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Abstract. We show how the firing rule of Petri nets relies on a resid-
uation operation for the commutative monoid of natural numbers. On
that basis we introduce closed monoidal structures which are residuated
monoids. We identify a class of closed monoidal structures (associated
with a family of idempotent group dioids) for which one can mimic the to-
ken game of Petri nets to define the behaviour of these generalized Petri
nets whose flow relations and place contents are valued in the closed
monoidal structure.

1 Introduction

This paper reports on an ongoing research whose intent is to provide a uniform
presentation of various families of Petri nets by recasting them as nets enriched
over some algebraic structures, thus following the line of research best illustrated
in [7] , a special issue of Advances in Petri nets dedicated to this theme. We aim
at a general definition of nets parametric in algebraic structures corresponding
to the kind of processes being modelled. We shall consider as a guideline the
similar approaches that have been followed in the field of automata

theory. Moreover the similarities between the approach undertaken here and
what have been considered with automata seems a prequisite to our long term
objective of achieving an enriched theory of regions [3] following the categorical
approach based on schizophrenic objects ([2], [1]).

In Section2 we compare two different algebraic approaches to generalized au-
tomata and justify the choice that we have made: a skeletal and non-commutative
variant of Lawvere’s generalized logics [8]. These structures that we term Closed
Monoidal Structures in order to stress their connection to enriched category
theory [9] are also known as residuated monoids [11] ; they are introduced in
Section 3. In Section 4 we illustrate how Petri nets appear as nets enriched over
the closed monoidal structure on the commutative monoid of integers. Based on
this example we try to circumvent the class of properties that a closed monoidal
structure should satisfy so that it could be associated with a family of General-
ized Petri nets. This part of our work is reported in Section 5.
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2 Algebraic Approaches to Generalized Automata

The theory of Kleene algebras, by providing an axiomatization of regular ex-
pressions, has paved the way to an algebraic theory of automata. It gives a
modelisation of the three fundamental operations of choice (+), sequencing (•)
and iteration (�) under the form of an idempotent semiring (K,+, •, 0, 1) to-
gether with specific axioms for iteration. When the semiring is complete, iter-
ation can be obtained as a derived operation : x� =

∑
n∈N x

n. Any Kleene
algebra gives rise to a special kind of automata. The crucial observation is that
the set of square matrices of dimension n with entries in a Kleene algebra is also
a Kleene algebra whose choice and sequencing operations are given respectively
by (M +N)i,j = Mi,j +Ni,j , and (M •N)i,j =

∑
1≤k≤nMi,k •Nk,j . Iteration is

somewhat more complicated to define however. It is then possible to define an
automaton with n states

over a Kleene algebra K as a triple (λ,A, γ) where λ ∈ K1×n is the vector
of initial states, γ ∈ Kn×1, the vector of final states, and A ∈ Kn×n is the
transition matrix. This automaton then recognizes λ • A� • γ ∈ K, and the
entry A� (i, j) ∈ K can be interpreted as the ”language” leading from state si
to state sj . For instance if we let K = ℘ (X�) be the set of languages over an
alphabet X, with A+B = A∪B, and A •B = {uv | u ∈ A & v ∈ B} we obtain
a complete Kleene algebra (S,+, •, 0, 1) with 0 = ∅ , the empty set, 1 = {ε}, the
language reduced to the empty word, and A� = ∪n∈NA

n the usual iteration on
languages. Automata over this Kleene algebra are the usual finite automata. But
one may also consider K = ℘

(
X2
)

with A+B = A ∪B, the union of relations,
A •B = {(x, y) | ∃z ∈ X . (x, y) ∈ A & (y, z) ∈ B}, the composition of relations
0 = ∅ , the empty relation, and 1 = ∆ = {(x, x) | x ∈ X}, the diagonal or identity
relation. We then obtain another complete Kleene algebra with A� the reflexive
and transitive closure of relation A. Automata over this Kleene algebra can be
interpreted as finite relational automata in which (x, y) ∈ A� (i, j) if and only if
there exists some path from state si to state sj such that (x, y) ∈ R where R is
the relation obtained by composition of the various relations encountered along
this path. Thus the relation recognized by the automaton can be interpreted
as the input/output relation of the program whose control graph is given by
the automaton. Many more (complete) Kleene algebras exist such for instance
(R+ ∪ {∞} ,min,+,∞, 1) for which A� (i, j) gives the minimal cost of a path
leading from state si to state sj where the cost of a path is given by the sum of
the values associated with each transition ; and (R+ ∪ {∞} ,max,min, 0,∞) for
which A� (i, j) gives the maximal flow of some path from state si to state sj where
the flow along some path is given by the minimum of the (maximal) flow enabled
on each transition. Since A�� = A�, the automaton (λ,A�, γ) is equivalent to
(i.e. recognizes the same element as) automaton (λ,A, γ). An automaton (λ,A, γ)
such that A� = A is said to be saturated.

A second approach to an algebraic description of generalized automata is
to consider automata over an alphabet X and values in a semiring K, as in-
troduced by Schützenberger [12] (see also [4]). We let K 〈〈X〉〉 denote the set
of formal power series with coefficients in K and set of variables X. Such a
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series is a map s : X� −→ K that can be interpreted as a ”generalized set”
of words in which the degree of membership of a word is measured by an el-
ement of K (its coefficient). Indeed if K is the boolean semiring K = {0, 1}
one has K 〈〈X〉〉 = ℘ (X�). The set of formal power series K 〈〈X〉〉 is a semir-
ing whose operations are given by : (s+ t) (w) = s (w) + t (w) , (s • t) (w) =∑

w=uv s (u) • t (v). The same holds, by restriction, for its subset of polynomi-
als K 〈X〉 = {s ∈ K 〈〈X〉〉 | ∃<∞w ∈ X� s (w) �= 0}(formal power series with a
finite domain). Usually K 〈〈X〉〉 is not a Kleene algebra, however a partially
defined iteration operation exists. Indeed let say that a family of formal power
series {si ∈ K 〈〈X〉〉 | i ∈ I} is locally finite when ∀w ∈ X� ∃<∞i ∈ I si (w) �= 0
then the sum of such a family can be defined : (

