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Abstract

Tll-conditioning as well as roundoff errors lead to inaccuracies in sci-
entific applications. Random perturbations in the initial data allows to
derive an error estimation. By varying these perturbations and under
some reasonable assumption on the rounding errors, we can find an
interval of perturbations where a log-linear least-squares fit gives an
estimation of the regularity and the condition number of the problem.
keywords : Regularity, Condition Number, Rounding Errors.

AMS Classification : 65g05, 65f35.

1 Introduction

Numerical simulation plays an important role to solve physical problems.
Though the accuracy of the results is crucial, this area has not yet received
a great attention and few tools exist to control or improve numerical quality.
Moreover existing tools are difficult to use.

The sensitivity to initial data depends on the problem and is measured by
its regularity and its condition number, using perturbation theory. Another
source of inaccuracy is the finite precision arithmetic. The sensitivity to
roundoff errors depends on the algorithm and is measured by forward or
backward analysis.

Deterministic methods have been designed to estimate the stability of
algorithms and problems [21, 20]. They are based on a computational graph
representing the program. This approach is interesting but seems to be very



expensive. Tools to use it easily have been recently designed [4], and are
currently experimented.

Another idea which is not new is to use probabilities or statistics [24].
The first approach is to simulate rounding errors by perturbing randomly
all the floating-point operations, to execute several times the program and
then to derive from the samples of results an estimation of the accuracy of
the result. The software CESTAC implements this technique [10]. Though
it can be useful in some practical cases, it is quite expensive because it re-
quires a new arithmetic, emulated by software in general. Moreover, it does
not provide an estimation of the problem condition number or the numeri-
cal stability. The first release of the software PRECISE [5] is similar but it
analyzes in addition the residuals associated to the problem. In general, the
backward analysis of an algorithm relies on such residuals. Therefore, this
technique allows to control the stability of the algorithm and then to esti-
mate the condition number of the problem. However, it remains expensive
since it requires also a new arithmetic.

These observations led to simulate only perturbations in the initial data
in order to make easier their implementation and use. However small per-
turbations (for example when few digits are perturbed) may lead to false
conclusions as quoted in [14]. Therefore, several sizes of perturbations must
be used to obtain meaningful estimations, increasing of course the cost of
execution. This is done in the software SCALP [13] and in the second re-
lease of PRECISE [7] along with a statistical analysis to obtain regularity
and condition number estimations. In PRECISE, a statistical analysis of
the residuals allows to study the backward stability of the algorithm.

This paper presents an extension of SCALP, in order to get a reliable esti-
mation of the regularity and the condition number. It relies on the following
observation. For small perturbations in the initial data, roundoff errors are
predominent, whereas for sufficiently large perturbations they become neg-
ligible. The perturbations must be kept small enough to allow perturbation
theory. This defines a domain of perturbations where the original method
SCALP can be applied and allows to derive sharp estimations of problem
conditioning and error estimation.

The experiments conducted so far deal with simple and well-known prob-
lems and algorithms, namely linear systems and quadratic equations. The
results are very promising, proving at least for these examples the capabili-
ties and usefulness of this approach. Results are given in the third section,
while the second section is devoted to the description of the experimental
tool.



2 Description of the methodology

Our objective is to get an estimation of the regularity and the condition
number of a problem. In linear algebra, numerous condition numbers esti-
mators have been designed [17], even for sparse matrices [3]. However, for
general problems, it may be hard to design an algorithm to compute such
estimations.

Our methodology uses random perturbations of the data and estimates
the induced errors in the solutions. But we can only measure the pertur-
bations in the computed solutions, including rounding errors. We vary the
perturbation in the initial data in order to study the variation in the com-
puted solution. In general, for very small data perturbations, the rounding
errors are the most important and the data perturbations are negligible,
whereas for sufficiently large perturbations the rounding errors become neg-
ligible. On the other hand, for sufficiently small data perturbations, the
perturbations in the solutions can be approximated by using the condition
number if the problem is regular.

2.1 Theoretical validation

We want to study the problem P in a neighborhood V' of some initial data
dg. The first requirement is to get a unique solution, which is continuous.

Definition 2.1 A problem is well-posed in V if it has a unique solution
noted x and if this solution is continuous in V.

The problem is solved by a direct algorithm. In other words, if the
algorithm is executed with infinite precision, it gives the exact solution of
the problem. To analyze the rounding errors, some assumptions on the
computer arithmetic must be made [25, 11, 15]. We give here a simplified
definition of numerical stability.

