
~ APPLIED
" ~ NUMERICAL

MATHEMATICS
ELSEVIER Applied Numerical Mathematics 19 (1995) 17-31

The implementation of a Generalized Cross Validation algorithm
using deflation techniques for linear systems

K. Burrage a,., A. Williams a, J. Erhel b, B. Pohl c
a Department of Mathematics, University of Queensland, Brisbane, 4072, Australia

b INRIA, Campus de Beaulieu, 35042 Rennes, France
c Seminarfiir Angewandte Mathematik, ETH Ziirich, 8092 Ziirich, Switzerland

Abstract

The fitting of a thin plate smoothing spline to noisy data using the method of minimizing the Generalized
Cross Validation (GCV) function is computationally intensive involving the repeated solution of sets of linear
systems of equations as part of a minimization routine. In the case of a data set of more than a few hun-
dred points, implementation on a workstation can become unrealistic and it is then desirable to exploit high
performance computing. The usual implementation of the GCV algorithm performs Householder reductions to
tridiagonalize the influence matrix and then solves a sequence of tridiagonal linear systems which are updated
only by a scalar value (the minimization parameter) on the diagonal. However, this approach is not readily
parallelizable. In this paper the deflation techniques described by Burrage et al. (1994), which are used to
accelerate the convergence of iterative schemes applied to linear systems, will be adapted to the problem of
minimizing the GCV function. This approach will allow vector and parallel architectures to be exploited in an
efficient manner.

Keywords: Linear systems; Deflation; lterative techniques; Generalized Cross Validation algorithms

1. Introduction

As a consequence of the recent E1 Nino which has resulted in severe drought over much of
Eastern Australia for 1991-1993, with a concomitant loss of at least one billion dollars in agricultural
production, a collaborative arrangement between the Queensland Department of Primary Industries and
CIAMP (Centre for Industrial and Applied Mathematics and Parallel Computing) at the University of
Queensland has been formed. As a result of this collaboration, an interactive visualization environment,
ADVISE [11], has been developed to enable the monitoring and modelling of drought conditions
over Australia. This is an enormously complicated and computationally intensive problem, and so

* Corresponding author. E-mail: kb@maths.uq.oz.au.

0168-9274/95/$09.50 (~) 1995 Elsevier Science B.V. All rights reserved
SSDI 0168-9274(95)00016-X

18 K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

ADVISE is designed to run in a heterogeneous computing environment. Within ADVISE a number
of applications are run including a simulation application and a surface fitting program, and these are
now briefly described.

In the simulation application, a number of environmental variables (such as edible green matter
in pastures) are calculated at every point on a grid over the state of Queensland. These variables
are then used to produce a colour-coded map of the state, so that the overall effects of drought, and
the condition of farming and grazing land, can be visualized. These pasture model calculations need
to make use of weather data, such as rainfall and temperature readings, at each point on the grid.
The sizes used for the grid spacings range from 2.5 km to 10km, depending on the resolution of the
image being produced. Since weather data is not available at a resolution this fine, an estimate must
be obtained by fitting a spline surface to the data from irregularly spaced weather stations, of which
there are approximately 3000 in the state of Queensland and 16000 throughout Australia.

Since the data is known to contain noise, a smoothing spline is constructed within a Generalized
Cross Validation approach, of which there are a number of implementations including those by Gu et
al. [6] and Hutchinson [8]. The method seeks to fit a smooth surface to n data points modelled by

yj -= L j f + ej,

where f E H (a Hilbert space), Lj are bounded linear functionals and ej are errors or noise in the
data. Thus it is desired to find fa that minimizes the variational problem

n

1 j~.l(y j Ljfa) 2 + AJm(fa),
n

(1)

where J m (f) is a measure of the "roughness" of the surface in terms of the mth derivatives of f and
where A is the smoothing parameter.

The problem of minimizing (1) is equivalent to minimizing the Generalized Cross Validation
function GCV(A) (see [16]), where

(l / n) II (I - A(A))Yll 2
GCV(A) -- (2)

[(1 / n) t r (l - A(A))]2"

Here tr(A) represents the trace of a matrix A and A(A) is the n x n influence matrix satisfying

(L j f a L n f a) v = A (A) y .

