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This paper compares the performance on linear systems of equations of three similar adaptive accelerating
strategies for restarted GMRES. The underlying idea is to adaptively use spectral information gathered from
the Arnoldi process. The first strategy retains approximations to some eigenvectors from the previous restart
and adds them to the Krylov subspace. The second strategy also uses approximated eigenvectors to define
a preconditioner at each restart. This paper designs a third new strategy which combines elements of both
previous approaches. Numerical results show that this new method is both more efficient and more robust.
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1. Introduction

The GMRES algorithm [16] is now a standard iterative method for solving large sparse
non-symmetric linear systems of equations

Ax = b, x ∈ Rn (1.1)

It uses an Arnoldi algorithm to build an orthonormal basis for Krylov subspace given by

Km(A, r) = Span{r, Ar, . . . , Am−1r}
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in which an approximation to the solution of (1.1) lies. Clearly, if exact arithmetic is used,
then the GMRES algorithm will converge in at mostn iterations. Since the GMRES algo-
rithm is expensive both computationally and in its memory requirements, a restarted version
(GMRES(m)) is often used, in which the Krylov subspace is restricted to be of fixed di-
mensionm and the Arnoldi process is restarted using the last iteratexm as a new initial
approximation for the restart. Unfortunately, it can be very difficult to know how to choose
m a priori and if too small a value is chosen, convergence may stall.

It is known that small eigenvalues ofA can slow down convergence. More recent work
on the convergence behaviour of GMRES [22] relates the superlinear convergence to the
convergence of Ritz values. Basically, convergence occurs as if at each iteration of GMRES
the next smallest eigenvalue in magnitude is removed from the system. This work has some
relation to that in [17] and [3], which show that standard stationary iteration schemes, such
as Jacobi and SOR, can be rapidly accelerated by a deflation process in which the largest
eigenvalues in magnitude of the amplification matrix (estimated by the power method)
are periodically removed into a coupled stiff subspace (where the small stiff component
is solved for by a direct method). This leads to a coupled iteration between the non-stiff
and stiff subspace—the effect of which is that the fixed-point iterative scheme is rapidly
accelerated.

Unfortunately, if a restarted GMRES procedure is used, the information about the smallest
eigenvalues and corresponding eigenvectors is lost at each restart and so the superlinear
convergence may be lost. For this reason, recently, researchers have examined different
ways of reducing the negative effects of a restart.

There are several ways that this can be done, see, for example, [15] : a block-GMRES
approach as in [19], an eigenvalue translation-based preconditioner [9], an augmented sub-
space approach [12,5] and an approximate invariant subspace-based preconditioner [7,1].

The approach based on eigenvalue translation defines a preconditioner of the formA(I +
u1v

T
1 ) . . . (I + ulv

T
l ) where the vectorsu1, . . . , ul andv1, . . . , vl are chosen to condense

the eigenvalues near one.
The augmented subspace solution retains vectors from the previous restart and adds

them to the new subspace. In particular, it investigates savingk approximate eigenvectors
of A corresponding to thek smallest eigenvalues in magnitude. These eigenvectors are
estimated using a Rayleigh–Ritz method. It should be noted here that after each restart the
k eigenvectors become progressively more accurate.

The method tested in [7] and [1] is to adaptively build a preconditioner for GMRES based
on spectral information gathered from the Arnoldi process during iteration by restarted GM-
RES. The nice feature of this approach is that the advantages of preconditioning are retained
without the difficulty of knowing what type of preconditioner to use. In the case of [7], after
each restart the preconditioner is updated by extracting new eigenvalues corresponding to
the remaining smallest eigenvalues which are smallest in magnitude. This is different from
the flexible GMRES method [14] because it executes a true GMRES cycle with a constant
preconditioner inside the cycle. The preconditioner is equal to the projected matrix onto the
approximated invariant subspace (up to a scaling factor) and is taken as the identity on the
orthogonal subspace.

Note that the preconditioner can be used on the left or the right with equal facility. The
approach in [1] has a similar thrust to that in [7] and the same convergence results hold.
Here they precondition on the left and the implementation uses the recurrence formulas of
the Implicitly Restarted Arnoldi method defined in [20] and [11] which implies that the
application of a preconditioner does not require additional evaluation of any matrix–vector
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Preconditioned GMRES Strategies 103

products. These recurrence formulas are truncated versions of the recurrence formulas for
the QR algorithm with explicit shifts. This preconditioner is built at each restart and is
applied to all the other preconditioners to give a composition effect.

