0 on Σ, (4.3)

u(0) = u0, ut(0) = u1, (4.4)

will be approximated as follows:

Step 1: We introduce the following variational formulation of problem (4.1)–(4.4):

Find u satisfying u(t) ∈ H1(Ω), ∀t ∈ [0,T ], and∫
Ω
uttz dx+

∫
Ω
∇u · ∇z dx+

∫
Γ

∂u

∂t
z dΓ = 0, ∀z ∈ V0, a.e. on (0,T ), (4.5)

relation (4.5) being completed by (4.2), (4.4). The space V0 is still defined by (3.20).
Step 2: We introduce ∆t = T/Nt (Nt: a positive integer); we then (formally) time-
discretize (4.2), (4.4), (4.5) by

u0 = u0, u1 − u−1 = 2∆tu1, (4.6)

and for n = 0, 1, . . . ,Nt, we compute un+1 via the solution of
un+1 ∈ Vgn+1 ,∫

Ω

un+1 + un−1 − 2un

∆t2
z dx+

∫
Ω
∇un · ∇z dx+

∫
Γ

un+1 − un−1

2∆t
z dΓ = 0, (4.7)

∀z ∈ V0,

with

Vgn+1 =
{
z | z ∈ H1(Ω), z = g

(
(n+ 1)∆t

)
on γ

}
. (4.8)

Scheme (4.6)–(4.7) is (formally) second order accurate with respect to ∆t.
Step 3: We suppose – for simplicity – that Ω is a bounded polygonal domain of R3.
With Th a classical finite element tetrahedrization of Ω, we approximate H1(Ω) and
L2(Ω) by

Vh =
{
z | z ∈ C0(Ω), z|T ∈ P1, ∀T ∈ Th

}
, (4.9)

where P1 is the space of polynomials in three variables of degree 6 1, and where,
as usual, h is the length of the largest edge(s) of Th. With obvious notation, we
approximate (4.1)–(4.4) by

u0
h = u0h, u1

h − u−1
h = 2∆tu1h. (4.10)

and, for n = 0, 1, . . . ,Nt, by
un+1
h ∈ Vgn+1

h
,∫

Ω

un+1
h + un−1

h − 2unh
∆t2

z dx+

∫
Ω
∇unh · ∇z dx+

∫
Γ

un+1
h − un−1

h

2∆t
z dΓ = 0, (4.11)

∀z ∈ V0h,



82 M.O. Bristeau, J. Erhel / Augmented conjugate gradient

where, in (4.10), u0h and u1h are approximations of u0 and u1 belonging to Vh and
where

V0h =
{
z | z ∈ Vh, z = 0 on γ

}
(= V0 ∩ Vh), (4.12)

Vgn+1
h

=
{
z | z ∈ Vh, z = gn+1

h on γ
}

, (4.13)

gn+1
h being an approximation of g((n + 1)∆t) belonging to the boundary space span

by the traces on γ of the functions of Vh.
Concerning the computation of un+1

h in (4.11), we apply mass lumping to obtain
a fully explicit scheme. So, if a parallel computer is used, this wave equation solver
can be easily parallelized as shown in [2] for 2D-cases.

We define, for the discrete problem, a least-squares formulation equivalent
to (3.8)–(3.13) and a conjugate gradient algorithm analogous to (3.21)–(3.49).

After the discretization steps, the linear problems (3.31) and (3.43) are of the
form

Ag0
0 = b0, (4.14)

Aḡk0 = bk, k = 1, . . . , (4.15)

with A a symmetric, positive definite matrix (A is the matrix of the Laplace operator).
In fact we do not solve directly the systems (4.14), (4.15), but we first apply a

diagonal preconditioning; if we define the diagonal matrix D by

Di =
√
Aii, i = 1, . . . ,N , (4.16)

with N the dimension of A, we replace each system such as

Ag = b (4.17)

by {
D−1AD−1y = D−1b,
g = D−1y.

(4.18)

The algorithm defined in section 2 is applied to the solution of the elliptic prob-
lems of the form (4.14), (4.15) corresponding to (3.31) and (3.43).

