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1. Introduction 

This paper presents a knowledge-based system devoted to the LAPACK library [ l] to help the 
user in selecting a numerical procedure and in validating a result. Many front-end systems such as 
GLIMPSE and KASTLE developed by NAG [9,10] help the user in selecting the right routine of a 
scientific library. Our system is also concerned with the numerical quality of the result. It can either 
select a routine or check the validity of a given routine to solve a user’s problem. The accuracy of 
the result depends upon the error on the data, the numerical stability and the condition number. Our 
goal is to provide an error estimation thanks to the knowledge of these three components. It should 
be noted that, contrarily to other expert systems such as [ 111, we do not intend to generate code, 
only to advise the user. All the knowledge base is modelized by objects, with no explicit inference 
rules. This approach is well-suited to describe a scientific expertise and allows to extend or modify 
easily the base. 

We have developed a first prototype at IRISA, to demonstrate the feasibility of our goals. We do 
not presently deal with the complete LAPACK library but with a subset of it which aims at solving 
eigenvalue problems and which contains about hundred routines. We claim however that this domain 
is large and complex enough to show the capabilities of our system. 

2. Numerical research 

The user’s problem is the following: Given a square complex matrix A, find some A E C and/or 
x E C” such that: 

A is an eigenvalue of A (i.e. det( A - M) = 0) and x is the associated eigenvector (i.e. Ax = Ax). 
We only consider the matrices treated in Lapack, i.e. small order matrices (order less than 5000), 

and with dense, packed or band storage. The case of large sparse matrices is not present in Lapack. 
We don’t discuss here the generalized eigenvalue problem. Of course, it could be an extension of the 
knowledge base. 

Our expert system executes the following different tasks: 
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l Find the sequence of routines to use for solving the given eigenvalue problem. 
l Check the validity of a sequence of routines for solving a given eigenvalue problem. 
l Provide the numerical quality of the result. 
We begin by studying the algorithmic resolution of the eigenvalue problem [5,8,12,16]. For each 

step we give the number of associated Lapack’s routines. The choice of the routine for each step 
depends on certain properties of the data (computation in simple or double precision, real or complex 
matrix, symmetric or not). 

To compute the eigenvalues, we first reduce the input matrix (by Householder method) in a matrix 
which has more null elements and the same eigenvalues, in order to reduce the time of computation 
of the eigenvalues. One among 16 routines must be selected for this reduction. Next, we compute 
the eigenvalues (by a QR-type method or by bisections) of this reduced matrix, which is either an 
Hessenberg matrix (nonsymmetric input matrix) or a real tridiagonal symmetric matrix (symmetric or 
hermitian input matrix). The choice also depends on the number of eigenvalues wanted. To compute 
the eigenvectors (by back-substitution or by inverse iterations), we also have to know the number of 
eigenvectors wanted and sometimes, the method used to compute the eigenvalues. Eigenvalues and 
eigenvectors computations concern respectively 12 and 16 routines. 

We give below a classification of the user’s eigenproblem and the names of the routines solving 
them. For eigenvalues and eigenvectors computations, more than one routine may be available, that 
is to say the computation can be done by one of several routines. We give first the best one 
(which provides the best tradeoff between accuracy and complexity) then other available routines 
between brackets (these routines have to be considered for the validation of routines). For the matrix 
transformation there is only one available routine. 

We put an “x” as first letter of the routine names, because it only depends on the type of computation 
(simple or double precision) and on the storage of the matrix elements (real or complex storage). 
Indeed, this letter is a “S” for simple real precision computation, a “D” for double real precision 
computation, a “c” for simple complex precision computation and a “Z” for double complex precision 

computation. 
Here are the different steps to solve the eigenproblem along with the names of Lapack’s routines 

implementing those steps. 
( 1) Matrix transformation: 

(a) Nonsymmetric matrix: xGEHRD. 
(b) Symmetric matrix: 

(i) Dense storage: xSYTRD (real), xHETRD (complex). 
(ii) Packed storage: xSPTRD (real), xHPTRD (complex). 