Definition 2.2 We assume that the problem to solve is well-posed. Let ¢ be
the machine precision and x(€) be the approzimate solution computed by an
algorithm. This algorithm is numerically stable in V if

Tim [Je(e) =2l = 0.

In most cases, this forward error can be obtained through a backward anal-
ysis [25].



We first prove that a stable algorithm allows to estimate the error in the
exact solution by the error in the computed solution.

Proposition 2.1 Let us assume that we solve a well-posed problem, non
constant in V' by an algorithm which is numerically stable. Let V, = {d €

V, [ld=do|| < a3}, Co = supgev, [|# = zoll, and Ca(€) = supgev, [[2(€) = zo(€)]]-
There exists Aq(€) such that

EgloAl(E) = 0, (1)
lim  sup |log(Ca(€)/Cy)| = 0. (2)

=>0 .5 A, ()
Proof. It is sufficient to prove the following :
VA; >0, lim sup |log(Cu(€)/Cy)] = 0.
—>0 4> A,
Writing :
z(e) —wole) = (x—w0) + (2(e)—2) — (2ol€) = 20),
we get, for any a small enough,
|Cale) = Cal < 2 sup [lz(e) — .
deV
Now, since Va,a > Ay, C, > Ca, > 0, we get :

sup |Cole)/Co—1] < 2/Ca, sup|lz(e) — =,
aZAl dEV

which involves the result wanted thanks to numerical stability. O

It should be noted that since very small sizes of perturbations cannot be
computed, the equality C,(€) = 0 always holds for small a.

Now we restrict the study to regular problems, according to the following
definition :

Definition 2.3 The problem is said ¢-reqular if there exist C and ¢ such
that C,, = C a? + o(a?). The constants C and q are called respectively
the condition number and the reqularity of the problem.



Example 2.1 A problem expressed by v = G(d) with G of class C* near d,
is one-reqular.

Practically, our approach consists in finding the largest interval [Aq, Ay]
such that, in the interval, C,(€) # 0 and log(C,(¢€)) ~ log(C,) ~ log(C' a?).
This interval depends both on the numerical stability and the problem sta-
bility. If the precision is not sufficient, it may not exist. The proposition 2.1
leads readily to the following statement :

Proposition 2.2 [f there exists an interval [aq(€), as(€)] such that
Va with aq(€) < a < az(e), log(Cule)) ~ log(Cs a?), (3)

if the problem is well-posed, non constant and if the algorithm is stable, then
the problem is reqular and estimations of the condition number C' and the
reqularity q are given respectively by Cs and q;. Moreover, the rounding
errors are bounded by C,,(€).

On the other hand, if the algorithm is not stable, an interval [Aq, Ag]
where log(C,(€)) =~ C5 a? but log(Cu(€)) # log(C,) may exist. Such an
example is provided in 2.5. In many cases, a residual can be directly related
to a backward analysis of the algorithm. Hence, a small computed residual
allows to conclude to small rounding errors. This is done in the method
PRECISE [7]. However, this residual must be computed precisely enough.
Moreover, such a residual may not be computable, for example in function
evaluation of the form z = F(y).

The method was described here for normwise perturbations and absolute
condition numbers. However, it applies readily to componentwise perturba-
tions or to relative condition numbers.

2.2 Use of random perturbations

We use the approach defined by [13] in the so-called SCALP methodology.
It follows a statistical approximation generally used in econometry. Here,
we apply a log-linear regression to C,(¢€) in the interval where log(Cy(¢€))
approximates log(C,) and where C,, is approximated by C' a4. This regres-
sion is simply the best least-squares fit to the experimental values SC,(¢€)
obtained as explained in the following. Before applying the regression, we
look for its domain of validity bounded by a; and a, and we validate the
fit a posteriori by a coefficient of significance which must be near 1.
We use relative componentwise data perturbation as in [7], defined by



Definition 2.4 Let n be the dimension of the input space. The data per-
turbation of size a is defined by

d;, = doﬂ' (1—|—62' a) 1=1---n,
where e; 1+ =1---n, are random variables taken on the unit circle.
We use the following approximation to the worst-case :

Definition 2.5 Let N be the number of samples generated for the data per-
turbation of size a. The approzimation to the error bound C,(€) is given

by

5Cale) = max_[lz;(€) = zo(e)]

=1,

In practice, we use a size « of perturbations defined by @ = 27™, such
that a > €, allowing a large range of perturbations. For each size of pertur-
bation, the software generates N computations where the data are randomly
perturbed, yielding a file of samples. It should be noted that this file must
be recorded in binary format in order to avoid rounding effects. Then we
first plot all these points (all the error estimations versus the size of pertur-
bations) in log-log scale in order to detect the domain of validity. Though
this step needs currently manual intervention, it could be automated.