∑
si) (w) =

∑
(si (w)). For any

proper
formal power series (s (ε) = 0), the family {sn ∈ K 〈〈X〉〉 | n ∈ N} is locally

finite, and if we let s� =
∑

n∈N s
n then for any t the unique solution of the equa-

tion x = t+sx (respectively of the equation x = t+xs) is x = s�t (resp. x = ts�).
Now an automaton over the semiringK consists of a finite alphabetX, an integer
n (the dimension of the automaton), a morphism of monoids µ : X� −→ Kn×n,
a vector λ ∈ K1×n of initial states, and a vector γ ∈ Kn×1 of final states. This
automaton recognizes the formal power series s such that s (w) = λ • µ (w) • γ.
The triple (λ, µ, γ) is called an n-dimensional linear representation of s, and s is
said to be recognizable. Again, in the particular case where K 〈〈X〉〉 = ℘ (X�),
it corresponds to the usual definitions known for finite automata. We say that
a formal power series is rational if it belongs to the rational closure (i.e. clo-
sure by sum, product and star operation) of the semiring of polynomials. Then
the theorem of Schützenberger stating that a formal power series is rational if
and only if it is recognizable provides a generalization of Kleene theorem for
finite automata. Probabilistic automata can also be associated similarly to the
semiring (R+,+,×, 0, 1), however extra conditions should be added constraining
the definition of automata : an automaton consists of an initial distribution of
probability λ (hence assumed to satisfy

∑
λi = 1), µi,j (w) gives the probabil-

ity to reach state sj from state si when reading word w ∈ X�, and γi is the
probability that state si be a final state, then if Mi,j =

∑
x∈X µi,j (x) represents

the probability to reach state sj from state si in one step, we further assume

that (the normalisation property) : ∀i
(∑

1≤j≤nMi,j + γi = 1
)

, i.e. either si
is an accepting state or one can reach some other state in one step. Then the
recognized formal power series is such that p (w) = λ•µ (w)•γ is the probability
of recognizing word w ∈ X�.

A dioid1 is a semiring for which the relation x ≤ y ⇔ ∃z : y = x + z
is antisymmetric, i.e. is an order relation. This situation happens if the sum
is idempotent, but also if the two following conditions are satisfied : the sum
is cancellative (x + y = x + z ⇒ y = z) and the neutral element cannot be
decomposed as a sum (x+ y = 0 ⇒ x = y = 0).

1 Some authors however use the term dioids for the restricted subclass of idempotent
semirings.
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Claim. In any dioid x ∨ y ≤ x + y , and a dioid is idempotent if and only if
x ∨ y = x+ y

Proof. By definition of the order relation x + y ≥ x and x + y ≥ y and thus
x∨y ≤ x+y. If x∨y = x+y then the sum is clearly idempotent. Conversely let
us assume the idempotency of sum, observe that in that case the order relation
can equivalently be defined as x ≤ y ⇔ y = x + y. Indeed if y = x + z then by
idempotency : y = x+ x+ z = x+ y and the converse implication is immediate.
Let z such that x ≤ z and y ≤ z then by the preceding remark z = x+ z = y+ z
and then z = z + z = (x+ z) + (y + z) = (x+ y) + z, i.e. x+ y ≤ x ∨ y.

A dioid (K,+,×, 0, 1) is said to be complete if it is a complete lattice w.r.t.
the induced order and for all x ∈ K and {yi | i ∈ I} ⊂ K, the following infinite
distributive laws are satisfied :

x •
(∨

i∈I

yi

)
=
∨
i∈I

(x • yi) and

(∨
i∈I

yi

)
• x =

∨
i∈I

(yi • x)

A quantale (with unit) is a complete idempotent dioid. Since, by the above
claim, the sum then coincides with the join, a quantale is usually presented as
a structure (K,∨, •, 1) consisting of a complete lattice with an infinitary joint
operator ∨, and a monoid (K, •, 1) such that both infinite distributive laws are
satisfied.

We saw that probabilistic automata are the automata over the semiring
(R+,+,×, 0, 1) satisfying certain normalisation properties. This semiring is a
complete dioid but it is not idempotent and thus can certainly not be extended
into a Kleene algebra structure. For a semiring to be part of a Kleene algebra
it is necessary to be idempotent and sufficient to be idempotent and complete,
i.e. a quantale. How do both notions of automata then compare ? It is readily
verified that for any semiring K, the semiring K 〈〈X〉〉 is idempotent (respec-
tively is a quantale) whenever K is idempotent (respectively is a quantale). An
automaton (λ,A, γ) over the quantale K 〈〈X〉〉 viewed as a (complete) Kleene
algebra is saturated if and only if I +AA ≤ A which reads as :

1 ≤ Ai,i (ε) and
∨
j

∨
uv=w

Ai,j (u) •Aj,k (v) ≤ Ai,k (w)

Since 1 is the greatest element the first condition reads as Ai,i (ε) = 1. Now
matrix A is equivalent to the data µ : X� −→ Kn×n where µ (w) (i, j) = Ai,j (w),
and the preceding conditions rewrite as

µ (ε) (i, i) = 1 and
∨

uv=w

∨
j

µ (u) (i, j) • µ (v) (j, k) ≤ µ (w) (i, k)

i.e. µ (ε) = I and µ (u)•µ (v) ≤ µ (w) whenever uv = w. Now µ : X� −→ Kn×n

is morphism of monoid, i.e. (λ, µ, γ) is an automaton over the semiring K with
variables in X, if and only if
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∨
j