The numerical results in these papers show the efficacy of these methods compared
with standard restarted GMRES. However, there are still difficulties in knowing how to
choosek and how many eigenvalues should be deflated at each restart. This paper addresses
these issues and attempts to develop a method which combines elements of the augmented
subspace solution and the automatic preconditioning approach. Thus, in Section 2 both
methods are described while in Section 3 a newmethod combining elements of both is
developed. Finally, in Section 4, numerical results are presented on five test problems:
two of which come from specific real-world applications while the other three problems
test the efficacy of deflation in terms of eigenvalue distribution and the conditioning of
the eigenvectors. The paper concludes with a summary of the work presented and future
directions.

2. Deflated GMRES

2.1. Restarted GMRES(m)

Let x0 an intial guess andr0 = b − A ∗ x0 with β = ‖r0‖. Let Vm be an orthonormal basis
of the Krylov subspaceKm(A, r0) such that

AVm = Vm+1Hm (2.1)

with Hm a Hessenberg matrix of order(m + 1) × m. Algorithm GMRES(m) computes
xm = x0 + Vmym such that

‖b − Axm‖ = min
y∈Rm

‖βe1 − Hmy‖ (2.2)

It is known that the convergence of GMRES is similar to conjugate gradients for nearly
normal systems in that small eigenvalues ofA can slow convergence, but for highly non-
normal systems the convergence behaviour is more complicated.

In the sequel, we assume that all eigenvalues ofA are non-defective, or, in other words,
that A is diagonalizable. Let|λ1| ≤ |λ2| ≤ . . . ≤ |λn| be the eigenvalues ofA. The
following result is well known (see, for example, [6], Theorem 3.3) but we give it here
along with a proof because it will help to prove the new results about our deflation methods.

Proposition 2.1. If

A = Z�Z−1 (2.3)

with � = diag(λ1, . . . , λn) then after a cycle of GMRES(m)

‖rm‖ ≤ ‖r0‖cond(Z) min
q∈50

m

max
1≤i≤n

|q(λi)|, rm = b − Axm (2.4)

where50
m is the set of polynomialsq of degree at mostm with q(0) = 1 andcond(Z) =

‖Z‖‖Z−1‖.
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Proof
Let r0 = ∑n

i=1 βizi = Zβ. Thenrm = q(A)r0 with q ∈ 50
m so that

rm =
n∑

i=1

βiq(λi)zi . (2.5)

It follows that ‖rm‖ ≤ ‖β‖ ‖Z‖ max1≤i≤n |q(λi)|, with β = (βi), i = 1, . . . , n, but
r0 = Zβ impliesβ = Z−1r0 and‖β‖ ≤ ‖Z−1‖ ‖r0‖.

This result, as well as various experiments, show that the smallest eigenvalues slow
down the convergence. As noted in the introduction, superlinear convergence is lost when
restarting GMRES(m) because the Ritz values are lost. On the other hand, the Arnoldi
process can be used to compute Ritz values and Ritz vectors and to estimate eigenvalues
and eigenvectors ofA.

The idea underlying deflation methods is to annihilate the components of the residualrm
on the eigenvectorszi corresponding to the smallest eigenvalues. The method to achieve
this goal is to estimate these eigenvectors at each restart and to use them at the next restart.
The solution developed in [12] is to augment the Krylov subspace with these estimated
eigenvectors whereas the solution chosen in [7] and [1] is to define a preconditioner. In the
first solution, the components of the residual are killed at the end of the cycle while the
preconditioner will kill them at each internal iteration.

2.2. Adding eigenvectors

We now describe the augmented subspace method due to [12] and experimented in [5]. The
method will be denoted MORGAN(m,k), wherem will be the dimension of the Krylov
subspace andk the maximal dimension of the invariant subspace so that the solution will
be approximated in an augmented subspace of dimensionm + l with l ≤ k. Let Vm be
an orthonormal basis ofKm(A, r0), U a basis of the approximated invariant subspace and
W = (Vm, U) the basis of the augmented subspace. GMRES requires an orthogonalization
of AW , which is obtained through a modified-Gram–Schmidt algorithm, so that

AW = V H (2.6)

whereV = (Vm+1, Vl) is orthogonal of sizen × (m + 1+ l) andH is a Hessenberg matrix
of size(m + 1 + l) × (m + l).