We look for a domain € < oy < a < ay where SC,(¢) does not vanish
and log(SC,(€)) depends almost linearly on log(a), with possibly aq = €. In
this domain, provided that the rounding errors are negligible, we estimate
the condition number C' and the regularity ¢ by the regression

log(SCal€)) = log(C) + qlog(e)

Furthermore, the rounding errors ||zo(€) — zo||/||z0|| are bounded by
C af.



Matrix order Conditioning Numerical Difficulty
TRIDIAG(10) 10 Well-Cond. None

MATPIV(7) 7 Well-Cond. Pivoting in Gauss
DESCALED(10) 10 Artificial Tll-Cond. | Balancing in QR
HILBERT (5 or 10) | 5 or 10 | IlI-Cond. None

Table 1: Characteristics of the matrices tested

Matrix Algorithm Spectral Bauer-Skeel | Estimated | Estimated | Exact Estimated
Condition | Condition Condition | Regularity | Error Error
Number Number Number
HILBERT(5) Gauss 410° 810° 2 10° 1.1 910~ | 41072
single precision
HILBERT(5) Gauss 410° 8 10° 310° 1 310712 | 310710
double precision
HILBERT(10) Gauss 1012 210 1012 1 310~* | 1072
double precision
TRIDTAG(10) Gauss With 3 4 2 1 0. 41077
Pivoting
MATPIV(7) Gauss Without | 50 100 20 1 41072 | 1071
Pivoting
Gauss With 50 100 20 1 10— 5107°
Pivoting
DESCALED(10) | QR Without 1012 3 1 1 610~1 | 5107%
Balancing
QR With 1012 3 1 1 610~ | 31015
Balancing

Table 2: Estimations for linear systems.

2.3 Resolution of a linear system

The problem we deal with is to solve a dense non singular linear system.

Example 2.2 Given a matriz A of order n and a right-hand side b, find x
such that A x = b.

This problem has been thoroughly studied and main results can be found
for example in [22, 16]. The regularity is shown to be 1., and various con-
dition numbers have been proposed. The most current used is |[A7Y| ||A4]|.
However, it may in practice overestimate the actual error due to artifi-
cial ill-conditioning [22]. The Bauer-Skeel condition number, defined by
[[lA=1] |Alll, is a componentwise condition number independent of row scal-
ing ; it is used in practice for sparse matrices [3] and in the library LAPACK

[2].




estimation

error

estimation

error

MATRI X TRI DI AG(10)
T

H LBERT MATRIX OF CRDER N - GAUSS

0.1 10000 T T T T T
’EGEEGGDDDDDDDEEEEED'
I;}EFEFIZI'IZI'IZI'IZI'IZI'IZI'IZHEIEI'IEHEHEIEI'EI
0.01 F 1 1000 :
0.001 | 1 . 10 E
o il F
o o i
£ i /
0.0001 | 1 o 0F m 1
o .
- o
5 -
1e-05 | GAUSS wi thout PIVOTI NG 1 ¢ 1F 1
GAUSS wi th PIVOTING —+-- 2
QR wi thout BALANCING -&- o
QR Wi th BALANOING %
g
1e-06 4 0.1F o . ) ]
; NE5 - single precision <—
" NE10 - single precision -+--
d N=10 - doubl e precision -&-
1e-07 Il Il Il Il Il 0.01 ] Il Il Il Il Il Il Il
1e-07 1le-06 le-05 0.0001 0.001 0.01 0.1 le-14 le-12 le-10 1le-08 1e-06 0. 0001 0.01 1
data perturbations data perturbations
NATR X MATPI V( 7) NATRI X DESCALED( 10)
1 T 1 T T T
0.1f 1
7 6000900000007 %
A +*
/*(
0.01 1 .
o
g
0.001 1 u
o
4
- lel0f 1
0.0001 | 1 °
1e-05 GAUSS wi t hout Pl VOTI NG <— 1
GAUSS wi th PIVOTI NG +-- QR i thout BALANCI NG —
QR vi th BALANCING —+--
1e-06 Il Il Il Il Il Il Il Il Il Il Il Il
1e-07 le-06 le-05 0.0001 0.001 0.01 0.1 le-16  le-14  1le-12  1e-10  1e-08  1e-06  0.0001  0.01 1

data perturbations

Figure 1: Results on linear systems.
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We experiment with two algorithms to solve this linear system : Gaussian
elimination with or without pivoting and QR factorization with or without
balancing, described for example in [16].