Let the observed data values (in this case rainfall) have the independent variables latitude, longitude
and elevation which are stored in the matrix X (n x 3), and let the observed rainfall readings (or
surface values) be stored in the vector y (an n-vector). Then a matrix S (n x 4) is formed which
contains unity in the first column, and X in the last three columns. A symmetric matrix Q (n x n)
is also formed, with elements given by

{ Oln(di j)d~F/2) , m an even integer,
= a ~ / 7 - ~ - ~ / 2)

~'V ~'q"q " , m an odd integer,
(3)

where

K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31 19

dij = Z (Xi* - X j,) 2,
k=l

Vi, j = 1 n,

and where O is calculated from the derivative order and the number of independent variables. Since

m -- 2(derivative order) - number of independent variables,

a derivative order of 2 and three independent variables imply m -- 1. Thus the elements of Q are,
from (3), proportional to the Euclidean distance between data points i and j .

Let the QR factorization of S be

Here FI and F2 are, respectively, n x 4 and n x (n - 4), while R is an upper triangular matrix of
dimension 4. Then writing Q = FfQ_F2 and z = F~y (Q is now an (n - 4) x (n - 4) matrix), the
GCV function can be written as

(1 / n) z T (Q + AI)-2z
GCV(A) -- [(1 /n) t r (Q + AI) -~ 12. (4)

Here Q is a full symmetric matrix, but at each evaluation only the diagonal elements are updated
by the addition of a scalar value A. For this reason it is possible to first transform Q to tridiagonal
form using Householder reductions and then minimize the GCV function much more economically
by calculating Q -- UTU v (where U is orthogonal and T is tridiagonal) and w -- UTz, so that

(1/n)wr(T + AI) -2w
GCV(A) = [(l / n) t r (T + M) - ' I 2" (5)

This function can now be evaluated quite economically using the LU factorization of a tridiagonal
matrix, so that the time required to evaluate (5) increases only linearly with problem size. The
Householder reduction needed to produce T, however, is an O(r/3) algorithm and for large data sets
this is where approximately 90% of execution time is spent. This is also the section of the program
that does not readily vectorize or parallelize. Thus in order to exploit vectorization or parallelization
protocols, the algorithm needs to be restructured or recast to avoid the Householder reduction. This
will be done using iterative techniques which will be rapidly accelerated using the deflation techniques
discussed by Burrage et al. [2].

The outline of this paper is as follows. In Section 2 a brief description of the deflation process as
applied to iterative methods for linear systems will be given. In Section 3 we will discuss how the
GCV application can be restructured in order to exploit these techniques. Numerical results on a Cray
YMP-2D sited at the University of Queensland will be presented in Section 4 to illustrate the efficacy
of this approach. This paper will conclude in Section 5 with some comments on the suitability of
this deflation process for many applications where linear and nonlinear systems need to be solved in
either sequential or parallel computing environments. In particular, it will be briefly discussed how
this technique can be used to solve systems of ordinary differential equations in an efficient manner

20 K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

2. Deflation techniques for linear systems

Computational techniques for solving linear systems of the form

A y = b , y E ~ " (6)

can be divided into two broad categories: direct and iterative methods. In the direct case, elementary
row operations are performed on the augmented matrix (A, b) in order to reduce the system to a
simpler form which can be more easily solved by exploiting the architecture (sequential or parallel)
of the target machine. If pivoting techniques are used then this process is usually a stable and reliable
one, although in the case of sparse systems the underlying algorithms and data structures can be
complicated (see [4]). For problems which have certain structures, pivoting may not be necessary,
as is the case for symmetric positive-definite matrices.

There have been many attempts to adapt direct schemes to parallel architectures (see, for exam-
ple, [1, 12, 13]), but these approaches are very much architecture-dependent. Thus Saad [13] has
considered LU algorithms for bus and ring topologies with distributed memory, while the approach
of Ortega [12] is very much a fine-grained one suitable for SIMD machines. Furthermore, efficient
parallel direct algorithms are heavily dependent on the structure of A with algorithms for banded
systems (see [3], for example), being entirely different to those for sparse systems [4], which in
turn are entirely different to the full dense case. Most iterative schemes, on the other hand, have a very
simple and conceptually appealing algorithmic structure in that they can often be written very simply
in terms of level 1 and level 2 BLAS, as is the case for the Jacobi and Conjugate Gradient methods,
for example. Such iterative schemes are readily parallelizable and the structure of the algorithm does
not change if A is full, banded or sparse.