(iii) Band storage: xSBTRD (real), xHBTRD (complex). 
(2) Eigenvalues computation: 

(a) Hessenberg matrix: xHSEQR. 
(b) Real tridiagonal symmetric matrix: 

(i) Less than 25%: xSTEBZ [xSTERF,xSTEQRl 
(ii) More than 25% 

A. More than 25% of the eigenvectors are desired: xSTEQR [xSTEBZ, xSl”EW 
B. Less than 25% of the eigenvectors are desired: xSTERF [xSTEBZ, xSTEQR1 

(3) Eigenvectors computation: 
(a) Hessenberg matrix 
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(i) Less than 25%: xHSEIN [ xTREVC if the matrix is on Schur form] 
(ii) More than 25%: xTREVC [xHSEIN] 

(b) Real tridiagonal symmetric matrix 
(i) Less than 25%: xSTEIN [ xSTEQR if the eigenvalues were computed with itself] 

(ii) More than 25% 
A. Eigenvalues computed with xSTEBZ: xSTEIN 
B. Eigenvalues computed with xSTEQR: xSTEQR [xSTEIN] 

For standard eigenvalue problems, we can also use driver or expert routines calling directly a 
sequence of these previous routines. In the symmetric case, we have 28 routines (14 to compute a 
few eigenvalues and, if required, its associated eigenvectors and 14 routines to compute all of them) 
and 16 routines in the nonsymmetric case (8 with condition number computation and 8 without). 
We present here these standard eigenproblems and the names of the routines which solve them. As 
before, we also give between brackets the name of the available routine which is not the best one. 

( 1) Symmetric matrix 
(a) Computation of all the eigenvalues and, if required, all the eigenvectors 

(i) Real dense storage: xSYEV [ xSYEVX] 
(ii) Complex dense storage: xHEEV [xHEEVX] 

(iii) Real packed storage: xSPEV [ xSPEVX] 
(iv) Complex packed storage: xHPEV [ xHPEVX] 
(v) Real band storage: xSBEV [ xSBEVX] 

(vi) Complex band storage: xHBEV [xHBEVX] 
(vii) Real tridiagonal storage: xSTEV [xSTEVX] 

(b) Computation of a few eigenvalues and, if required, of the associated eigenvectors. 
(i) Real dense storage: xSYEVX [ xSYEV] 

(ii) Complex dense storage: xHEEVX [ xHEEV] 
(iii) Real packed storage: xSPEVX [xSPEV] 
(iv) Complex packed storage: xHPEVX [xHPEV] 
(v) Real band storage: xSBEVX [ xSBEV] 

(vi) Complex band storage: xHBEVX [ xHBEV] 
(vii) Real tridiagonal storage: xSTEVX [xSTEV] 

(2) Nonsymmetric matrix 
(a) Computation of all the eigenvalues and, if required, all the eigenvectors: 

(i) Without computation of condition number: xGEEV. 
(ii) With computation of condition number: xGEEVX. 

(b) Computation of all the eigenvalues and, if required, all the Schur vectors: 
(i) Without computation of condition number: xGEES. 

(ii) With computation of condition number: xGEESX. 
We want now to get an estimation of the error in the result. This error depends on the condition 

number of the eigenproblem, on the stability of the algorithm and on the error in the initial data. 
The condition number of an eigenproblem consists in a measure of the variation of the eigenvalues 
and eigenvectors through a matrix perturbation AA [ 31. The idea of backward analysis [ 4,7,15] is to 
prove that the approximate solution is the exact solution of a perturbed matrix. Let B be the backward 
error, it is a measure of the distance between the perturbed matrix x and the accurate one A. We 
have BE = )1x- AJJ 2, where E is the computer precision. 
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Consider the computation of A = {Ai};=i, and let 3 be the mean of A (x = k * CFZ, Ai). We have 

IAl\ < CA* (BE+ ]]AA112), where Ah is the error done on the computation of A and C, is the condition 
number of the computation of A. In the same way, we have &,,,( M, M’) 2 C0 + (BE + ]]AA]12) where 
emax (M, M’) is the maximum angle between the exact invariant subspace M and the computed one 
M' and CB is the condition number of the computation of M. 