To exhibit both numerical and problem instabilities, we use four different
matrices, the features of which are summarized in table 1. For all these
matrices, we have experimented the four algorithms in single and double
precision, but we report here only the main significant results. We perturb
both the right-hand side and the matrix, since perturbations of the right-
hand side only may lead to an effectively well-conditioned linear system
where the effective condition number is much smaller than the usual one
[6]. We use infinite norms for the error bounds which are estimated by
taking N = 10 samples. Data perturbations range from 10~7 to 1 in single
precision, and from 107'% to 1 in double precision. In order to compute
the exact error, we start from a known solution 2 and derive the right-hand
side b by simply computing exactly b = A 2 (using a symbolic package).
We have experimented with various right-hand sides, and report only those
with z = (1,1,...,1).

The table 2 contains for each matrix the spectral condition number,
the Bauer-Skeel condition number (computed using MATLAB), the exact
error (comparing the result with the exact solution which is given), and the
estimations of the regularity, the condition number and the error. In all
cases, the coefficient of significance of the regression was roughly equal to
1. (in general 0.99). For ill-conditioned matrices or unstable algorithms, we
first find the domain of validity to estimate the regularity and the condition
number. The figure 1 plots for each matrix the error estimations for varying
data perturbations, in a log-log scale. For all cases, the domain of validity
corresponds to a straight line of slope 1.

For the matrix TRIDIAG(10), the four algorithms are stable and the
problem is very well-conditioned. The condition number of Hilbert matrices
increases with the order of the matrix, so that the domain of validity disap-
pears for the order 10 in single precision. Double precision allows to push
further this barrier on the order, but higher orders cannot be handled. The
matrix M AT PIV(T7) requires pivoting in Gaussian elimination and we find
this numerical instability as shown by the horizontal line. The same phe-
nomenon is observed for QR factorization with and without balancing for
the matrix DESCALFED(10). Furthermore, this matrix exhibits the phe-
nomenon of artificial ill-conditioning, since the spectral condition number is
much larger than the Bauer-Skeel one. In all cases, our estimations of the
condition number are in good agreement with the theoretical Bauer-Skeel



Table 3: Description of Equations Tested

Equation | a b Regularity | Numerical Difficulty
1 0.3 0.02 |1 None

2 1.00001 10° | 1 1 Small root 21

3 0.2 0.01 | 0.5 None

Table 4: Results for second-order equations in double precision

FExact Fstimated | Estimated | Exact Estimated
Fquation | Condition | Condition | Regularity | Error on 2¢ | Error on x4

Number Number

5 5 1 0 41071

2 2 1 31077 71077

1.7 1.7 0.5 10—8 51078

FExact Fstimated | Estimated | Exact Estimated
Fquation | Condition | Condition | Regularity | Frror on x4 | Error on x4

Number Number

4 4 1 0 41071

1 1 1 0 810716
3 1.7 1.7 0.5 10—8 51078

condition number. They are slightly lower, may be because we do not apply
general enough perturbations on the matrix.
2.4 Example of a non linear equation

Here we take a simple example of a non linear problem with a rational
regularity different from 1. which consists in solving a quadratic equation.
This example has been studied thoroughly in [18, 15] for example.

Example 2.3 Given the reals a and b, find the set of complex solution of
the equation z°> — ax + b=0.

For sake of simplicity and without loss of generality, the coefficient of
2% is normalized. This problem has a regularity of 1 if it has two distinct

10
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Figure 2: Results on quadratic equations.
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solutions. On the other hand, it has a regularity of 0.5 if it has a double
solution :

Proposition 2.3 If 1 and x4 are two distinct solutions of the equation
22 — ax 4+ b =0, then the problem has a reqularity 1 with the relative
condition numbers Cy and Cy corresponding to each solution given by C; =
% 1 = 1,2. If  is a double solution of the same equation, then
the problem has a reqularity 0.5 with a relative condition number given by

C =+/3.

