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Abstract: The spectral portrait of a matrix is the picture of its �-spectra
for � 2 [�1; �2], where an �-spectrum of A is the union of all the eigenvalues of
all the matrices A+ � with k�k2 � � kAk2. The spectral portrait is useful
to study the stability of various problems, for example, or, as we illustrate
in this paper, to visualize the condition number of an eigenvalue. Some
methods to estimate the spectral portrait already exist, but only for small
matrices. We propose here a new algorithm for non hermitian large sparse
matrices.
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Portrait spectral pour

grande matrice creuse non hermitienne

R�esum�e : Le portrait spectral d'une matrice consiste �a dessiner ses �-
spectres pour � 2 [�1; �2], o�u un �-spectre de A est l'ensemble de toutes les
valeurs propres de toutes les matrices A+� o�u k�k2 � � kAk2. Le portrait
spectral est, par exemple, tr�es utile pour l'�etude de la stabilit�e de nombreux
probl�emes ou, comme on illustre dans ce rapport pour visualiser le condition-
nement de valeurs propres. Des m�ethodes de calcul de portraits spectraux
existent d�ej�a, mais seulement pour des petites matrices. On propose, ici, un
algorithme pour les matrices de grande taille.

Mots-cl�e : Portrait spectral, �-spectre, Conditionnement d'une valeur
propre, Methode de Davidson.
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1 Introduction

When computing some eigenvalues of a large square sparse matrix A 2
C
n�n , this matrix is quite often the result of a previous computation. Mo-

reover, the backward analysis [12] of algorithms for computing eigenvalues
aims at proving that these computed eigenvalues are, in fact, the exact one
of a nearby matrix. So, we have to consider that we compute some exact
eigenvalues of a matrix A + �, � 2 C

n�n such that k�k2 is small, and we
wish that these eigenvalues are not too far from the eigenvalues of A. In
other words, we want to bound the error on an eigenvalue by some constant
times the perturbation k�k2. This perturbation analysis leads to de�ne and
estimate, if it exists, the constant above, which is called the condition num-
ber of the eigenvalue [2].

In the hermitian case, it is well-known that the condition number of an
eigenvalue is equal to one, so that the error done on the computed eigenva-
lues is only of the order of k�k2. On the contrary, condition numbers can be
very large in the non hermitian case. In particular, the condition number of
defective eigenvalues is in�nite. Several condition number estimators have
been designed, see [1] for example. Another approach to study the eigenva-
lues of perturbed matrices is to draw the spectral portrait of the matrix. It
amounts to estimate all the eigenvalues of all the perturbed matrices A+�,
with k�k2 varying in a prescribed range. This spectral portrait provides a
lot of information and can be used in various problems [11], for example:

� To measure the distance to a singular matrix :

�ndminfkEk2 such that A +E is singularg:

� The stability of some problems occurs when the eigenvalues have ne-
gative real parts. Thanks to a spectral portrait, we can measure the
quantity

minfkEk2 such that the problem with A+ E is not stableg:

� Study the convergence of linear iterative solvers.

Some methods to estimate a spectral portrait already exist, but only
for small matrices [8, 11]. These methods are based on the Singular Value
Decomposition algorithm, see for example [7], but this algorithm cannot be
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applied to large matrices because of the expense of storage requirements.

This paper is organized as follows : in section 2 we recall the link bet-
ween the condition number and the spectral portrait, in sections 3,4 we
propose an algorithm for computing the spectral portrait of large matrices
based upon the computation of the smallest singular value by a modi�cation
of the Davidson's method [10], in section 5 we give some numerical examples.

2 Condition number and spectral portrait

2.1 Condition number of the eigenvalue problem

The condition number of an eigenvalue consists in a measure of the va-
riation of this eigenvalue through a matrix perturbation � [2].
If the eigenvalue � of A is not defective, the error j��j = j�0� �j, where �0

is an eigenvalue of A+�, can be bounded by j��j � C� k�k2, where C� is
the condition number of �.

2.2 Spectral portrait in the complex plane

The spectral portrait of a matrix is the picture of its �-spectra for
� 2 [�1; �2], where the �-spectrum of A, denoted by ��(A); is, for �xed �,
the union of all the eigenvalues of all the matrices A+� with k�k2 � � kAk2.

De�nition 1 Let � 2 C , then � 2 ��(A) if there exists a matrix � (k�k2 �
� kAk2) such that det(A+�� �I) = 0.

This de�nition 1 is equivalent to [8]:

De�nition 2

� 2 ��(A) if k(A� �I)�1k2 �
1

� kAk2
:

2.3 Relation between condition number and spectral por-
trait

The spectral portrait can be used to give an estimation of the condition
number of the eigenvalue problem. Indeed, for �xed �, ��(A) is the union of



3

patches around clusters of eigenvalues of A. For � = 0, �0(A) = �(A) : the
patches are reduced to points (the di�erent eigenvalues of A), and there is a
value of � for which ��(A) contains all the eigenvalues of A (� = 2 kAk2). So,
let � be a non defective eigenvalue ofA, then we can consider some � 2 ] 0; ��]
for which the cluster of eigenvalues of the patch �� around � is reduced to �.
For these values of �, we can estimate the condition number by :

C� �
diam(��)

� kAk2
with diam(��) = max

�1;�22��

j�1 � �2j

The computation of the spectral portrait consists in the computation of
�(�;A) = k(A� �I)�1k�12 for � describing a grid of the complex plane.