On the other hand a different type of structure often has to be imposed on A (such as diagonal
dominance or symmetric positive-definiteness or an M-matrix) in order to guarantee the convergence
of some iterative algorithms. Furthermore, even if convergence is guaranteed it may be slow and may
have to be accelerated by a preconditioning process which itself may not be readily parallelizable.

In order to overcome some of these difficulties associated with iterative schemes, Burrage et al.
[2] presented a completely general technique for deflating the eigenvalues of the iteration matrix
which either slow or cause divergence. This process has also been extended by Erhel et al. [5] to
a preconditioning approach based on an invariant subspace approximation for the restarted GMRES
algorithm. This approach will be applied to the problem of minimizing the GCV in Section 3, after
first giving a brief description.

The technique is based on an idea due to Shroff and Keller [14] for solving nonlinear parameter-
dependent problems, which in turn represents an extension of an adaptive condensation technique
proposed by Jarausch and Mackens [9] for symmetric nonlinear problems. Shroff and Keller [14]
call this technique the Recursive Projection method. It is based on the fact that divergence or slow
convergence of the fixed-point iteration scheme

y{k+J) = F(y<k), A) (7)

is due to the eigenvalues of Fv. (the Jacobian of F evaluated at the fixed-point y*) approaching
or leaving the unit disk. The Recursive Projection method recursively approximates the eigenspace
P corresponding to the unstable or slowly converging modes using the iterates of the fixed-point

K. Burrage et al./ Applied Numerical Mathematics 19 (1995) 17-31 21

iteration. A coupled iteration process takes place by performing Newton iteration on P and fixed-
point iteration on Q (the orthogonal complement of P) where fast convergence is assured. The
scheme will be particularly effective if the dimension of l? is small.

In addition to these techniques, Jarausch [10] has considered a different approach which effectively
decouples the problem by the construction of right singular subsystems associated with the Jacobian of
the problem. The use of invariant subspaces is avoided by transforming the nonlinear system by a so-
called orthogonal rotator matrix. This approach is called by Jarausch [10] the ideal normal equation
approach and it avoids the squaring of the singular values by the usual technique of normalizing the
equations. In this case the singular values of the transformed problem and the original problem are
the same.

In spite of considerable recent work on the application of these subspace approaches to nonlinear
problems little appears to have been done in applying these techniques computationally to linear
system of equations until the work of Burrage et al. [2] and Erhel et al. [5]. This is described briefly
below.

For the linear system given by (6), a splitting of A = M - N gives an iteration scheme of the form

M y (k+l~ = Ny (k) + b, (8)

so that the fixed-point formulation of (7) is given by

y = F (y) , F (y) = M-~ Ny + M-~b. (9)

Let P be the invariant subspace of dimension r for the iteration matrix

H = M - I N ,

lr be the identity matrix of order r and let Z be the orthogonal basis of IP. Thus with

Q = I - ZZ T, P = ZZ q-, Ir = ZTZ, QP = 0 (10)

and writing

y = (P + Q) y = P y + q = Z u + q , u = Z q - y , (l l)

then (7), (9) and (11) imply

(Ir -- ZT H Z) u = ZT M - I b + Z-r Hq,

q = Q (M - ~ b + Hq + HZu) ,

y = Z u + q .

(12)

Burrage et al. [2] have proposed a number of iteration schemes based on (12) including Jacobi,
Gauss-Seidel and Reverse Gauss-Seidel schemes. These can be written in the general iterative form

U tk+]) = (Ir -- Z r H Z) - J Z T (M - I b + Hq(i)),

q(k+J) = (I -- ZZ r) (M-lb + Hq (k) + HZu ~j)),
(13)

where the relationship between i, j and the method is given by

22 K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

i j method

k k Jacobi

k k + 1 Gauss-Seidel

k + 1 k Reverse Gauss-Seidel

In the case of Reverse Gauss-Seidel it is understood that the q-iteration is performed first. Note that
here q represents the fixed-point iteration and u the Newton iteration.