Algorithm MORGAN(m,k) computesxm = x0 + Wym such that

‖b − Axm‖ = min
y∈Rm+l

‖βe1 − Hy‖ . (2.7)

Algorithm: MORGAN(m,k)

ε is the tolerance for the residual norm;
convergence:= false;
choosex0;
U := {};
l := 0 ;
until convergencedo
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r0 = b − Ax0;
Arnoldi process applied toA to computeVm;
W = (Vm, U) ;
computeAU ;
orthogonalizeAW to getV ;
ym = argminy∈Rm+l‖βe1 − Hy‖;
xm := x0 + Wym;
if ‖b − Axm‖ < ε convergence := true;
else

x0 = xm;
choosel ≤ k;
estimatel eigenvectorsU of A;

endif
enddo

The choice ofl and the computation ofU are described later.

2.3. Preconditioning

We now describe the preconditioning approach due to [7] which is also developed in a
slightly different way in [1]. NowM will denote a preconditioning matrix which will be up-
dated at each restart andVm is an orthonormal basis of the Krylov subspaceKm(r0, AM−1).
We give here a general form of the algorithm, denoted DEFLATED-GMRES(m,k). At each
restart, the algorithm applies GMRES(m) to the matrixAM−1, so that

AM−1Vm = Vm+1Hm (2.8)

whereHm is a Hessenberg matrix of size(m + 1) × m.
Algorithm DEFLATED-GMRES(m,k) computesxm = x0 + M−1Vmym such that

‖b − Axm‖ = min
y∈Rm

‖βe1 − Hmy‖. (2.9)

The preconditionerM−1 is defined by

M−1 := In + U(|λn|T −1 − Il)U
T (2.10)

whereU is a set ofl ≤ k orthonormal vectors andT = UTAU . In practice,U will span an
approximate invariant subspace.

Algorithm: DEFLATED-GMRES(m,k)

ε is the tolerance for the residual norm;
convergence:= false;
choosex0;
M := In;
U := {};
l := 0;
until convergencedo
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r0 = b − Ax0;
Arnoldi process applied toAM−1 to computeVm;
ym = argminy∈Rm‖βe1 − Hmy‖;
xm := x0 + M−1Vmym;
if ‖b − Axm‖ < ε convergence := true;
else

x0 = xm;
choosel ≤ k;
computeU to estimate an invariant subspace ofA of sizel;
computeT := UTAU ;
M−1 := In + U(|λn|T −1 − Il)U

T;
endif

enddo

2.4. Estimating eigenvectors

Now we deal with the estimation ofU , assumingl has been chosen. A first solution to
estimate eigenvectors, used in [7], is to solve the oblique problem

V ∗
m(AM−1 − θI)Vmu = 0

which reduces to the ordinary eigenvalue problem

Hmu = θu, U = Vmu (2.11)

whereHm is the Hessenberg matrix obtained fromHm by removing the last row. The clas-
sical QR algorithm for Hessenberg matrices, implemented, for example, in the Lapack
library, computes all the eigenvalues and eigenvectors which are then sorted to keep thel

smallest. Some precaution is required to keep together complex conjugate eigenvalues.

A second solution, which is used in the augmented subspace approach [12,5], is to solve
the harmonic problem

(AW)∗(A − θI)Wu = 0

which reduces to the generalized eigenvalue problem

Ru = θ [QV ∗W ]u, U = Wu, (2.12)

with QH =
(

R

0

)
whereQ is a unitary matrix of dimension(m + 1+ l) × (m + 1) and

R is an upper triangular matrix of orderm + l and [QV ∗W ] is the matrix of orderm + l

composed of the firstm + l rows of QV ∗W . Here too, the generalized eigenproblem is
solved by a classical procedure, as implemented in the Lapack library, and the eigenvectors
are sorted with attention paid to complex conjugate eigenvalues.

In [5], it is found that the harmonic projection is more accurate than the oblique or the
orthogonal projections. This harmonic projection can also be used for the preconditioning
approach, as will be seen in Section 3.
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A third solution, as used in [1], is to estimate eigenvectors by the Implicitly Restarted
Arnoldi method, but this will not be studied here.

Now, various strategies have been implemented to choose the numberl of estimated
eigenvectors. In all cases,m andk are chosen in advance. In [12] and [5],l = k at each
restart. In [7],l increases from 0 tok with ‘freq’ vectors added at each restart. The same
strategy occurs in [1], but only when the vectors are accurate enough.