Remarks:

1. � 2 ��(A) for all � �
�(�;A)

kAk2
;

2. �(�;A) = k(A��I)�1k�12 = �min(A��I) where �min(A��I) is the
smallest singular value of A� �I .

3 Computation of �min(A�) where A� = (A� �I)

The following algorithm is an adaptation of the modi�ed Davidson's al-
gorithm which computes the smallest singular value � and the associated
right singular vector x of a large sparse matrix [10]. In fact, it computes the
smallest eigenvalue and the associated eigenvector of the hermitian matrix
AH
� A� (where AH

� is the conjugate transpose of A� ).

The idea behind this algorithm is to build gradually a dense hermitian
matrix Hk := V H

k AH
� A� Vk (steps 1-3) using projection techniques, then

we compute the smallest eigenpair of the projected matrix Hk (step 4). If
this eigenpair is a good approximation of the smallest eigenpair of AH

� A�

then we stop (step 6). Otherwise, we increase the subspace V (step 8) by
incorporating a new direction (step 7) to the previous subspace. This algo-
rithm is an algorithm with restart, this means that if the size of the basis V
is greater than a �xed size m, we restart the algorithm with the last Ritz
vector xk and the corresponding direction tk (step 8).
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Ck stands for a n � n preconditioning matrix whose choice is discus-
sed in [10]. Here, Ck is an approximation of (AH

� A�)
�1 (in fact, we realize

an incomplete LU decomposition of A�). MGS stands for Modi�ed Gram
Schmidt Procedure.

Algorithm 1 :

Choose m and tol

Choose an initial vector V1 2 C
n�1, such that kV1k2 = 1

for k = 1; ::: do

1. Compute the matrix Uk := A� Vk
2. Compute the matrix Wk := AH

� Uk

3. Compute the Rayleigh matrix Hk := V H
k Wk

4. Compute the smallest eigenpair (�2k ; yk) of Hk

5. Compute the Ritz vector xk := Vk yk
6. Compute the residual rk :=Wk yk � �2k xk

if krkk � tol then exit
7. Compute the new direction tk := Ck rk
8. if dim(Vk) � m� 1

then Vk+1 := [Vk;
tk

ktkk2
] where tk := (I � VkV

H
k ) tk

else Vk+1 :=MGS(xk; tk)
end if

end for

At convergence, �k and xk approximate the sought singular value and
singular vector.
An important characteristic of Algorithm 1 is that the matrix AH

� A� is not
required explicitly. We only need two subroutines that compute A� u and
AH
� v for given u and v. At step k, the basis Vk+1 is obtained from Vk by

incorporating the vector tk := Ck rk after orthonormalization. The subspace
spanned by Vk is not a Krylov subspace, and since the matrice Ck is not
diagonal, a linear system must be solved at each iteration. The hope is to
reach the convergence very quickly with a small value of m, thus rewarding
the extra cost involved by this system resolution. A detailed convergence
analysis of Algorithm 1 can be found in [3], and a simpli�ed convergence
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result for the smallest singular value in [10].

4 Computation of the spectral portrait

We cannot compute the spectral portrait of a matrix A "everywhere"
(more precisely in the disk centered at 0 of radius kAk2 ), because this com-
putation would be too expensive. So, we assume that we only want to know
the spectral portrait in the neighbourhood of a complex value, to check for
example if this value is a good approximation for an eigenvalue of A. So, we
de�ne a grid of the complex plane on which we want to draw the spectral
portrait. For this, we give two points of the complex plane, (x1; y1) (bottom
left point of the grid) and (x2; y2) (upper right one), and the number of
points in the two directions, nx and ny.

The spectral portrait computation consists merely in the computation
of �(�;A) = �min(A� �I) for each � = x+ iy of the grid.

Algorithm 2 :

1. � = x1 + i y1; stepx =
x2 � x1

nx � 1
; stepy =

y2 � y1

ny � 1

for j = 1; nx do

for k = 1; ny do

2. Compute �min(A� �I) (by Algorithm 1)

3. � = � + i stepy (next � in the current column)
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end for

4. � = �+ stepx (next column)

5. stepy = �stepy (we change the direction of going through the column)

end for

We see that we have to compute �min(A��I) for nearby �. For that rea-
son, it is interesting that, in Algorithm 1, we compute not only the smallest
singular value but also the associated vector. Indeed, in the �rst step of Algo-
rithm 1, we have to choose an initial basis V which is a vector. Now, during
the computation of �min(A��I) for one �, we increase the basis V by ad-
ding at each iteration a new direction, and the last one provides convergence.
So, if we take it as an initial vector for the computation of �min(A � �0I)
where �0 is near from �, then it should improve the convergence since closed
matrices have closed singular values and often closed singular vectors.