It can also be seen from (13) that Gauss-Seidel and Reverse Gauss-Seidel have very similar
properties in that they both compute the same sequence but with different starting and finishing
values. This similarity is confirmed by a study of the spectra of the iteration matrices. These are
(from [2]) given by

O'(JG) ffi {0, or(gq +gphq)} ,

O'(JR) = {0, o'(gq +gphq)} ,

while for the Jacobi scheme the eigenvalues of J satisfy

Det(/lzI - / ~ g q + gphq) = O,

where

(14)

(15)

g~ ffi (I -- Z Z T) H (I - z z r) ,

gp (I -- z Z T) H Z ,

h i = Z (I r - Z - r H Z) - I Z X H (I - Z Z X) .

In the case that • is invariant, HZu E P and so from (10) it can be seen that (I - Z Z - r) H Z u = O.
Hence the spectral norm of all three iteration schemes is given by

p((l - Z Z r) H) .

Recall here that H is the iteration matrix of the underlying iteration scheme, and this underlying
scheme can be chosen depending on both the problem and the architecture. In the case of a parallel
environment a Jacobi or block Jacobi iteration may be appropriate in which case M will be diagonal
or block diagonal; while in a sequential environment Gauss-Seidel or block Gauss-Seidel or SOR
schemes may be more appropriate as this will lead to faster convergence but less parallelism.

Eigenvectors can be appended to Z in essentially two different ways which depend on what sort
of convergence properties are desired. This involves the development of a cost function which relates
implementation costs to convergence rates and which can be automatically interrogated every so often
to see if it is worthwhile to increase the dimension of Z (see [2]). In the case that at most two
eigenvectors are going to be deflated at any given time, then Burrage et al. [2] propose using the
modified Gram-Schmidt process in which only

w, = ±q't) /llAqCk) II,
w2 = Aq tk-j) - wl w~Aq ~t-~)

K. Burrage et al./ Applied Numerical Mathematics 19 (1995) 17-31 23

need be computed. In this case

z, = f (w') , IIw211 << IIw, II,
[(w,, w=/llw=ll), otherwise.

and so Z = (Z Z~), with the vectors of Z~ being appended to Z.
As more eigenvalues are removed the basis Z will become increasingly inaccurate due to the loss

of orthogonality in the Gram-Schmidt process and so added eigenvectors in Zj can be orthogonalized
against the previous basis.

3. Minimizing the GCV function

In the evaluation of the GCV function the matrix inverses are not explicitly calculated and stored.
Instead the evaluations are performed by solving the general matrix problem given by (6) where A
has the form A -= Q + hl and b = z in (4). In order to do this, a way is needed to calculate the
denominator of (4) which involves calculating the trace of A -~ without reducing to a tridiagonal
form. As a result Hutchinson [7] has suggested the use of a stochastic trace estimator.

Thus if u is a vector with elements being samples from a random variable which takes the values 1
and - 1 , each with probability of 1/2, then an unbiased estimate for the trace of a matrix B is given
by t r (B) = uZBu. By first solving the system Av -- u for v, then the trace of the inverse of A is given
by tr(A -1) = uTv. In this form with Ay = b and At; = u, the GCV function can be written as

(l / n) (y z" y)
GCV (,~) =

[(l / n) (u T -v)] 2"

Hence the main task in the evaluation of the GCV function now involves the repeated solution of
the two linear systems of equations of the form

Ay-=b, A v = u , A = (Q + M) , (16)

at each iteration step. It should be added that since the stochastic trace estimator is essentially a Monte
Carlo simulation, n should be at least several hundreds in order for this process to be sufficiently
accurate.

Since the matrix A is dense, any benefit arising from using an iterative method requires convergence
in significantly less than n iterations to be competitive with the Householder approach. Numerical
testing has shown that as convergence takes place within the GCV process, Q + AI becomes more
and more ill-conditioned as ,~ approaches its minimum value (which is usually small and positive).
For the problems of interest here, n can vary from a value of several hundreds up to 16,000 and the
condition numbers of the matrices involved can become huge due to the presence of some very small
positive eigenvalues.

In order to enhance the performance of this iterative approach, a number of modifications have
been made to the original direct code due to Hutchinson [8]. These have been documented fully by
Williams and Burrage [15], but a brief overview is given below.