Ai,j (u) •Aj,k (v) = Ai,k (w) whenever uv = w

If K is the tropical semiring (R ∪ {∞} ,min,+) the above identity says

min
j

(Ai,j (u) +Aj,k (v)) = Ai,k (w) whenever uv = w

i.e. the ”distance” from state si to state sk (associated with some word) is the
minimal length of a path from si to sk (labelled with the same word). In analogy
with the corresponding notion borrowed from the theory of metric spaces, we
thus term geodesic any saturated automaton (λ,A, γ) such that

∨
j

Ai,j (u) •
Aj,k (v) = Ai,k (w) whenever uv = w. We thus have established the following
result :

Proposition 1. If K is a quantale, a geodesic automaton (λ,A, γ) over the
quantale K 〈〈X〉〉 viewed as a (complete) Kleene algebra is the same thing as an
automaton (λ, µ, γ) over the semiring K with variables in X, with the correspon-
dence given by µ (w) (i, j) = Ai,j (w).

Let us again consider the case of probabilistic automata. The semiring K1 =
(R+,+,×, 0, 1) is a complete dioid hence it induces a quantale Q = (R+,

∨
,×, 1)

however it should not be confused with that quantale. Probabilistic automata
do constitute a class of automata over Q 〈〈X〉〉 viewed as a (complete) Kleene
algebra (because x ∨ y ≤ x + y) however, by forgetting the sum operation, we
have lost all possibility of identifying this subclass of automata. In particular
the class of geodesic automata over Q 〈〈X〉〉 corresponds to the automata with
variables X over the idempotent semiringK2 = (R+,∨,×, 1) where ∨ is the least
upper bound operation and these automata have no relation with probabilistic
automata !

The above proposition compare the two different approaches in the particular
case where they both apply (i.e. when K is a quantale). Since we would

like to be able to deal with the largest possible variety of generalized au-
tomata, we are rather searching for an algebraic structure that would allow to
encompass these two approches. The closed monoidal structures introduced in
the following section will realize this goal at least for large subclasses of dioids
including all complete dioids and all group dioids.

3 Closed Monoidal Structures

A simple approach to generalized automata compatible with those described in
the previous section is to identify such an automaton to a set of states S together
with a map A : S×S → K so that A (s, s′) measures the (possibly structured) set
of trajectories from state s to state s′ into some closed monoidal structure. This
approach was first proposed by Lawvere [8] who termed them generalized metric
spaces. As compared to this original definition, the approach taken here is in some
respect more specific (because we use skeletal monoidal categories, here simply
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called monoidal structures) and in some other respect more general (because the
tensor may not be symmetric in our case). An extension of Lawvere’s approach
to the non symmetric case was already proposed by Kasanghian, Kelly and Rossi
(also in order to define generalized automata over closed monoidal categories).
The presentation below can be seen as the simplification of their approach to
the skeletical case.

Definition 1. A monoidal structure ϑ = (K,≤,⊗, 1) is a set K equipped with
an order relation ≤ and a structure of monoid (K,⊗, 1) where the composition
⊗, called tensor, is monotonic in both arguments. The structure is closed (or is
a residuated monoid) when there exists two binary operators / and \, called
the right and left residual operations, verifying the universal property that for
any elements x, y, and z of K one has

x ≤ z/y ⇔ x⊗ y ≤ z ⇔ y ≤ x\z
Monotonicity of tensor follows from the existence of residuals (see [11] ). The

following identities are immediate consequences of the definition

x ≤ x/1 and x ≤ 1\x
1 ≤ x/x and 1 ≤ x\x
y/x⊗ x ≤ y and x⊗ x\y ≤ y
(x′ ≤ x and y ≤ y′) ⇒ (y/x ≤ y′/x′ and x\y ≤ x′\y′)
z/ (x⊗ y) = (z/y) /x and (x⊗ y) \z = y\ (x\z)
x\ (z/y) = (x\z) /y

When the tensor is commutative, the monoidal structure is termed commutative,
we then usually adopt additive notations: ⊕ in place of ⊗, and 0 in place of 1. In
that case both residual operations coincide and we denote it �. By analogy to
semigroups we say that a closed monoidal structure is complete if it is a complete
lattice and the tensor is continuous in both arguments :

x⊗
(∨

i∈I

yi

)
=
∨
i∈I

(x⊗ yi) and

(∨
i∈I

yi

)
⊗ x =

∨
i∈I

(yi ⊗ x)

In that case the residuals are given by the formulas :

z/y =
∨
{x | x⊗ y ≤ z} and x\z =

∨
{y | x⊗ y ≤ z}

hence there are derived operators and complete closed monoidal structures may
be identified with continuous ordered monoids (this situation is similar to the
identification of complete Kleene algebras with quantales). Let us enumerate
some families of closed monoidal structures.

3.1 Complete Closed Monoidal Structures

As for Kleene algebras most closed monoidal structures will be complete. Never-
theless, as we shall see in the next sections, the residual operations are the basic
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operations needed for representing Petri net-like computations and, in order to
remain as general as possible, we don’t want to enforce completeness as long as
this assumption is not strictly necessary. However let us mention some families
of complete closed monoidal structures.

Complete Dioids. For instance, the complete dioid (R+ ∪ {∞} ,+,×, 0, 1) in-
duces the commutative closed monoidal structure (R+ ∪ {∞} ,≤,×, 1). whose
residual is given by : x � y = x/y when x, y ∈ R+ , ∞�∞ = 0, ∞� x = ∞,
and x�∞ = 0, for any x ∈ R+

Quantales. Quantales are just complete monoids whose sum is idempotent
(equivalently coincides with join).