The numbers CA and CB are sometimes easy to know. If the matrix is symmetric, it is well known 
that CA = 1 and CB = i where 6 = dist( sp( A) - A, A) ; sp( A) designs the A-spectrum. If the matrix 
is nonsymmetric and if we used an expert routine to compute the eigenvalues and/or eigenvectors, 
the condition numbers are known as result of that routine [2]. So in this case we do not have to 
compute these condition numbers again. 

The next section is devoted to the translation of the mathematical expertise into the knowledge 
base. 

3. Description of the knowledge base 

Our system is based on the development shell SHIRKA [ 141, written in Le-Lisp, which provides 
means to describe knowledge bases and to apply a classification mechanism upon them. All the 
knowledge is contained into the objects which are organized into hierarchies. Multiple inheritance 
allows to describe complex objects and is well suited to mathematical entities. The inference rules 
are implicitly embedded into the knowledge base thanks to the organisation in hierarchies and to 
default values or attached procedures. No explicit rule such that “if-then-else” has to be written. The 
basic inference mechanism is the classification process which can take into account a given subset of 
attributes and which can infer values of another given subset of attributes. The process can explain 
any result when wanted. SHIRKA is easy to use thanks to a user interface which visualizes the 
objects and the actions taken on them. 

So, we define an object to find out the first letter of the name of the routine. For this, we only 
have to know the computer precision used and the storage type of matrix (real or complex). 

To find the rest of the name we have to know if the matrix is symmetric (or hermitian: we assume 
that hermitian = symmetric + complex) or not, and the storage of the matrix (dense, packed, band 
or real tridiagonal) . We also have to know the number of eigenvalues and eigenvectors wanted (zero, 
a few (less than 25%) or a lot (more than 25%) ). So we choose to create two objects: one for 
the matrix with its characteristics (real ?, symmetric ?, storage ?) and the second to define the 
eigenproblem (number of eigenvalues and eigenvectors wanted). 

To solve an eigenproblem, the user can either select a driver routine or a sequence of routines 
corresponding to the three mathematical steps described above, namely matrix transformation, eigen- 
values and eigenvectors computations. Specific objects are devoted to drivers and to each of these 
steps and can be used either to select or to validate a routine. Typically, standard eigenproblems 
refer to the driver routine object whereas others require a sequence among three objects. We chose 
to create an object for each of these three steps of the mathematical resolution to get more flexibility 
and to include easily particular cases. For instance, if no eigenvectors are to be computed we only 
need the two first objects. On the contrary, we only need the last one when only eigenvectors are 
desired (if the user already knows the eigenvalues) . 
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Moreover, particular matrices may occur, such as Hessenberg matrices which of course do not 
require the transformation step so that only the last two objects are concerned. 

The method to compute the eigenvectors depends on the final matrix after transformation and 
eigenvalue computations. The three objects for each step contain an attribute to describe the form 
of the matrix (tridiagonal, hessenberg, etc.). This attribute may vary after each step and is used by 
the system to take into account particular cases and to select the right third step for eigenvector 
computation. By this way, immediate answers such as with diagonal matrices can be given quickly. 

The validation step must first check if the user’s routine belongs effectively to Lapack. We want 
to avoid nonexistent names with false combinations of the first letter and the generic name, such as 
SHEEV where S means real single precision and HEEV exists only for complex matrices. Therefore 
we create an object providing a list of Lapack routines where the user must choose the routines to 
validate. 

To give an estimation of the quality of the result, we have a first object which checks if we 
already know the condition number or if it has to be computed. In this case it provides the name of 
the routine which computes this number. Then we have a second object which estimates the error 
(C * (BE + AA)) and provides it to the user. We have finally a last object which provides the user 
advises to improve the result, if required. 

All the objects contained in the knowledge base are pictured below ; they are divided into three 
groups corresponding to their use: 
l Description of the problem: the matrix (object Matrice), the requirements (number of eigenvalues 

and eigenvectors) (object Pb), the environment (precision) (object Type). 
l Procedures: the driver routine (object Driver-routine), the procedure to transform the matrix (object 

Transfo-matrice) , the procedure to compute the eigenvalues (object UC-v&prop) , the procedure 
to compute the eigenvectors (object C&c-vect-prop), the routines names to check if the user’s 
routines belong to Lapack (object Nom-routines). 

l Validation of the result: the routine to estimate the condition number (object C&c-co&), the 
formula to estimate the error (object Precision), the error analysis (object Quulite-resultat) . 