2.5. Theoretical convergence

Both augmented subspace and preconditioned GMRES aim at annihilating the components
of the residualrm in the eigenvectors corresponding to the smallest eigenvalues. In this part,
we assume that the invariant subspace span(U) is exact.

Let Z1 = (z1, z2, . . . , zk) and Z2 = (zk+1, zk+2, . . . , zn) be the eigenvectors ofA
corresponding to the eigenvaluesλ1, . . . , λn ordered by|λ1| ≤ . . . ≤ |λn|.

The augmented subspace approach leads to the following result, which generalizes the
result stated in [12].

Proposition 2.2. Let U = Z1. The residualrm computed with MORGAN(m,k) (and l=k)
satisfies

‖rm‖ ≤ ‖r0,2‖ min
q∈50

m

max
k+1≤i≤n

|q(λi)|cond(Z2) (2.13)

wherer0 = ∑n
i=1 βizi , r0,2 = ∑n

i=k+1 βizi and cond(Z2) = ‖Z2‖‖(Z∗
2Z2)

−1Z∗
2‖.

Proof
For MORGAN(m,k) we get, as shown in [12],

rm =
n∑

i=k+1

βiq(λi)zi

so that
‖rm‖ ≤ ‖β2‖‖Z2‖ max

k+1≤i≤n
|q(λi)|

with β2 = (βi), i = k + 1, . . . , n. Now, sincer0,2 = Z2β2, it follows that β2 =
(Z∗

2Z2)
−1Z∗

2r0,2 and‖β2‖ ≤ ‖(Z∗
2Z2)

−1Z∗
2‖‖r0,2‖ and the proof is complete.

The preconditioning approach leads to the following result, which generalizes the result
stated in [1].

Proposition 2.3. LetU an orthonormal basis ofspan(Z1) andM defined by (2.10). Then
eigenvalues ofAM−1 are |λn| with multiplicity k and λk+1, . . . , λn and span(U) =
span(Z1) is an invariant subspace ofAM−1 corresponding to the eigenvalue|λn|. Let
Y2 = (yk+1, yk+2, . . . , yn) be the eigenvectors ofAM−1 corresponding to the eigenvalues
λk+1, . . . , λn. The residualrm computed in one cycle of DEFLATED-GMRES(m,k) using
M satisfies

‖rm‖ ≤ min
q∈50

m

(q(|λn|)‖r0,1‖ + max
k+1≤i≤n

|q(λi)| ‖r0,2‖ cond(Y2)) (2.14)
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wherer0 = r0,1 + r0,2 with r0,1 = ∑k
i=1 βizi , r0,2 = ∑n

i=k+1 βiyi

andcond(Y2) = ‖Y2‖‖(Y ∗
2 Y2)

−1Y ∗
2 ‖.

Proof
As far as eigenvalues are concerned, we first recall here the proof found in [7] and also in
[1]. Let (U, X) be an orthonormal basis ofn. In this basis,A is similar to a matrix

Ã =
(

T Ã12

0 Ã22

)
(2.15)

whereT = UTAU andM−1 is similar to a matrix

M̃−1 =
( |λn|T −1 0

0 In−k

)
. (2.16)

The preconditioned matrixAM−1 is therefore similar in the basis(U, X) to the matrix

ÃM̃−1 =
( |λn|Ik Ã12

0 Ã22

)

so that its eigenvalues are|λn| and the eigenvalues of̃A22 , in other wordsλk+1, . . . , λn.
Since the projection ofAM−1 onto span(U) is |λn|Ik, the vectorsZ1 are eigenvectors of

AM−1.
After one cycle of DEFLATED-GMRES(m,k) we get

rm = q(AM−1)r0

The eigenvalues ofAM−1 are|λn| with multiplicity k andλk+1, . . . , λn. Hence we get

rm = q(|λn|)
k∑

i=1

βizi +
n∑

i=k+1

βiq(λi)yi

so that
‖rm‖ ≤ q(|λn|)‖r0,1‖ + ‖β2‖‖Y2‖ max

k+1≤i≤n
|q(λi)|

The result follows using the same proof as before.

The main difference between these convergence results is the factor cond(Z2) versus
the factor cond(Y2). It is not clear how to relate or to compare these two quantities. These
results assume that the invariant subspace span(U) is exact. However, an approximate set
of eigenvectors can still have a beneficial effect on convergence. The formula (2.13) can be
modified for approximate eigenvectors by the addition of a second term to the right-hand
side [12]. Experimental convergence results will depend more on the way the eigenvectors
are estimated than on the strategy to choosel ≤ k.