1. The most typical example (already mentioned) is the set K = ℘ (X�) of
languages on an alphabet X with set-theoretic inclusion as order relation,
concatenation of languages as tensor product

L⊗M = {u.v ∈ X∗ | u ∈ L ∧ v ∈M}

1 = {ε}, the language reduced to the empty word, as unit, and the usual
residual operations on languages :

N/L={v ∈ X∗ | ∀u ∈ L v.u ∈ N} and L\N={v ∈ X∗ | ∀u ∈ L u.v ∈ N}

This monoidal structure stems from the quantale (℘ (X�) ,∪,⊗, ∅, {ε}). Sim-
ilarly one can obtain a closed monoidal structure ℘ (M) by replacing the free
monoid X� by an arbitrary monoid M.

2. Similarly the set K = rel (U) of binary relations over a set U (for universe) is
also a closed monoidal structure with set-theoretic inclusion as order relation,
composition of relations as tensor product

R⊗ S = {(x, z) ∈ U × U | ∃x ∈ U (x, y) ∈ R ∧ (y, z) ∈ S}

the diagonal ∆ = {(x, x) ∈ U × U | x ∈ U} as unit, and the residuals oper-
ations on relations :

R/S = {(x, y) ∈ U × U | ∀z ∈ U (y, z) ∈ S ⇒ (x, z) ∈ R}

S\R = {(x, y) ∈ U × U | ∀z ∈ U (z, x) ∈ S ⇒ (z, y) ∈ R}

This monoidal structure stems from the quantale (rel (U) ,∪,⊗, ∅, ∆). The
set of binary relations is also equipped with two unary operators giving re-
spectively the inverse R−1 = {(x, y) ∈ R | (y, x) ∈ R} and the complement
Rc = {(x, y) ∈ U × U | (y, x) /∈ R} of a relation R. One may then check
that residuals can be expressed using these operators and composition as :
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R/S =
(
Rc ⊗ S−1

)c and S\R =
(
S−1 ⊗Rc

)c. The calculus of binary rela-
tions has a long history involving works of famous logicians like De Morgan,
Russel and Tarski (see the survey by Pratt [10]), and there is a recent in-
creasing interest in computer science community due to its similarities with
the Lambek Calculus (a logical calculus used for the treatment of natural
languages) and linear logic [11].

3. Our third example corresponds to Petri nets: the set of non negative integers
with addition, and the opposite of the usual order relation is a commutative
closed monoidal structure whose residuals are given by truncated difference
: x� y = x− y if x ≥ y and x� y = 0 otherwise:

x+ y ≥ z ⇔ y ≥ z � x

If we add an element ∞ such that x ≤ ∞, and ∞� x = ∞ for every x ∈ N ,
and x+∞ = ∞+ x = ∞, and x�∞ = 0 for every x ∈ N ∪ {∞} we obtain
a complete commutative closed monoidal structure which stems from the
quantale (N ∪ {∞} ,min,+,∞, 0).

Complete Heyting Algebras. A complete algebra is a quantale whose tensor
coincides with the meet of the lattice. It then induces a commutative closed
monoidal structure whose residual y � x is the relative complement x ⇒ y =∨ {z | x ∧ z ≤ y}. The universal property of residuals: x ∧ y ≤ z ⇔ y ≤ x ⇒ z
is modus ponens which explain why Lawvere coined the term generalized logics.
A boolean ring � of sets ordered by inverse inclusion, with set union as tensor
is a commutative closed monoidal structure whose residuals are given by set-
theoretic difference :

X ∪ Y ⊇ Z ⇔ Y ⊇ Z\X

This monoidal structure stems from the complete Heyting algebra (�,⊇).

3.2 Group-Like Monoidal Structures

In many respects closed monoidal structures appear as weak forms of groups,
namely any group

(
G,⊗, 1, (.)−1

)
is a closed monoidal structure whose order

relation is equality and whose residuals are given by : x/y = x ⊗ y−1 and
y\x = y−1 ⊗ x. A group

(
G, •, 1, (.)−1

)
is said to be partially ordered if there

exists a partial order ≤ with respect to which the product is monotonic in both
arguments. A non trivial group can be ordered by letting x < y ⇔ x ∈ y•N if and
only there exists a non-empty subset N ⊂ G such that N∩N−1 = ∅, N •N ⊆ N ,
and x •N = N • x for all x ∈ G and in that case N = {x ∈ G | x < 1}. We then
obtained a closed monoidal structure (K,≤,⊗, 1), where K = N ∪{⊥,"} where
⊥ and " new elements (i.e. not elements of G). The order relation is given by
x ≤ y ⇔ x < y ∨ x = y for x, y ∈ N (order induced from the order on
G) and ⊥ ≤ x ≤ " for all x ∈ N . The tensor is given by x ⊗ y = x • y if
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x, y ∈ N , x ⊗ ⊥ = ⊥ ⊗ x = ⊥, and x ⊗ " = " ⊗ x = x for all x ∈ K (i.e. the
least element is absorbing and the greatest element is neutral). The residuals are
given as follows where a, b range over N , x ranges over K , and y ranges over
K� {⊥}: a/b = a • b−1 and b\a = b−1 • a if a ≤ b and else a/b = b\a = " ;
x/" = "\x = x ; x/⊥ = ⊥\x = " ; "/x = x\" = " ; ⊥/y = y\⊥ = ⊥. The
details of the verification are easy and left to the reader. It can also be verified
that with the prescribed order on K, the above is the unique possible closed
monoidal structure on K such that for all a, b in N :

a/b = a • b−1 and b\a = b−1 • a if a ≤ b else a/b = b\a = "

Notice that the element 1 ∈ G could have play the role of " since it satisfies
the required properties w.r.t. to the elements in N : it is a neutral element for
⊗, and a greatest element for the order. The group of integers (Z,+, 0) with its
usual ordering induces in this way a closed monoidal structure isomorphic to the
one associated with the quantale (N ∪ {∞} ,min,+,∞, 0). This suggests to look
at the particular case where the order is induced from a sum.