The search algorithm used by Hutchinson [8] to minimize the GCV function is a Golden Section
search, and depending on the desired accuracy and n up to 40 GCV evaluations may be needed. If

24 K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

Householder transformations are used to tridiagonalize the influence matrix first, then the evaluation
of the GCV function is done very quickly since only a sequence of tridiagonal solves are needed.
Consequently, little attention need be given to how the search is carried out for minimizing A.
However, this becomes an important issue if full matrix systems are solved at each evaluation as is
the case for the iterative approach. Thus the Golden Section search has been replaced by Brent's
algorithm. This method starts with a bracketing triplet of points as before, and fits a parabola to these
three points. The abscissa of the minimum of this parabola is then the point at which the function
is evaluated next. This is then done repeatedly until the minimum is contained in a small subinterval
(length about 2 x tol where tol is the fractional accuracy specified). Using this algorithm, h can be
found in around 15 evaluations (for n of moderate size between 1000 and 3000). It should be noted
that the success of this search depends on the "smoothness" of the function. The GCV function can
have more than one local minimum if the accuracy tolerance for the iterative matrix solver is not set
small enough.

The time taken for the iterative solution of a matrix system can also be significantly reduced if a
reasonably good initial guess for the solution vector can be supplied. Since the system being solved
changes by a relatively small amount from iteration to iteration during the minimization of the GCV,
each solution vector can be kept and used as the initial guess for the next one. But this can be
improved on by taking, as an initial guess, a linear combination of more than one of the previous
solution vectors. Two-term, three-term and four-term approximations have been obtained by Williams
and Burrage [15]. Good results have been obtained by calculating a two-term approximation at the
third iteration, a three-term at the fourth, and then four-term approximations for the remaining steps
in the minimization process.

There are two ways to use the deflation process described in Section 2. At each minimization step,
two linear systems of equations of the form given in (16) need to be solved with different right-hand
sides.

In the first technique the deflation process can be used to first solve, for a given A, A y = b. At
the end of the iteration process an orthogonal basis Z will have been computed. Since the coefficient
matrix remains the same for solving A v = u, Z will also be an orthogonal basis of P for the iteration
matrix (as long as the same iteration technique is used in both cases). Thus deflation can continue
using (12) as the starting point but with b replaced by u. For the next value of A, the deflation
process has to start anew with, if appropriate, a different iterative method.

In the second approach, the same deflation process can continue across all the sets of equations.
But in order to do this the complete set of eigenvectors of

Ho = M o I N o = I - M o J A (17)

corresponding to (6) must be exactly the same as the complete set of eigenvectors of

Ht = M ~ l N t = I - M i -I (A + a l) (18)

corresponding to

(A + a I) y = b. (19)

Now from (17) and (18)

Ht = I - M~ -~(Mo(l - Ho) + AI),

K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31 25

so that if ao and x are an eigenvalue and associated eigenvector of H0 then

Hix = x - (1 - A o) M ~ l M o x - aMTIx .

Thus x will be an eigenvector of Ht if x is an eigenvector of both Mt and M0, which in turn implies
that x is an eigenvector of A as well. This can be achieved, for example, if

H0 = p (A) ,

H t = q (A + M) ,

where p and q are arbitrary polynomials of degree 1 or more satisfying p (0) = 1 and q(0) = 1. The
simplest such polynomials occur if

Mo = WoI, Mt = toll, (20)

where too, tot E ~ in which case

1 1
Ho = I - - - A , H~ = I - - - (A + M) . (21)

toO 02/

These iteration schemes are of course just examples of Richardson iteration, and the remaining
question concerns the choice of too and tot. Since the systems that are being solved are symmetric
positive-definite (but not diagonally dominant) all the eigenvalues of the systems are real and positive.

Thus let Am and h,. denote, respectively, the maximum and minimum eigenvalues of A and let

Am
c=-~-f., > 0

represent the conditioning of A. In this case it is easily seen from (21) that p (H o) < 1 if and only if

too>OAm, 0 > ½ , (22)

in which case

p(Ho) -- max {1 - 1 1 - 1 }
Oc'

The value of 0 which minimizes p (H o) is

O - - g 1 +

and in this case

c - 1
p(Ho) -- - - .

c + l

As the iterations proceed, information is obtained about the magnitude of the larger eigenvalues of
H, but unfortunately these corrrespond to the smaller eigenvalues of A and so there is no information
readily available about Am from this iteration process. However, there are a number of simple and
cheap ways in which a tOo satisfying (22) can be chosen and this will be discussed in more detail in
Section 4.