As in [1], this analysis ignores the effect of pseudo-pspectra on the convergence [13].
Clearly, this preconditioner will be particularly effective if there is a cluster of eigenvalues
that have a large deleterious influence on convergence.
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2.6. Memory requirements and complexity

Now let us examine memory requirements and arithmetic complexity. Both methods have the
same memory requirements, which are at least(m+1+k)vectors and preferably(m+1+2k)

vectors to compare with(m+1) vectors for restarted GMRES(m). Indeed, MORGAN(m,k)
requires the storage ofW and preferablyVk while DEFLATED-GMRES(m,k) requires
storage ofVm+1,U and preferablyAU .

Both methods also have roughly the same arithmetic complexity. Indeed, the bulk is
an Arnoldi process, completed either by an orthogonalization ofl vectors againstm other
vectors or by a preconditioning which amounts tom orthogonalizations of a vector against
l vectors. Also, both methods require estimations ofl eigenvectorsU and computation of
AU .

3. New deflation method

In [5], it appears to be more accurate to estimate eigenvectors by an harmonic projection than
by an oblique projection. Therefore, we implemented this method in our preconditioning
deflation. The previous code, as experimented in [7], is called DEFLGMRES(m,k) and the
resulting code here with an harmonic projection is called HARMONIC(m,k).

We thus solve the problem

(AM−1Vm)∗(A − θI)M−1Vmu = 0

which reduces to a similar generalized eigenvalue problem

Rmu = θ [QmV ∗
m+1M

−1Vm]u, U = M−1Vmu (3.1)

with QmH =
(

Rm

0

)
, whereQm is a unitary matrix of dimension(m + 1) × (m + 1)

andRm is an upper triangular matrix of orderm.
Numerical experiments show a significant improvement of HARMONIC(m,k) over

DEFLGMRES(m,k). However, for some test cases, MORGAN(m,k) performs much better.
This is due to the fact that it updates thek vectorsU at each restart so that they become more
and more accurate approximations of eigenvectors. On the other hand, DEFLGMRES(m,k)
stops estimating eigenvectors whenU is large enough so that it retains sometimes poor
approximations.

Therefore, we designed a new preconditioning deflation which continuously updates the
vectors inU . The new code is called DEFLATION(m,k). The strategy can be decomposed
into two steps: the first step is as in DEFLGMRES and HARMONIC, indeed our algorithm
still computes up tok vectors at a frequency ‘freq’; the second step updatesU at each restart
using the strategy described below.

Let U0 be an approximate invariant subspace of dimensionk used in the current cycle.
At the end of the cycle, the algorithm will compute ‘freq’ new vectors using the harmonic
projection (3.1). After orthogonalization, we obtain a new setU1 of k + freq vectors which
approximate an invariant subspace. The new deflation method updates them by solving a
new generalized eigenproblem and by sortingk approximate eigenvectors. More precisely,
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we solve the problem

(AU1)
∗(A − θI)U1u = 0

which is rewritten as the generalized eigenvalue problem

(AU1)
∗AU1u = θ(AU1)

∗U1u, U2 = U1u (3.2)

After solving this problem, we sort thek smallest eigenvalues out ofk + freq and or-
thogonalize the correspondingk vectors to getu2 andU2 = U1u2. This set of orthonormal
vectorsU2 is the new basis for an approximate invariant subspace of dimensionk which is
used to build the new preconditioner for the next cycle. We thus get the following algorithm.

Algorithm: DEFLATION(m,k)

ε is the tolerance for the residual norm;
convergence:= false;
choosex0;
M := In;
U := {};
l := 0;
until convergencedo

r0 = b − Ax0;
Arnoldi process applied toAM−1 to computeVm;
ym = arm argminy∈Rm‖βe1 − Hmy‖;
xm := x0 + M−1Vmym;
if ‖b − Axm‖ < ε convergence := true;
else

x0 = xm;
estimate freq new eigenvectorsU1 of A using (3.1) ;
U := orthog(U, U1);
l = l + freq;
if l > k do

computeU using (3.2) to approximate an invariant subspace ofA of sizek;
l = k;

endif ;
computeT := UTAU ;
M−1 := In + U(|λn|T −1 − Il)U

T;
endif

enddo

4. Numerical results

In this section numerical results will be presented that compare the methods described in
the previous sections on a variety of test problems and in both a workstation and parallel
computing environment. The first two classes of problems, as well as the last problem, can
be considered to be somewhat artificial but have been used, in modified form, by various

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 101–121 (1998)
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authors [12,7,1] in order to investigate convergence in terms of both the spectrum and
conditioning of the eigenvectors. On the other hand, Problems 3 and 4 come from real
applications.