A dioid (K,⊕,⊗, ε, e) is a group dioid if every element of K \ {ε} has an
inverse for ⊗. Hence (K \ {ε} ,⊗, e) is a group ordered by the relation induced
by the sum : x ≤ y ⇔ ∃z : y = x⊕ z. Now since ε is neutral for ⊕, it is a least
element for this order and we can verify that it is an absorbing element for the
tensor. Hence it can play the role of ⊥ in the above construction, i.e. one has

Proposition 2. Any group dioid (K,⊕,⊗, ε, e) induces a closed monoidal struc-
ture (M,≤,⊗, e) where M is the interval ]ε; e] = {x ∈ K | ε < x ≤ e} and ≤ and
⊗ are respectively the order and the tensor of the dioid induced on this interval.
The residuals are given by a/b = a ⊗ b−1 and b\a = b−1 ⊗ a if a ≤ b and else
a/b = b\a = e ; and x/e = e\x = x, and e/x = x\e = e for any a, b ∈ ]ε; e[, and
x ∈ ]ε; e]. If the dioid is idempotent (sum is join : x ⊕ y = x ∨ y), then it is a
lattice whose meet is given by x ∧ y =

(
x−1 ∨ y−1

)−1 and then residuations are
given by : a/b = e ∧ (a⊗ b−1

)
and b\a = e ∧ (b−1 ⊗ a).

It induces also a complete closed monoidal structure (M ′,≤,⊗, e) where M ′

is the interval [ε; e] = {x ∈ K | ε ≤ x ≤ e}. The residuals further satisfy : x/ε =
ε\x = e and ε/y = y\ε = ε for x ∈ [ε; e], and y ∈]ε; e].

4 Nets over a Closed Monoidal Structure

Petri nets are associated with the monoidal structure (N,≤,+, 0) where ≤ is
the opposite of the usual order # on N . As we saw it is a commutative closed
monoidal structure whose residual is given by the truncated difference : x� y =
x− y if x ≥ y else x� y = 0 . Indeed a Petri net is a structure (P,E, Pre, Post)
where P is a finite set of places, E a finite set of events (disjoint from P ), and
Pre, Post : E → NP are called the flow relations. We can inductively extend
these maps : Pre, Post : E∗ → NP by letting Pre (ε) (p) = Post (ε) (p) = 0
and
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Pre(ue) = [Pre(e)� Post(u)] + Pre(u)
Post(ue) = [Post(u)� Pre(e)] + Post(a)

with a componentwise definition of the closed monoidal strcuture on NP . A
marking is a map from P into N . We readily verify that

M [u〉M ′ ⇐⇒ M % Pre(u) ∧ M ′ = [M � Pre(u)] + Post(u)

where M [u〉M ′ is the usual firing relation for Petri nets and where all operators
are defined componentwise. Moreover reversibilty can be expressed by the fact
that

M [u〉M ′ ⇐⇒ M ′ % Post(u) ∧ M = [M ′ � Post(u)] + Pre(u)

Another equivalent formulation is

M [u〉 M ′ ⇐⇒ M � Pre(u) ∧ M ′ � Post(u) ∧ M � Pre(u) =M ′ � Post(u)

As in the above equivalences, when speaking of the firing rule of nets we shall
allow ourselves to use the notation % in place of ≤, the order relation of the
closed monoidal structure, since the order relation # = (≤)−1 better reflects the
intuition when dealing with nets. One can argue that we could have use this
relation in the first place by using the equivalences

x % z/y ⇔ x⊗ y % z ⇔ y % x\z
for the definition of closed monoidal structures. We have indeed hesitated be-
tween these two possibilities for a long time and have finally taken the choice
that allows a better comparison with semirings and dioids. This reversing of or-
der relations reflects the duality between automata and nets that we intend to
investigate in the future.

A sequence u ∈ E∗ of events can always be fired in some marking : indeed it
can be fired in any marking M such that M % Pre(u) . We assume Pre(u) to
give the ”minimal amount of resources” in places so that the sequence u ∈ E∗

is firable. For some classes of nets however, like Elementary Net Systems, there
exists sequences of events that are firable in no markings. A value x % Pre(u)
where u is such an unfirable sequence should not be a legitimate place value. We
can indeed handle Elementary Net Systems in this way. But making a distinction
between the set of place contents and the set of flow relation values raises new
issues that we can treat in this particular case and in similar cases, but for which
we have not yet a global satisfactory answer. We propose then in the present
paper to stick to base case where place contents and flow relation values belongs
to the same set.

Definition 2. A net over a closed monoidal structure ϑ = (K,%,⊗, 1) is a
structure (P,E, Pre, Post) where P is a finite set of places, E a finite set of
events (disjoint from P ), and Pre, Post : E → KP are called the flow relations.
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A marking is a map M : P → K. An event e ∈ E is said to be firable in
marking M and leads then to marking M ′, in notation M [e〉M ′, if

M % Pre(e) ∧ M ′ = M�Pre(e)⊗ Post(e)
however in order to meet intuition it should be the case that the first condition of
this conjunct states that e ∈ E is firable in markingM , and the second part gives
the computation of the resulting marking M ′. The interpretation is that when
M % Pre(e), then marking M should decompose as M = M�Pre(e)⊗ Pre(e)
; hence assuming

a % b⇒ a = (a/b)⊗ b
In order to get marking M ′, we then replace Pre(e) by Post(e) in the above
decomposition of marking M . Due to the curryfying law of closed monoidal
structures (namely z/ (x⊗ y) = (z/y) /x) one can interpret z/u as ”popping u
from z” ; hence markingM ′ is obtained by popping Pre(e) from markingM and
then pushing Post(e) : z⊗(x⊗ y) = (z ⊗ x)⊗y. In order to keep reversibility we
need to ensure that both operations of popping and pushing are invertible, which
amounts to the condition : (a⊗ b) �b = a . Then the firing rule can equivalently
be stated as