Proof. If the equation has two solutions, then 2z; — a # 0 and we can
write at the first order,

(22 —a)Azx — zAa + Ab = 0

Applying it to perturbations of the form Aa = a a and Ab = [ b we
obtain with |a| < nand |5 < 7n:

Azl /|z:] < Cim

which is reached for some « and 3.
If the equation has one solution, then we must develop the perturbations :
(Az)? — Aa Az — 2 Aa + Ab = 0,
(Az — Aa/2)? = 2 Aa — Ab + (Aa)?/4.
Applying it to perturbations of the form Aa = a a and Ab = a b we
obtain with |a| < nand |5 < 7n:
%:a:&\/a'z—l—Qa—ﬁz\/Qa—ﬁ for small 7,
|Az|/|z] < V3 /i

which is reached for some « and 3.

O

The simplest algorithm to solve this quadratic equation is to compute
the discriminant A and the solutions in the complex field by

A=a? — 4b, 2= (a—VA))2, 23 = (a+VA)/2,

here, VA means VA if A >0 and i |[A]if A < 0.

12



However, this algorithm is unstable to compute z if this root is very
small or in other words if |b| is small compared to |a|. In any case, a stable
algorithm to compute the two roots is given by

21 = 2b/(a+ sign(a) VA), 29 = (a+ sign(a) VA)/2.

We have experimented our methodology with three equations, defined
in table 3. We study separately the two roots 1 and 24 in order to detect
the numerical instability in the root z1. The results of our methodology are
plotted in figure 2 and summarized in table 4. The first case demonstrates
numerical stability and well-conditioned problem. In the second case, the
numerical instability in the root 2 is illustrated by an horizontal line, show-
ing that the perturbations could capture the rounding errors. In the third
case, we clearly obtain a regularity of 0.5 with a condition number roughly
equal to v/3. In all cases, our results are in good agreement with the theory.
If the roots are close, the curve shows a broken line with first a regularity
equal to 1. then a regularity equal to 0.5. As the roots become closer,
the line with a slope equal to 1. disappears and for very close roots, the
computed regularity is equal to 0.5 as if they were equal (the two curves
are identical). The same phenomenon is observed in [8] with the method
PRECISE.

2.5 Example of an unstable algorithm

Here we illustrate the case of an unstable algorithm where the rounding
errors are not captured by the perturbations by an example which was pro-
vided to us by W. Kahan [19] and which we slightly modified. The problem
consists in evaluating a very simple function :

Example 2.4 Giveny > 0, findx =y + 1.

However, the algorithm to compute z is rather sophisticated, as shown in
figure 3. Due to rounding errors, the computed expression Q(y)?/80 is not
null but very small such that the computed e(Q(y)?/80) is null for most
values of y. Consequently, the computed solution z is roughly equal to y+ >
for most cases instead of y + 1, so that the computed condition number is
false.

In that case, the absolute rounding errors are not negligible but are not
captured by the estimated error. The results for three different values of

13
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Figure 3: An example of rounding errors not captured by perturbations.
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y are plotted in figure 3. For y = 0.1 some computed results are roughly
equal to y 4+ y? whereas others are roughly equal to y so that the rounding
errors are captured and dominate in the estimated error. For y = 100 all
the computed results are equal to y + y? so that the rounding errors seem
small and the condition number estimation is false. We estimate in fact the
condition number of the problem z = y + y? which is about 2. instead of 1.
For y = 10 the numerical instability appears only for perturbations larger
than 10712

3 Conclusion

Problem conditioning and numerical stability combine together to deliver
results with some inaccuracy. Tools based on random perturbations of the
data are designed to study experimentally numerical stability and problem
stability. Our approach is based on a log-linear regression of the error esti-
mation versus the size of the perturbation and provides estimations of the
condition number and the regularity of the problem. Experiments conducted
so far show the effectiveness of the methodology for stable algorithms and for
some unstable ones. Moreover, this tool is quite cheap since it does not re-
quire any special arithmetic, general and easy to use. It will be integrated in
the next future into a toolbox, called Aquarels, which is currently under de-
velopment [12]. This toolbox integrates into a consistent and user-friendly
software structure tools contributing to improve or control the numerical
quality of scientific software. Aquarels integrates in particular interval anal-
ysis, multiple precision and perturbation techniques and contains extensions
to Fortran in order to apply easily these techniques. Various perturbations
approaches can actually be easily included in this toolbox.

In practice the method is applied only to a specific part of a scientific
code. It may be applied successively to more and more restricted parts, in
order to isolate the difficulties. For such experiments, the choice of the input
data to perturb and of the output data to analyze is relevant.
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