The first class of problems allows for various sets of real eigenvalues which are spaced
in different arithmetic progressions in the different sets, while the second set of problems
gives rise to a mixture of real eigenvalues and eigenvalues arranged on the boundary of
some circle in the complex plane.

The third linear system arises when solving a biharmonic problem on a square when a B-
spline (cubic basis) is used for an orthogonal collocation discretization. Some prepivoting is
used for several of the last rows which correspond to the boundary points [21]. Biharmonic
equations arise in a number of areas, such as the modelling of thin plate mechanics and in
Stokes flow. Hermitic bicubic orthogonal collocation discretizations produce fourth-order
accuracy for both uniform and non-uniform meshes. Previous techniques for solving these
problems include FFTs and a direct approach [21]—which uses the fact that the problem
can be represented as a coupled Poisson equation, that is, a two-block process.

The fourth problem comes from an Australian application which deals with the fitting of
surfaces to various climate data gathered from the Australian continent (see [4] for more
details). In particular, rainfall data from up to 6 000 irregularly scattered weather stations is
processed every week in order to produce rainfall surfaces for the whole of Australia with
a view to evaluating the effects of drought on agricultural production [10]. A generalized
cross validation process takes place in which thin plate splines are fitted to the rainfall data.
This requires the solution of a sequence of linear systems of the form

(A + λI)y = b

whereλ > 0 is the surface-fitting parameter, which is minimized in the GCV process [8].
While this system of equations is always positive definite asλ approaches its minimum
value many of the eigenvalues are close to zero. The data set that is chosen represents 1 080
data points chosen across the state of Queensland.

The fifth problem is simply a bidiagonal matrix, in order to allow a variety of eigenvalues
along with a large matrix size.

Problem 1. Let S(n, n1, β) = (1, β) be a bidiagonal matrix of ordern with 1 on the
diagonal and 0 on the upper diagonal from elements 1 ton1 andβ from elementsn1 + 1
on, and also letD(n, p, r) be a diagonal matrix of ordern with values ranging fromp to
r in arithmetic progression. Let the system matrix of dimensionn then be given by

A = S(n, n1, β)

(
D(n2, p, r) 0

0 D(n − n2, p1, r1)

)
S(n, n1, β)−1

and the right-hand side be the unit vector. By choosingn, n1, n2, p, p1, r, r1 in different
ways we are able to investigate the effect of various types of clustering on our adaptive
algorithms. Furthermore, by allowingβ to vary we are also able to investigate the effect
of conditioning on the convergence of the algorithms.

The results of Problem 1 for DEFLGMRES, MORGAN, HARMONIC and our new
deflation method DEFLATION are given in Figures 1–5. In what follows the notation
DEFLATION(16,4), for example, will denote that a restart of 16 is used with at most four
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112 K. Burrage and J. Erhel

0 50 100 150 200 250 300 350 400
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

matvec

re
s
id

u
a

l

n=100; beta=0.9; D(0.01,0.1,10),D(11,100,90)

DEFLATION(16,4)

DEFLGMRES(16,4)

MORGAN(16,4)

HARMONIC(16,4)

Figure 1. Comparison of implementation strategies
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Figure 2. Comparison of full and restarted GMRES with deflation
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Figure 3. Convergence rates for ill-conditioned systems
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Figure 5. Convergence rates for variably coupled severely ill-conditioned systems
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eigenvalues being deflated in total. In most cases the number of eigenvalues which can be
deflated at any given time is two unless stated otherwise. It is important to recall that in all
of these implementations eigenvalues are updated only after each restart.