M [e〉M ′ ⇐⇒ M ′ % Post(e) ∧ M = M ′�Post(e)⊗ Pre(e)
by reversing the roles of Post(e) and Pre(e) ; or still as

M [e〉M ′ ⇐⇒ M % Pre(e) ∧M ′ % Post(e) ∧ M�Pre(e) = M ′�Post(e)

Of course we could also chose a fifo structure (first in first out) rather than a
lifo (last in first out) structure for places in which case we need the following
equivalences to hold true :

M [e〉M ′ ⇐⇒M % Pre(e) ∧ M ′ = Post(e)⊗M�Pre(e)
⇐⇒M ′ % Post(e) ∧ M = Post(e)�M ′ ⊗ Pre(e)
⇐⇒M % Pre(e) ∧ M ′ % Post(e) ∧ M�Pre(e) = Post(e)�M ′

this further requires:

a % b⇒ a = b⊗ (b\a)
b� (b⊗ a) = a

Now comes the problem of extending inductively the definitions of Pre(u) and
Post(u) for words u ∈ E∗ so that

M [u〉M ′ ⇐⇒M % Pre(u) ∧ M ′ = M�Pre(u)⊗ Post(u)
⇐⇒M ′ % Post(u) ∧ M = M�Post (u)⊗ Pre(u)
⇐⇒M % Pre(u) ∧ M ′ % Post(u) ∧ M�Pre(u) = M�Post (u)
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(and similarly for the fifo case) where M % Pre(u) is equivalent to M [u〉 (the
enabling of sequence u in marking M : ∃M ′ M [u〉M ′) and M ′ % Post(u)
is dually equivalent to [u〉M ′ (the co-enabling of sequence u in marking M ′ :
∃M M [u〉M ′). For that purpose we proceed to some computations :

M [uv〉 ⇐⇒M % Pre(u) ∧ M�Pre(u)⊗ Post(u) % Pre(v)
⇐⇒M % Pre(u) ∧ M�Pre(u) % Pre(v)�Post(u)
=⇒ M % (Pre(v)�Post(u))⊗ Pre(u)

The first equivalence is how we would like M [uv〉 to be defined (this will prove
to be independent of the decomposition of w = uv by associativity of the binary
relation to be defined below). The second equivalence is just an application of
residuation, and the last implication comes from the equivalence

M % Pre(u) ⇐⇒M = M�Pre(u)⊗ Pre(u)

This suggests the definition Pre(uv) = (Pre(v)�Post(u)) ⊗ Pre(u) and simi-
larly Post(uv) = (Post(u)�Pre(v))⊗Post(v). Now this requires that the above
implication is an equivalence, i.e.

a % b⊗ c⇐⇒ [a % c ∧ a/c % b]
for every a, b, and c in K. In the fifo case we should also add the requirement
that

a % b⊗ c⇐⇒ [a % b ∧ b\a % c]
and let Pre(uv) = (Post(u)�Pre(v)) ⊗ Pre(u) and Post(uv) = Post(v) ⊗
(Post(u)�Pre(v)) since in that case :

M [uv〉 ⇐⇒M % Pre(u) ∧ Post(u)⊗M�Pre(u) % Pre(v)
⇐⇒M % Pre(u) ∧ M�Pre(u) % Post(u)�Pre(v)
⇐⇒M % (Post(u)�Pre(v))⊗ Pre(u)

and

[uv〉M ′ ⇐⇒M ′ % Post(v) ∧ Post(v)�M ′ ⊗ Pre(v) % Post(u)
⇐⇒M ′ % Post(v) ∧ Post(v)�M ′ % Post(u)�Pre(v)
⇐⇒M ′ % Post(v)⊗ (Post(u)�Pre(v))

We can then define a binary operation on K ×K as follows. We denote Pre
and Post the two canonical projections from K ×K to K, so that an element
α ∈ K × K be written α = (Pre(α), Post(α)) and the binary relation � is
defined by the two above identities (for the lifo case)

Pre(α� β) = (Pre(β)�Post(α))⊗ Pre(α)
Post(α� β) = (Post(α)�Pre(β))⊗ Post(β)
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K should contain a least element ⊥ (for #) corresponding to no constraint
(M (p) % ⊥ is always satisfied) ; and (⊥,⊥) should be the neutral element of
this composition, so that we can let Pre(ε) (p) = Post(ε) (p) = ⊥. Then we can
inductively define the maps Pre, Post : E∗ → KP by letting
(Pre(u) (p) , Post(u) (p)) = ϕ (u) (p) where ϕ : E∗ → (

K2
)P is the unique mor-

phism of monoids such that the images ϕ (e) (−) = (Pre(e) (−) , Post(e) (−)) of
the generators e ∈ E are given by the flow relations of the net. We then obtain

Pre(ε) (p) = Post(ε) (p) = ⊥
Pre(u⊗ v) (p) = (Pre(v) (p) �Post(u) (p))⊗ Pre(u) (p)
Post(u⊗ v) (p) = (Post(u) (p) �Pre(v) (p))⊗ Post(v) (p)

5 Petri Monoidal Structures

The following definition provides a set of conditions sufficient to ensure the
different requirements mentioned in the previous section. We omit most of the
proofs of the various following propositions. Hint of most of these proofs and
their main arguments were already sketched in the informal discussion of the
previous section. An important point however that was not touched upon in
that discussion and that we shall consider here is how associativity of operation
� is ensured.