4. Use of the system 

For both selection and validation of routine, the user begins to describe the context defined by a 
matrix, an eigenproblem and the type of the computation. 

To select a routine, the system infers the procedure name thanks to a classification on a restricted 
set of the attributes. First, it finds the first letter of the routine name by classification with inference of 
the Type object. Then it classifies with inference the Driver-routine object. If it’s a success the system 
stops. If not, it classifies successively the objects Trunsfo-matrice, CuZc-vul-prop, CaZc-vect-prop to 
find the sequence of routines names. 
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-I mat-trickreel-syn 

Object Matrice. 

pb I- 
pb-va 1 p pb-bcp-valp 

- pb-pas-un-pewvalp 

- pb-pas-bcp-valp 

pb-un-pewvalp 

Object Pb. 

typc~ccl-dolrblc-precision 

type-reel-sinple-precision 

type-cmplcxc 

typpcOmplexe-5inple-prp-ecisi 

typeconplexedouble-p-ecisi 

Object Type. 
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driver-routine F 
CalC-kp-ualpnot-tclblra=-hrrritim 

crlc-urpru-ualC_*~t-bandc-rccl-+yu 

c~lc-urrpcu-valC_*rt-dmsc-r.cl-+ll* 

Y crlc-un-cru-url,lrt-tablrau-rcrl-sym 

driver-un-peu-val 
crlc-urpcu-ual)-rrt-dmrc-hrrnitlm 

Iu- talc-ur?w-~l)_*rt-trid-racl-syl 

Ldriucr-n-nll-c.lc-cond-crlc-.cct-prop 

Object Driver-routine. 

tronrfo-mat-non-sym 

bansfo-mat-bande-reel-syn 

transfo-mat-dens-reel-sym 

I 
- tramfo-nat-tableau-ree1-E~ 

- transf~mat-dense-hermitien 

transfo-mat-hermitien - tronsfo-mat-toblecru-hernitien 

- transfo-mat-bande-hermition 

Object Transfo-matrice. 

Object Calc-val-prop. 
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colt-vactp-mot-hewnberg 

Object Calc-vect-prop. 

I nom-routines c 

Object Nom-routines. 
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talc-cmd-ralp-rinplc 

talc-cmd-volp-multiple 

-i 
ca1c-and-rrctp colt-cond-rcctp-rrat-non-.y 

colt-cond-pa-d.ja-fait 

talc-cond-ralp-mat-non-Sum 

-i 
talc-cond-rolp 

talc-cond-vectp-vat-ryn 

Object Cult-cond. 

Object Precision. 

resultat-bon 

Object Qualite-resultat. 
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On the other hand, to check a routine, the user provides also the procedure name. For this, the 
system classifies with inference the object Nom-routines to propose a list of existing routine names. 
The user has so to choose a name in the list. Then the system detects if the method is suitable or not 
after classification of those same four objects without inference on all the attributes. By comparing 
with its own selection, the system can also find if the method is the best one. 

To validate a result, the user provides an estimation of the error on the data which may come 
from a previous estimation by the system and of the condition number which can be computed by 
the routine proposed by the system (classification with inference of the object C&c-cond) . Then the 
system gives an error estimation (classification with inference of the object Precision). The analysis 
error is done by classification with inference of the object Qualite-resultat. 

5. Conclusion 

Knowledge-based systems are quite useful for helping the user of scientific libraries. We developed 
a prototype dealing with a subset of the Lapack library and providing help in selecting a routine, 
validating a user’s routine and estimating the accuracy of the result. Our system is constructed upon a 
development-shell by defining objects corresponding to mathematical entities and by using a powerful 
classification mechanism on the hierarchies. This knowledge-base can be easily extended to the whole 
LAPACK library thanks to this approach. Currently, our system uses a general interface which is not 
well-suited for scientific computing. We plan to develop a specific interface to hide all the internal 
representations and to provide explanations directly in a scientific language. 
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