Figure 1 essentially compares the performance of the original deflation implementation
(DEFLGMRES) with the same implementation in which an harmonic estimation of the
eigenvalues is used rather than the oblique projection (HARMONIC), with Morgan’s method
(MORGAN) and with the new deflation method (DEFLATION). For a problem of moderate
size (n = 100) in which there is a small cluster of small eigenvalues between 0.01 and 0.1
and then a uniform distribution of larger eigenvalues, it can be seen that DEFLATION is
superior to all the other methods with an improvement in efficiency of about a factor of two
over the original implementation described in [7]. These results are placed in context with
Full GMRES and with restarted GMRES(20) which has approximately the same memory
requirements as DEFLATION(16,4) in Figure 2.

In Figure 3 the conditioning of the problem is made considerably worse by changing
the value ofβ from 0.9 to 1.1, although the eigenvalue distribution remains the same.
Figure 3 shows the effect of this ill-conditioning in that restarted GMRES with a bigger
restart now fails to converge. In fact, DEFLATION(16,4) and MORGAN(16,4) also failed
to converge and more eigenvalues (10) had to be deflated in order to obtain convergence. In
all cases, including full GMRES, convergence was initially very slow, with DEFLATION
being smoother in its convergence than MORGAN. This property of initial stalling was
noticed for all methods when the system matrix was severely ill-conditioned.

Finally for Problem 1, Figure 4 shows the effects of having two subsystems in which
there is a strong coupling between the two subsystems and for which the overall matrix
is very ill-conditioned (β = 1.2). These results indicate that it is important to deflate at
least all of the eigenvalues in the first block otherwise the ill-conditioning will cause the
convergence to stall.

These effects are emphasized in Figure 5, where the same eigenvalue distribution is
maintained butβ is increased to 1.3, so that cond(A) is about 1022 and cond(S) is about
1012. Some very interesting effects are observed here in that even for full GMRES it is
not possible to gain a stable residue of less than approximately 10−5. Another interesting
effect is the peaks observed in convergence curves. With unpreconditioned GMRES(m),
convergence either stalls for aboutm ≤ 60 or the residuals grow in an unbounded fashion
for largerm, as can be seen in Figure 6 form = 70. With DEFLATION(10,4), residuals
first stall then decrease rapidly but with DEFLATION(20,4) residuals show unusual peaks.

In order to explain this behaviour, we computed, after each cycle the condition number
cond(Hm) of the Hessenberg matrixHm defined by (2.1) for GMRES(m) and by (2.8) for
DEFLATION(k,m). We also measured the loss or orthogonality in the Krylov basis with
the residual‖V ∗

mVm −Im‖. Figures 7 and 8 show three curves respectively, for GMRES(70)
and DEFLATION(20,4) : the residual‖rm‖ = ‖b − Axm‖ after each cycle, the condition
number cond(Hm) and the orthogonality residual‖V ∗

mVm − Im‖. Clearly, the quantities
cond(Hm) and‖V ∗

mVm − Im‖ are closely related. Indeed, the relationAVm = Vm+1Hm

implies cond(AVm) = cond(Hm); since the Arnoldi method is nothing other than modified-
Gram–Schmidt applied to the system(v1, AVm), numerical difficulties will likely happen
whenAVm is ill-conditioned, as proved, for example, in [2]. Therefore, an ill-conditioned
Hessenberg matrix will lead to a loss of orthogonality inVm.

The residual‖rm‖ in GMRES(70) is also strongly coupled with the two other quantities.
It is not so clear for the residual‖rm‖ in DEFLATION(20,4), although there is some evident
relation. So, we conclude from this study that in this case a severely ill-conditioned matrix
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Figure 9. Convergence rates for Problem 2

A or AM−1 implies, in most cases, an ill-conditioned Hessenberg matrix which in turn has
two numerical effects: a loss of orthogonality inVm and an oscillating residual‖rm‖.

Problem 2. The second class of problems is one chosen from [1], with a slight modifica-
tion. In this caseA is given by

A = S(n, n1, β)

(
An2 0
0 Bn−n2

)
S(n, n1, β)−1

whereAn is a circulant matrix of dimensionn with first row (c, 0, . . . , 0, d) while Bn

is a diagonal matrix of sizen with uniformly distributed random numbers in[a, b]. The
eigenvalues ofAn lie on a circle of centrec and radiusd.