Definition 3. A Petri monoidal structure is a closed monoidal structure ϑ =
(K,%,⊗, 1) such that :

1. 1 is the least element of (K,#)
2. (a % b⊗ c) ⇐⇒ (a % c ∧ a/c % b) ⇐⇒ (a % b ∧ b\a % c)
3. (a⊗ b) /b = a and b\ (b⊗ a) = a

Proposition 3. A Petri monoidal structure satisfies the following:

1. There are no divisor of the unit : [a⊗ b = 1 ⇒ a = b = 1], and 1/a = a\1 = 1
; a/1 = 1\a = a ; a/a = a\a = 1; and a % b⇔ b/a = 1 ⇔ a\b = 1.

2. It has a join given by a ∨ b = a/b⊗ b = b⊗ b\a = b/a⊗ a = a⊗ a\b.
3. It has a meet given by a ∧ b = a/ (b\a) = (a/b) \a = b/ (a\b) = (b/a) \b.
4. a % b =⇒ (a = a/b⊗ b = b⊗ b\a).
5. a⊗ b % a ; a⊗ b % b.

Definition 4. A Petri monoidal structure is said to be lifo when

(b⊗ c) /a = b/ (a/c)⊗ c/a and a\ (b⊗ c) = a\b⊗ (b\a) \c

It is said to be fifo when :

(b⊗ c) /a = b/a⊗ c/ (b\a) and a\ (b⊗ c) = (a/c) \b⊗ a\c
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If the tensor is commutative the lifo and fifo conditions are equivalent and
can be expressed (with the additive notation) as :

(b⊕ c)� a = [b� (a� c)]⊕ (c� a)
but of course the terminology ”lifo” and ”fifo” makes no much sense in that case.

The respective conditions in the above definition are both ”internalisations”
of condition (2) in Def.3, this fact is expressed by the following two propositions.

Proposition 4. A lifo Petri monoidal structure is a closed monoidal structure
ϑ = (K,%,⊗, 1) such that :

1. 1 is the least element of (K,%).
2. There are no divisor of the unit : [a⊗ b = 1 ⇒ a = b = 1].
3. (a⊗ b) /b = a and b\ (b⊗ a) = a.
4. (b⊗ c) /a = b/ (a/c)⊗ c/a and a\ (b⊗ c) = a\b⊗ (b\a) \c
Proof. By the residuation property (a % b⊗ c) ⇐⇒ [(b⊗ c) /a = 1] ⇐⇒
[b/ (a/c)⊗ c/a = 1]. Since [a⊗ b = 1 ⇒ a = b = 1], this latter condition is
equivalent to [b/ (a/c) = 1] ∧ [c/a = 1]; i.e. (a % c ∧ a/c % b).
The equivalence (a % b⊗ c) ⇐⇒ (a % b ∧ b\a % c) is proved similarly

In the same manner we obtain the analogous proposition :

Proposition 5. A fifo Petri monoidal structure is a closed monoidal structure
ϑ = (K,%,⊗, 1) such that :

1. 1 is the least element of (K,%).
2. There are no divisor of the unit : [a⊗ b = 1 ⇒ a = b = 1].
3. (a⊗ b) /b = a and b\ (b⊗ a) = a.
4. (b⊗ c) /a = b/a⊗ c/ (b\a) and a\ (b⊗ c) = (a/c) \b⊗ a\c.

Proposition 6. A Petri monoidal structure ϑ = (K,%,⊗, 1) with a total order-
ing is lifo.

Corollary 1. The closed monoidal structure induced by an idempotent group
dioid with a total ordering is a lifo Petri monoidal structure.

This corollary provides a reasonable class of group-like closed monoidal
structures that are lifo Petri monoidal structures. Unfortunately we don’t have an
analogue of Proposition6 (and hence of its corollary) in the fifo case. Condition
4 in Prop. 5 is much harder to establish. And this is easy to understand : as long
as we pop and push ”on the same side”, things go quite nicely with group-like
closed monoidal structures (in which the right residuals looks like ab−1 with
the negative part ”consuming the data” coming first into the lifo due to the
curryfication law : u/

(
ab−1

)
=
(
u/b−1

)
/a) . When on the contrary consumption
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and production of data are made at the opposite sides of a fifo, we need to express
how a data just entered can have an effect on the enabling or on the contrary on
the inhibition of some event. This information need to ”flow” through the entire
fifo and take into account some parts of the value of the place that comes from
its past history. This flow of information is obtained by mixing both residual
operations as described by the Condition 4 in Prop. 5. And it is very hard to
find concrete models that realize this computation.

Proposition 7. Let ϑ = (K,%,⊗, 1) be a fifo Petri monoidal structure . We
have a monoid

(
K2,�, e

)
with unit e = (1, 1) and whose composition law is

given by :

(u, u′) � (v, v′) = (v/u′ ⊗ u, u′/v ⊗ v′)

Proof. It is immediate that e = (1, 1) is a left end right unit of the given product.
Let us prove the associativity of the operation.

[(u, u′) � (v, v′)] � (w,w′) = (v/u′ ⊗ u, u′/v ⊗ v′) � (w,w′)
= (w/ [u′/v ⊗ v′]⊗ v/u′ ⊗ u, [u′/v ⊗ v′] /w ⊗ w′)

(u, u′) � [(v, v′) � (w,w′)] = (u, u′) � (w/v′ ⊗ v, v′/w ⊗ w′)
= ([w/v′ ⊗ v] /u′ ⊗ u, u′/ [w/v′ ⊗ v]⊗ v′/w ⊗ w′)

For the left-hand side:

[w/v′ ⊗ v] /u′ ⊗ u =(w/v′) / (u′/v)⊗ v/u′ ⊗ u :: (b⊗ c) /a = b/ (a/c)⊗ c/a
=w/ [u′/v ⊗ v′]⊗ v/u′ ⊗ u :: (a/b) /c = a/ (c⊗ b)