26

Table 1
Comparison timings

K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

Data points 550 1025 1500

LU solve 0.377 2.354 7.443

Deflation 0.097 0.386 0.809

Speed-up 3.88 6.1 9.2

Thus given that a suitable w0 has been found, a value for wt for the updated system given by (19)
can be chosen as

I to t=Wo + ½a > 7A., + A. (23)

This satsifies (22) for the system (19) since A., + a is the maximum eigenvalue of A + M. Thus
(20), (21) and (23) imply

A
Ht = W° - ~wt I" (24)

On the other hand it is not necessary for wt to satisfy the equality condition in (23), all that
is necessary is that tot > (Am + A)/2. In fact even this last constraint need not hold as the GCV
minimization progresses. If it does not hold, then p (H) may be greater than one, but on the other
hand the clustering may be less severe and the deflation process will ultimately turn any divergence
into convergence. Thus as the deflation process continues from one set of equations to another, (12)
is used from system to system. This requires only an updating of M and H as given by (20) and
(24) and of the basis Z. Clearly, as more and more eigenvalues are extracted and as ,a converges to
its minimum value, there comes a point at which it is not efficacious to perform any more deflation
as convergence takes place in a very small number of iterations.

4. Timings

In this section the results of some timing runs performed with different size data sets in Fortran77,
on a Cray Y-MP 2D sited at the University of Queensland, are presented. The size of these problems
is respectively 550, 1025 and 1500. The only reason for a restriction on the dimension of 1500
is due to limitation on the memory of the Cray Y-MP 2D. In order to see first how efficient the
deflation process can be, some comparisons are made between the solution of (6) by a Cray library
routine based on LU factorization and backward and forward substitution and the Reverse Gauss-
Seidel deflation technique with an underlying Jacobi iteration. The timings are presented in Table 1
in seconds and were obtained by extracting three eigenvalues every five iterations. The systems here
are only mildly conditioned.

It can be seen that the performance of the deflation approach compares very favourably with a
highly optimized Cray library routine for doing a linear solve based on LU factorization especially
in view of the fact that the problem is dense.

In order to explore the effectiveness of the deflation approach in more detail, a number of systems
are solved in which the conditioning is controlled by the addition of a scalar value to the diagonal.

K. Burrage et al./ Applied Numerical Mathematics 19 (1995) 17-31 27

0.45

0.4

O.35

0.3

0.25

0.2

0.15

0.1

0.05
0

LU s o l v e

• ' . • - . . " - 5

I(X) 2(X) 3(X) 4(X) 5(X) 6(X) 7(X)
Condition number

3

2 . 5

2

LU s o l v e

i L I L I I I

(() I(XX) 20(X) 3(XX) 4(XX) 5(XX) 6(XX) 7(XX) 8000
C o n d i t i o n n u m b e r

Fig. I. m = 550 , 1025.

(This represents the type of systems of equations that have to be solved in the Generalized Cross
Validation process.) The timings for both the deflation process (in which three eigenvalues are
extracted every five iterations) and the LU solve are plotted in Fig. 1 as a function of the condition
number of the matrix for problems of dimension 550 and 1025.

As can be seen from these two figures, the deflation process slows down as the condition number
increases. However, these graphs were produced using an extraction of three eigenvalues every five
iterations and the timings can be improved by using different extraction protocols. However, clearly

28

Table 2
Original GCV timings

K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

Data points 550 1025 1500

Householder 2.69 12.95 36.37

Table 3
RGS and Richardson iteration

eig freq w0 n iterations time

2 5 80.0 550 110 2.44

2 4 80.0 550 94 2.40

2 4 380.0 550 85 2.21

2 10 22.0 1025 297 10.18

3 15 22.0 1025 293 14.54

*3 8 17.0 1500 262 32.74

*3 10 20.0 1500 315 33.07

the algorithm should attempt to work efficiently for differently conditioned matrices and in future
research an adaptive algorithm will be developed which adapts the frequency with which differing
numbers of eigenvalues are extracted to the convergence rates of the deflation process.

As discussed in Section 3 in order to be able to solve a sequence of equations of the form (4) by
deflating over the complete sequence of linear systems, the Jacobi iteration has to be replaced by, for
example, the Richardson iteration. The effect of this on the performance of the deflation code will
now be analysed.