4.2. Matrix storage

In the algorithm (3.21)–(3.49), the more time consuming steps are the integration
of the wave equations (3.34)–(3.37) and (3.38)–(3.42) which after discretization are
of the form (4.10), (4.11), and the solution of problem (3.43). In (4.11), the more
expensive part is the computation of the matrix–vector product corresponding to the
evaluation of the term

∫
Ω∇unh · ∇z dx; the matrix is the same as the one of the

discretized problem corresponding to (3.43). As an iterative process is used for the
solution of this last problem, the main cost is also related to the matrix–vector product.
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So, for the efficiency of the global algorithm, the matrix–vector product has to be
as optimized as possible. The matrix being sparse and symmetric, only the non-zero
terms of the lower triangular matrix are stored. The computations are done on a CRAY
vector machine. If we consider row storage, the vectors are short and the vectorization
not very efficient. That is why we have considered a diagonal storage (see [9,12]) for
the non-zero terms, the length of the vectors is then the number of non-zero terms of
the diagonals. To optimize this length, a renumbering algorithm minimizing the matrix
bandwidth is previously applied.

5. Numerical results

We consider different test problems and, in this paper, we emphasize the results
concerning the efficiency of the augmented conjugate gradient (AugCG) defined in
section 2 and applied to the solution of (3.31), (3.43); for more details concerning the
scattering results, we refer to [3–6]. The methodology is applied on three different
geometries. The first two test cases concern spheres; these geometries have been
chosen to validate the code since exact solutions can be computed. The third example
concerns a nonconvex obstacle, this kind of obstacle being the aim of the control
approach considered in this paper.

5.1. Scattering by spheres

The first obstacle is a sphere of diameter λ/2, the artificial boundary is located
at a distance λ to ∂B. The mesh has 34,518 nodes and 198,264 tetrahedra. The field
scattered by this sphere can be computed just integrating in time the wave equation,
but we apply the control algorithm as a test. The linear problem (3.31), preconditioned
by diagonal (see (4.18)), is solved by the conjugate gradient (CG) (2.3)–(2.11) (also
preconditioned by diagonal) and then the problems (3.43) are solved by the augmented
conjugate gradient (AugCG) (2.15)–(2.29).

With ε = 10−3 in the stopping test (2.9), we obtain m = 85. In figure 2, we
compare, for the first problem (3.43) (k = 1), the convergence history obtained either
with the standard conjugate gradient (dotted line), or with the augmented conjugate
gradient (continuous line). In AugCG, we also use ε = 10−3 in the stopping test (2.27).
Then, for the problems (3.43) associated to 10 iterations of the global algorithm (3.21)–
(3.49), we compare, in table 1, the number of iterations necessary to reach convergence
either with CG or with AugCG using the 85 {wj ,Awj} stored vectors. During these
10 iterations of the global algorithm, the number of matrix–vector products devoted
to the solution of (3.43) is reduced from 766 to 303 by using AugCG rather than CG,
while the CPU time is reduced from 6.4 s to 3.6 s, the computations being done on
one processor of a Cray C90. During the 10 iterations, the cost function J defined
by (3.9) is reduced from 3.10−3 to 5.10−6.
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Figure 2. Convergence histories (N = 34518).

Table 1
Comparison of the number of iterations (N = 34518).

k 1 2 3 4 5 6 7 8 9 10

CG 90 85 56 71 85 84 73 85 66 61
AugCG 30 26 26 29 31 30 32 31 28 30

The second sphere considered is of diameter 2λ, the mesh has 87,512 nodes and
502,005 tetrahedra. With the angles defined as in figure 3, the incident wave is defined
by ϕ = 270◦, the right-hand side g in (3.2) is then defined by

g(x, t) = −Re
[
e−ikteiKX] (5.1)

with

K = k

( cos θ cosϕ
sin θ cosϕ

sin θ

)
, X =

(
x
y
z

)
and k = 2π/λ.

The exact scattered field with a cross-section by the plane (x = 0) is plotted in
figure 4 and the computed one in figure 5. This solution is reached after 10 control
iterations. The solutions are in good agreement with a discrepancy at the bottom of
the plottings due to the radiation condition (3.3) which is only first order.

For the solution of (3.31), with the same stopping test as for the previous example,
we obtain m = 100. In figure 6, we compare also, for the first problem (3.43)
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Figure 3. Definition of the angles.

Figure 4. Exact solution.

Figure 5. Computed solution.
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Figure 6. Convergence histories (N = 87512).

Table 2
Comparison of the number of iterations (N = 87512).

k 1 2 3 4 5 6 7 8 9 10

CG 90 92 92 70 86 88 90 88 84 103
AugCG 50 50 50 54 73 54 54 44 49 54

(k = 1), the convergence history obtained either with the standard conjugate gradient
(dotted line), or with the augmented conjugate gradient (continuous line). Then, for
the solution of (3.43) with k = 1, . . . , 10, we give, in table 2, the number of iterations
necessary to reach convergence either with CG or with AugCG. The number of matrix–
vector products devoted to the solution of (3.43) for k = 1, . . . , 10 is reduced from 883
to 532 and the CPU time for this preconditioning step is reduced from 18.1 s to 16.2 s.
The CPU time is reduced to 14.2 s if the vectors {wj ,Awj} are kept in main memory
but the memory requirement for the code then increases from 6 Mw to 24 Mw.