Convergence results for full GMRES, restarted GMRES, MORGAN and DEFLATION
are given for Problem 2 in Figures 9 and 10. For this problem the smallest eigenvalues in
magnitude are distributed evenly around a circle (in this case 30 eigenvalues in a circle of
radius two and centre−3/2). Forn = 100 andβ = 0.9, Figure 9 shows that all methods
stall at a residue of about 10−5 with full GMRES only converging on the last iteration.
Thus, in this case restarted GMRES will prove completely inadequate while DEFLATION
is again superior to MORGAN. Other numerical tests not presented here show that, in
this case, deflating about half of the eigenvalues scattered around the circle gave close to
optimal performance while deflating four eigenvalues at a time at each restart was superior
to deflating two at a time.
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Figure 10. Convergence rates with severe ill-conditioning

Figure 10 shows that for the same eigenvalue distribution but with much greater ill-
conditioning, MORGAN fails for almost all possible choices of parameters for the restart
and the eigenvalue deflation, while DEFLATION is still robust. The difficulties associated
with severe ill-conditioning are clearly illustrated in Figure 10 when comparing DEFLA-
TION(25,12,2) with theβ values of 0.9 and 1.1. Here the notation DEFLATION(25,12,2,1.1)
means that deflation is used with a restart of 25, with 12 eigenvalues being deflated, two at
a time, on a problem withβ = 1.1.

Problem 3. Problem 3 is included to show the performance of the deflation approach on an
important application coming from the numerical solution of partial differential equations
using collocation techniques. In this case the size of the problem is 2 048 and the system of
equations is dense. An initial diagonal row scaling was applied as a preconditioner. The
tests were performed on Morgan’s method running on one, two and four processors of an
SGI Power Challenge at the University of Queensland and the times are given in seconds.
In each case the residual in the two-norm was about10−4.

The results in Table 1 show a number of important points.

• In terms of time MORGAN(26,4) is at least twice as fast as GMRES(30) for the same
memory requirements.

• Full GMRES is not much faster than MORGAN.
• There are good parallel efficiencies between one and four processors (approximately

75%) on a shared memory parallel computer. This is due to the fact that the problem is
dense and reasonably large. For sparse problems the efficiencies would be smaller.
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Table 1. Results comparing MORGAN, full and restarted GMRES

performance FULL GMRES MORGAN(26,4) GMRES(30)

Iterations 57 77 1487
One processor 17.33 21.73 45.111
Two processors 9.02 11.41 —
Four processors 6.06 7.33 —
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Figure 11. Convergence rates for Problem 5

Problem 4. In this section some negative results are reported for the surface-fitting prob-
lem whenλ is small. In this case the system matrix has a large number of eigenvalues clus-
tered near zero and only a few relatively large eigenvalues. Thus, the deflating of a small
number of eigenvalues gives little advantage over restarted GMRES. However, in this GCV
application a number of systems of equations have to be solved which are just updated by a
constant diagonal termλ. By preserving the eigenvectors across the systems, as shown in
[23] and [18], deflation can work very impressively across systems of equations if special
structures can be exploited (in this case the eigenvectors remain the same from system to
system).

Problem 5. Problem 3 gives an example where MORGAN(k,m) is efficient for a large
linear system. Finally, we report results on a large matrix in order to show the efficacy of
DEFLATION(k,m) when the size of the Krylov subspace is much smaller than the matrix
order. LetA = (α, d) be a bidiagonal matrix of ordern with α = 0.1 on the subdiagonal
and the vectord on the main diagonal. Figure 11 shows convergence curves of the methods
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GMRES(40) and DEFLATION(32,4) forn = 5 000andd = (−1, −2, 1 : 4 998 : 1). For
the same memory requirements, our deflation method considerably improves the classical
restarted GMRES.

5. Conclusions

This paper has built on the previous work of [7] and [12] to develop an automatic pre-
conditioning approach for restarted GMRES in which new eigenvalues are deflated and
progressively refined in a preconditioner which is updated at each restart. This modifica-
tion leads to considerable improvements over both the augmented subspace method and the
original deflating preconditioner. Furthermore, this approach seems to be more robust than
either of these two approaches in the face of extreme ill-conditioning of the eigenvectors.
Difficulties still remain in knowing how to choose a priori the size of the restart, the total
number of eigenvalues to be deflated and how many are deflated at each restart. However,
the numerical results presented here show that some general strategies can be applied if a
priori information is known about the spectrum and the conditioning of the eigenvectors.
In any case, the deflation approach appears to be robust against possible poor choices of
these parameters.

It is intended, however, to automate this choice further and to consider how this approach
can be used in software where sequences of linear systems have to be solved from step to step
(as in ordinary differential codes) in which much of the system information (eigenvectors,
for example) is preserved form step to step.
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