The Householder version of the spline routine was run on the Cray Y-MP 2D (using Cray library
routines wherever appropriate) and the timings (in seconds) given in Table 2 were obtained.

The deflation routine using Reverse Gauss-Seidel and Richardson iteration was then run for a
variety of parameters including the frequency ("freq") with which the eigenvalues are extracted and
the number of eigenvalues ("eig") extracted at each deflation step as well as the initial relaxation
parameter tOo. It was seen in (22) that the convergence of Richardson iteration was guaranteed if

tOo > A,,/2,

where A,, is the maximum eigenvalue of A. In addition to this convergence relationship there is the
effect that tOo has on the clustering of the eigenvalues of H0. It is easily seen from (21) that as tOo ---'

the eigenvalues of H0 become more and more clustered around unity. This can seriously degrade
the performance of the deflation process, depending on the original clustering of the eigenvalues of
A. This was described in [2]. In Table 3 a selection of timings and iteration numbers are given for
various values of "eig", "freq" and tOo.

In the case of the results labelled by (*) in Table 3, tOt was chosen to satisfy (23). However, we
also found that it was advantageous to choose tOt adaptively in the program and the other results in
Table 3 were produced using this approach. It should be noted that as A converges to its minimizing
value the linear systems become more and more ill-conditioned. This suggests that the performance
of the deflation code can be substantially improved by allowing the various free parameters to vary as
the conditioning worsens. Even now there is a speed-up of up to 20% over the original code which

K. Burrage et al./ Applied Numerical Mathematics 19 (1995) 17-31 29

35

30

25

=o 20

15

I0

5

0
5(X)

H o u g h •

Deflation

600 7(X) 800 900 1000 I I (X) 12(X) 13(X) 1400 15(X)
Problem size N

Fig. 2. Timings speed-ups.

uses the Cray library Householder routines and some execution times are graphed in Fig. 2.
With further fine-tuning it is expected that these times will be reduced substantially. It is also

planned to automate this approach so that the algorithm will deflate an arbitrary number of eigenvalues
with variable frequencies depending on an estimated convergence rate and an interrogation of a cost
function. The initial relaxation parameter too can be chosen automatically by either estimating ,~m by
a few iterations of the power method on the matrix A or by setting tOo -- Trace(A) /2 and both of
these approaches produce a cheap and effective estimation of tOo. It should also be noted that the
deflation code currently runs at 75% of the peak performance of the Cray while the Householder
code runs only at 50% of the peak performance. Finally, since the deflation process is rich in level 2
and level 3 BLAS, this technique should parallelize well.

5. Conclusions and extensions

The aim of this paper has been to show that the general deflation techniques described by Shroff
and Keller [14] and Jarausch and Mackens [9] for nonlinear problems and applied to general systems
of linear equations by Burrage et al. [2] and Erhel et al. [5] can be adapted to important applications
such as the GCV approach. These approaches have also a more general applicability in the area of
differential equations (see, for example, [10]).

Large differential equations are often stiff and can be characterized by rapidly changing and slowly
changing modes. The techniques of Shroff and Keller [14], Jarausch [10] and Burrage et al. [21
can thus be applied directly to the differential equation system to produce an automatic partitioning
technique into stiff and nonstiff methods which can then be solved as appropriate for implicit and
explicit numerical methods. Some attempts at partitioning in this way have been done previously but
never in a truly adaptive manner which these new techniques may now allow.

3 0 K. Burrage et al. / Applied Numerical Mathematics 19 (1995) 17-31

For example, consider the applicaton of the implicit Euler method to the system of ordinary
differential equations given by

y ' = f (y) , y (x o) = Yo, f : ~m ~ ~ m .

If this method is applied at a sequence of points Xo, x~, x2 where x,+~ -- x, + h,, then this method
can be written as a nonlinear difference equation

F(y~+~) = O, F (y) = y - Yn - h n f (y) . (25)

The technique of Shroff and Keller [14] can be applied directly to (25), but alternatively if some
linearization, based on the modified Newton method is used, then at each step point Xn+l a sequence
of linear systems of the form

= Yn+l -- Yn - h n f (Y n + l) ,
y (k + l) . (~) ,+J = Yn+J - A. k = O. 1 l - 1. (26)

An = I - hnJn,

has to be solved, where J, -- f ' (3,,).
At a given step it is customary to perform an LU factorization of A, at the first iteration, so that for

the remaining l - 1 iterations only backwards and forward substitutions are needed in (26). However,
if at the next step h, is changed but the Jacobian is not changed (as is often the case in many stiff
codes) these LU factors cannot be reused.