The last test case concerns a semi-open cylindrical cavity; the internal diameter
is 0.5λ and the length of the cavity is λ, the wall thickness is 0.05λ. The mesh has
about 230,000 nodes and 1,330,000 tetrahedra. Figure 7 shows the trace of the mesh
on the cavity. With the angles defined as in figure 3, the incident wave is defined by
θ = 150◦, ϕ = 0◦. The convergence of the global algorithm (3.21)–(3.49) is reached
after 20 iterations. In figure 8 the contours of the scattered field are shown in the cross
section by the plane (z = 0).

In figure 9, we compare, for the first problem (3.43) (k = 1), the convergence
history obtained either with the standard conjugate gradient (dotted line), or with the
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Figure 7. Trace of the mesh on the boundary of the cylindrical semi-open cavity.

Figure 8. Cylindrical cavity: contours of the scattered field in a cross-section.

Figure 9. Convergence histories (N = 231668).
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Table 3
Comparison of the number of iterations (N = 231668).

k 1 2 3 4 5 6 7 8 9 10

CG 139 133 111 129 138 131 116 121 114 116
AugCG 91 110 95 106 115 99 97 95 79 79

Table 4
Efficiency of AugCG versus the test problem.

N 34518 87512 231688
R 2.5 1.6 1.3

augmented conjugate gradient (continuous line). Table 3 allows to compare, as in the
previous cases, the efficiency of CG and AugCG for the 10 first solutions of (3.43). The
number of matrix–vector products is then reduced from 1248 (CG) to 966 (AugCG), but
if we compare the CPU time, it is reduced, when using secondary memory saving, only
from 63.8 s to 61.8 s, and to 56.4 s with main memory storage (memory requirement
increasing from 16 Mw to 67 Mw).

We can summarize in table 4 the efficiency of AugCG versus the test problem.
We have computed the average ratio R of the number of iterations with CG by the
number of iterations with AugCG. We notice the decrease of the efficiency of the
method with the size of the system.

Of course, we have noticed on examples not presented here that, for the same
continuous operator, the efficiency of the preconditioning introduced by AugCG is
related not only to the number of unknowns but also to the difficulty of the global
problem, implying that the right-hand sides in (3.43) are more or less different.

Remark 5.1. For the initial guess, (2.15), we can choose either x0 = 0 or the solution
of the previous iteration. The two possibilities give rather equivalent results, one being
better than the other depending on the cases. The results presented here correspond to

xk0 = xk−1, k = 1, . . . ,

for the first and third examples, and to

xk0 = 0, k = 1, . . . ,

for the second example.

Remark 5.2. The m vectors {wj ,Awj} stored are the ones of the first iteration and they
are kept for the preconditioning of all the following iterations; we have tried to compute
new ones after for instance 10 iterations but without convergence improvement of the
solution of the following systems.

Another possibility is to store the vectors {wj ,Awj} of the two or three first
iterations; this approach has not proved efficient because the overhead due to the fact
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that the stored vectors are more numerous is not balanced by the decrease of the
number of iterations which is very weak.

6. Concluding remarks

We have developed in this paper a real-life application of the Augmented Con-
jugate Gradient proposed in [11]; it has been tested on large systems up to more than
200,000 unknowns. One of the interesting points of this algorithm lies in its simplic-
ity to implement and its small overhead; the algorithm AugCG does not induce new
matrix–vector products, it is based mainly on dot-products which are easily vectorized.
If we use secondary memory, the main part of the overhead is due to the reading of
vectors for the computation of the initial guess and initial descent direction. If we
avoid this overhead, then the memory requirement increase is important as shown in
section 5. So depending on the machine to which the code is devoted, one can choose
one of the two approaches.

Some improvements of the method are under development to keep its efficiency
independent of the size of the system: choice of the vectors to be stored, coupling with
domain decomposition. One idea to reduce the memory overhead is to augment the
current Krylov subspace with some approximation to an invariant subspace associated
with a few of the lowest eigenvalues, see, e.g., [7,22]. The advantage of domain
decomposition methods is dealing with the interface problem. Therefore it is possible
to store many vectors with a low memory requirement and a very good efficiency
(see [15]).
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