For the right-hand side:

[u′/v ⊗ v′] /w ⊗ w′ =(u′/v) / (w/v′)⊗ v′/w ⊗ w′ :: (b⊗ c) /a = b/ (a/c)⊗ c/a
=u′/ [w/v′ ⊗ v]⊗ v′/w ⊗ w′ :: (a/b) /c = a/ (c⊗ b)

We have the same result in case of the fifo semantics. In that case the com-
position is given by

(u, u′) � (v, v′) = (u′\v ⊗ u, v′ ⊗ u′/v)

and then

[(u, u′) � (v, v′)] � (w,w′) = (u′\v ⊗ u, v′ ⊗ u′/v) � (w,w′)
= ([v′ ⊗ u′/v] \w ⊗ u′\v ⊗ u,w′ ⊗ [v′ ⊗ u′/v] /w)
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(u, u′) � [(v, v′) � (w,w′)] = (u, u′) � (v′\w ⊗ v, w′ ⊗ v′/w)
= (u′\ [v′\w ⊗ v]⊗ u,w′ ⊗ v′/w ⊗ u′/ [v′\w ⊗ v])

For the left-hand side:

u′\ [v′\w ⊗ v]⊗ u =(u′/v) \ (v′\w)⊗ u′\v ⊗ u :: a\ (b⊗ c) = (a/c) \b⊗ a\c
=[v′ ⊗ u′/v] \w ⊗ u′\v ⊗ u :: (c⊗ b) \a = b\ (c\a)

For the right-hand side:

w′ ⊗ [v′ ⊗ u′/v] /w =w′ ⊗ v′/w ⊗ (u′/v) / (v′\w) :: (b⊗ c) /a = b/a⊗ c/ (b\a)
=w′ ⊗ v′/w ⊗ u′/ [v′\w ⊗ v] :: a/ (b⊗ c) = (a/c) /b

Let (P,E, Pre, Post) be a net over a lifo Petri monoidal structure ϑ =
(K,%,⊗, 1). We then can define Pre, Post : E∗ → KP by letting
(Pre(u) (p) , Post(u) (p)) = ϕ (u) (p) where ϕ : E∗ → (

K2
)P is the unique mor-

phism of monoids such that the images ϕ (e) (−) = (Pre(e) (−) , Post(e) (−)) of
the generators e ∈ E are given by the flow relations of the net. We then obtain

Pre(ε) (p) = Post(ε) (p) = 1
Pre(u⊗ v) (p) = (Pre(v) (p) �Post(u) (p))⊗ Pre(u) (p)
Post(u⊗ v) (p) = (Post(u) (p) �Pre(v) (p))⊗ Post(v) (p)

Proposition 8. Let (P,E, Pre, Post) be a net over a lifo Petri monoidal struc-
ture ϑ = (K,%,⊗, 1). The following three statements are equivalent

1. M % Pre(u) ∧M ′ = M�Pre(u)⊗ Post(u)
2. M ′ % Post(u) ∧M = M�Post (u)⊗ Pre(u)
3. M % Pre(u) ∧M ′ % Post(u) ∧M�Pre(u) = M�Post (u)

Proof.
(
M ′ � M�Pre(u)⊗ Post(u)

) ⇔ (
M ′ � Post(u) ∧ M�Post (u) � M�Pre(u)

)

together with

(M�Pre(u)⊗ Post(u) %M ′) ⇔ (M�Post (u) %M�Pre(u))

establishes the equivalence (1) ⇔ (3). Equivalence (2) ⇔ (3) follows in the same
manner.

The case of lifo nets is treated similarly.

We let M [u〉M ′ when one of the three equivalent statements of the previous
proposition is met and we say that the sequence u ∈ E∗ is enabled in marking
M and leads to marking M ′. We let M [u〉 ⇔ (∃M ′ M [u〉M ′) and [u〉M ′ ⇔
(∃M M [u〉M ′)
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Proposition 9. M [u〉 ⇔ (M % Pre(u)) and [u〉M ′ ⇔ (M ′ % Post(u))

Proof. By definition M [ε〉M always holds. The firing relation of an event e ∈ E
is given by

M [e〉M ′ ⇐⇒M % Pre(e) ∧ M ′ = M�Pre(e)⊗ Post(e)
from which the equivalenceM [e〉 ⇔ (M % Pre(e)) immediately follows. We then
proceed by induction by showing that M [uv〉 ⇔ ∃M ′ M [u〉M ′ ∧ M ′[v〉 :

M [uv〉 ⇔ [M % Pre(uv) = (Pre(v)�Post(u))⊗ Pre(u)] ⇔
[M % Pre(u) ∧ M�Pre(u) % Pre(v)�Post(u)] ⇔
M [u〉M ′ ∧ M ′ = M�Pre(u)⊗ Post(u) % Pre(v)�Post(u)⊗ Post(u) % Pre(v)
⇔ [M [u〉M ′ ∧ M ′[v〉]

The second equivalence relation is proved similarly.

6 Conclusion

We have suggested in this paper a definition of generalized Petri nets as nets
enriched over certain closed monoidal structures. In the case of non commutative
structures two semantics have been considered. The purpose of this paper was
to identify algebraic structures that allow us to mimic the token game of Petri
nets. However in order to be able to represent meaningful classes of nets, like
for instance continuous Petri nets ([5],[6]), this work should be extended, and
this can be done in several directions. First one should not necessarily consider
that place contents and flow relations take their values in the same domain :
one might consider that flow relations act on the place contents by making these
values range in some module of which events act through flow relations. In the
same manner one might also consider more complex trajectories than simply
those indexed by words. Finally it would be necessary to be able to internalize
the set of net computations in order to derive a duality between this enriched
nets and corresponding enriched automata.
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