On the other hand, if the deflation process based on Richardson iteration described in Section 3
is used then not only can the deflation process continue across the iterations in one time step but
also across many time steps (as long as the Jacobian is kept constant throughout this region of
integration). This is because J.+l = Jn implies

hn+l
H n + j = r n H n + (1 - r n) l , r . = - - ,

hn

and this is the same relationship as described in (24) in Section 3. Hence continuous deflation has
an advantage over LU factorization in this respect.

The deflation techniques described in this paper and the more general techniques described by both
Burrage et al. [2] and Erhel et al. [5] are currently being parallelized for the Intel Paragon and the
results of this work will be presented in later papers.

Acknowledgements

Part of this work was done while Kevin Burrage and Alan Williams were, respectively, guest
professor and guest academic of the Seminar ftir Angewandte Mathematik at ETH Ztirich and while
Jocelyne Erhel and Bert Pohl were Ethel Raybould Fellows in the Department of Mathematics at the
University of Queensland in Australia.

Kevin Burrage and Alan Williams gratefully acknowledge the financial support provided by the
Intel Corporation.

K. Burrage et al./ Applied Numerical Mathematics 19 (1995) 17-31 31

References

[I] R.H. Bisseling and G.G. van de Vorst, Parallel LU decomposition on a transputer network, Report Koninklijke/Shell
Laboratorium, Amsterdam (1989).

[2] K. Burrage, J. Erhel and B. Pohl, A deflation technique for linear systems of equations, Research Report 94-02,
Seminar ftir Angewandte Mathematik, ETH Ziirich, Switzerland (1994).

[3] J.J. Dongarra and L. Johnsson, Solving banded systems on parallel processors, Parallel Comput. 5 (1987) 219-246.
[4] I.S. Duff, A.M. Erisman and J.K. Reid, Direct Methods for Sparse Matrices (Oxford University Press, London, 1988).
[5] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES preconditioned by deflation, Research Report 94-04, Seminar ftir

Angewandte Mathematik, ETH Ziirich, Switzerland (1994).
[6] C. Gu, D. Bates, Z. Chen and G. Wahba, The computation of the GCV functions through Householder tridiagonalisation

with application to the fitting of interaction spline models, SIAM J. Matrix Anal. 10 (1989) 459-480.
[7] M.E Hutchison, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm.

Statist. Simulation Comput. 18 (1989) 1058-1076.
[8] M.E Hutchison, The application of thin-plate smoothing splines to continent-wide data simulation, BMRC Research

Report Ser. 28, Bureau of Meteorology (1991).
[9] H. Jarausch and W. Mackens, Numerical treatment of bifurcation problems by adaptive condensation, in: T. Ktipper,

H.D. Mittelmann and H. Weber, eds., Numerical Methods for Bifurcation Problems (Birkhiiuser, Basel, 1987).
[10] H. Jarausch, Analyzing stationary and periodic solutions of systems of parabolic partial differential equations by using

singular subspaces as reduced basis, Report 92, Inst. ftir Geometric und Praktische Mathematik, Aachen, Germany
(1993).

[I 1] L. Lau, M. Rezny, J. Belward, K. Burrage and B. Pohl, ADVISE-Agricultural Development Visualization Interactive
Software Environment, in: Proceedings CONPAR 1994 (1994).

[12] J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum, New York, 1988).
[13] Y. Saad, Communication complexity of the Gaussian elimination algorithm on multiprocessors, Linear Algebra Appl.

77 (1986) 315-340.
[14] G.M. Shroff and H.B. Keller, Stabilization of unstable procedures: the recursive projection method. SIAM J. Numer.

Anal. 30 (4) (1993) 1099-1120.
[15] A. Williams and K. Burrage, The implementation of a GCV algorithm in a high performance computing environment

(in preparation).
[16] G. Wahba, How to smooth curves and surfaces with splines and cross validation, in: Proceedings 24th Conference on

the Design of Experiments, US Army Research Office (1979).