For this reason, we go through the grid as described in Algorithm 2 (steps
3,4,5). We sweep the grid column by column and alternatively from bottom
to top and from top to bottom. This means that we always deal with closed
values �.

Now we de�ne a color map by subdividing the range [minf�(�;A)g;
maxf�(�;A)g] into intervals of equal length and by assigning a color to
each interval. Therefore each point � of the grid will be a�ected to a color
according to the value �(�;A). Points of the same color correspond to an �-
spectrum.

In fact, it would be very interesting to �nd an e�ective method, to com-
pute only the �-spectrum for given �. Indeed, we can imagine, that the user
knows the error done on the computation of the matrix A, and with this
error he wants only to know the corresponding �-spectrum. To realize this,
we can follow the level lines [8].
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5 Examples of spectral portraits

5.1 Comparison between the algorithm based on SVD and

Algorithm 2

We would like to show here the validity of Algorithm 2. We choose as an
example a matrix with two ill-conditioned eigenvalues, hence with a large
�-spectrum even for small �. The spectral portraits computed on one hand
with the SVD algorithm and on the other hand with Algorithm 2, are de-
picted in Figures 1, 2 for the following triangular matrix A [6]:

A =

0
BBBBBBBBBB@

�2 25 0 0 0 0 0
0 �3 10 3 3 3 0
0 0 2 15 3 3 0
0 0 0 0 15 3 0
0 0 0 0 3 10 0
0 0 0 0 0 �2 25
0 0 0 0 0 0 �3

1
CCCCCCCCCCA
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Clearly, the eigenvalues are f�3;�2; 0; 2; 3g where �3 and �2 are ei-
genvalues of multiplicity 2, which are ill-conditioned as can be seen on the
spectral portrait.
Even in this di�cult case where very small singular values are attained at
points of the grid, Figures 1 and 2 are nearly the same.

The grid used in Figures 1, 2 and 3 is de�ned by:

(x1; y1) = (�4;�1); (x2; y2) = (4; 1); nx = ny = 100

Figure 1: using Singular Value Decomposition

To estimate the condition number C� of an eigenvalue � of a matrix A

thanks to a spectral portrait (see section 2.3), we consider the diameter of
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a patch �� around �, and the value of � corresponding to ��. To estimate �,
we look at the value corresponding to the color of �� in the legend : this is
the value of �Log10(�), so we infer the value of �. An estimation of C� is
then given by the ratio between the diameter of �� and �.

Figure 2: using Algorithm 2 with tol = 10�3 and m = 2

As we can see in Figure 2 computed with Algorithm 2, some values
are missing. These values correspond to very small singular values of the
order 10�7; 10�8, that is to say to small eigenvalues of AH

� A� of the or-
der 10�14; 10�16. It is well-known that k�2k � �2k � C�2krkk

2 (see [9] for
example). Hence the convergence threshold tol must be very small to esti-
mate small eigenvalues.



10

Figure 3: using Algorithm 2 with tol = 10�14 and m = 2

We plot in Figure 3 the same spectral portrait as in Figure 2 with tol =
10�14 instead of 10�3 and observe now only a few missing values, as expec-
ted. But the computation time is very high. For example, in the previous
example, with tol = 10�14 the computation time is at least �ve times grea-
ter than with tol = 10�3. So, we prefer to keep tol not too small, because
we have enough information with this value and the time of computation is
reduced.
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5.2 Spectral portrait of a few large matrices

We give here examples of spectral portraits for three non hermitian large
sparse matrices coming from the Harwell-Boeing set of test matrices [5]. We
can see on the three pictures that the eigenvalues are well conditioned, since
the values of �Log10(�) are not too high (see legend).

The following picture is the spectral portrait of the matrix HOR131.
It arises in the 
ow network problem. It is square of order 434 with 4710
nonzero elements. The grid used is de�ned by:

(x1; y1) = (�0:5;�0:2); (x2; y2) = (1; 0:2); nx = 1000; ny = 10

Figure 4: Matrix HOR131, tol = 10�3, m = 40

In Figure 4, we see that the eigenvalues are close from each other, but
well conditioned.
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The next picture was realized with the matrix PORES3. It arises from
reservoir simulation. It is square of order 532 and has 3474 nonzero elements.
The grid used is de�ned by:

(x1; y1) = (�6150;�3:5); (x2; y2) = (�6100; 35); nx = 50; ny = 100

Figure 5: Matrix PORES3, tol = 10�4, m = 40

In Figure 5, we can see that the condition number of the eigenvalue in
the top left corner is not so good than for the other eigenvalue, because the
patches around the �rst eigenvalue are bigger.
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6 Conclusion

We have proposed an algorithm for estimating the spectral portrait of
non hermitian large sparse matrices. The algorithm retains the advantage
of Davidson's procedure in that the matrix A (resp. AH) is accessed only
in the form of matrix vector products. We would like to conclude with the
following remarks :

� The algorithm we proposed can easily be parallelized. It involves sparse
matrix-vector products and BLAS primitives.

� The choice of the preconditioner (step 7 of Algorithm 1) is crucial for
the success of the method and it can be improved.

� We cannot easily reduce the number of grid points, because we must
be sure to capture all the eigenvalues.
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