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Abstract

The concern and interest of this PhD thesis is the registration of featureless 3D and multispectral

datasets describing cultural heritage objects. In this context, there are few natural salient

features between the complementary datasets, and the use of targets is generally proscribed.

We thus develop a technique based on the photogrammetric tracking of the acquisition systems

in use.

A series of simulations was performed to evaluate the accuracy of our method in three

con�gurations chosen to represent a variety of cultural heritage objects. These simulations

show that we can achieve a spatial tracking accuracy of 0.020mm and an angular accuracy

of 0.100mrad using four 5Mpx cameras when digitizing an area of 400mm × 700mm. The

accuracy of the �nal registration relies on the success of a series of optical and geometrical

calibrations and their stability for the duration of the full acquisition process.

The accuracy of the tracking and registration was extensively tested in laboratory settings.

We �rst evaluated the potential for multiview 3D registration. Then, the method was used

for to project of multispectral images on 3D models. Finally, we used the registered data to

improve the re�ectance estimation from the multispectral datasets.

Key-words: 2D�3D registration, close range photogrammetry, optical calibration, 3D digiti-

zation, multispectral imaging, cultural heritage
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Résumé

Cette thèse s'intéresse au recalage de données issues de capteurs 3D et multispectraux pour

l'étude du patrimoine. Lorsque l'on étudie ce type d'objet, il y a souvent peu de points saillants

naturels entre ces jeux de données complémentaires. Par ailleurs, l'utilisation de mires optiques

est proscrite. Notre problème est donc de recaler des données multimodales sans points ca-

ractéristiques. Nous avons développé une méthode de recalage basé sur le suivi des systèmes

d'acquisition en utilisant des techniques issues de la photogrammétrie.

Des simulations nous ont permis d'évaluer la précision de la méthode dans trois con�gura-

tions qui représentent des cas typiques dans l'étude d'objets du patrimoine. Ces simulations ont

montré que l'on peut atteindre une précision du suivi de 0,020mm spatialement et 0,100mrad

angulairement en utilisant quatre caméras 5Mpx lorsque l'on numérise une zone de 400mm ×
700mm. La précision �nale du recalage repose sur le succès d'une série de calibrations optiques

et géométriques, ainsi que sur leur stabilité pour la durée du processus d'acquisition.

Plusieurs tests ont permis d'évaluer la précision du suivi et du recalage de plusieurs jeux

de données indépendants ; d'abord seulement 3D, puis 3D et multispecrales. En�n, nous avons

étendu notre méthode d'estimation de la ré�ectance à partir des données multispectrales lorsque

celles-ci sont recalées sur un modèle 3D.

Mots-clés : recalage 2D�3D, photogrammétrie, calibrations optiques, numérisation 3D, ima-

gerie multispectrale, étude du patrimoine
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Chapter 1

Introduction

1.1 Problem statement

There is an increasing use of imaging techniques to study cultural heritage objects. These non-

destructive, contactless, optical techniques may not provide as accurate answers as chemical

analysis based on spot techniques or sampling, but they provide data regarding large surfaces,

even the full object. What they lack in discrimination they compensate in quantity of data

acquired. The strategy is thus to multiply the acquisitions on comparable objects with com-

plementary techniques.

We are particularly interested in two techniques that are independently gaining widespread

use for the study of cultural heritage: 3D imaging and multispectral imaging. The �rst if these

techniques models and records the 3D surface of the object under study. These models can

be used to observe the surface structure of an object without manipulating it. Art scholars

can easily examine �ne brushstrokes on paintings and chisel marks of statues. 3D models can

also be used for communication purposes to create virtual museums or as virtual archives of

the object. Multispectral imaging aims at recording the object re�ectance properties. Common

applications include producing more faithful color reproductions, guiding pigment identi�cation

and increasing readability of covered surfaces.

Combining these two methods provides 3D models with multispectral texture that are most

useful for analysis purposes, highlighting spectral and structural correlations. These integrated

models bene�t conservators who can make insights on causation relationships in spectral and

structural alterations. Such models also have clear advantages for pedagogical purposes. How-

ever, the necessary registration of multispectral and 3D data is not an easy task, particularly

when dealing with data describing cultural heritage.

On one hand, the main advantage of these techniques which has prompted their widespread

use is the fact that they are contactless. When studying cultural heritage, it is often forbidden

not only to touch the object under study, but also to approach it closer than 20 cm or 50 cm.

Though in some speci�c cases it may be possible to use targets to guide the registration, these

defeat the purpose of using contactless acquisition systems. However, registration methods that

rely on the structure of the data itself are often not adapted: the very fact that these techniques
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are complementary means that there may be few or no corresponding features between the

multimodal datasets. The problem can be not only that of �nding corresponding salient points,

but of �nding any salient point. Smooth surfaces covered with a �at tint, which are not unusual

in paintings, present no salient point, be it 3D or multispectral.

Our application requires a contactless registration technique that does not depend on the

quality or content of the data. That is, a method to register smooth and featureless multimodal

datasets. If these integrated models are to be used for analysis purposes a high registration

accuracy is essential to avoid drawing false conclusions.

Tracking the acquisition systems in use moves the focus away from the object and onto

the acquisition systems � which we do not mind manipulating. Optical techniques are the

path of predilection for contactless acquisitions and we build on these strengths to devise a

registration technique based on photogrammetry. This means we will need a set of camera

systems in addition to the acquisition systems, to perform the tracking. Though this may seem

cumbersome, photogrammetry is a highly �exible technique which can provide accurate results.

This interdisciplinary work relies on many distinct �elds in image processing (3D data acqui-

sition and processing, multispectral acquisition and processing, registration, photogrammetry)

while keeping a strong sensitivity to the needs and requirements of the conservation community.

1.2 Context

This work stems from a long and on-going collaboration between the le2i laboratory in Dijon

(France) and i3mainz laboratory in Mainz (Germany). Since 2004 these two laboratories have

been developing common projects along the thematics of 3D data processing, multispectral

imaging, cultural heritage and knowledge management. This collaboration is marked by many

exchange students (in particular bachelor and masters internships), several co-advised PhDs,

and research stays of several month for post-docs. These exchanges have resulted in a variety

of common publications (among which [Ben Hmida et al., 2012; Karmacharya et al., 2010a,b;

Li et al., 2008, 2009]).

As a co-advised PhD student myself, I spent time both in Dijon and in Mainz, in roughly six

month alternations. A few additional visits from France to Germany were necessary, since all ac-

quisitions were performed in Mainz. Support for multispectral data acquisition and processing

was provided by the le2i, while I relied on i3mainz's expertise on 3D digitization and pho-

togrammetry. Insights for cultural heritage were provided by Adrian Heritage, formally from

the Cologne Institute of Conservation Science (Cologne, Germany) and by our collaborators

from the IFS (Institut für Steinkonservierung � Institute for stone conservation, Germany).

1.3 Motivation

I3mainz laboratory has strong ties with many local cultural institutions such as RGZM (Römish-

Germanishes Zentralmuseum � Roman-German Central Museum, Mainz, Germany) and IFS.

As part of the collaboration with IFS, several stone artifacts have been digitized by i3mainz

for monitoring purposes, in particular a sandstone sarcophagus from the late 3rd century A.D.
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Figure 1.1: 3D rendering of the crypt and the sarcophagus.

and a series of wall paintings from the 16th century. The objects, the conservation problems

they pose, and past acquisitions are quickly presented to highlight the need for a registration

method adapted to this type of data.

1.3.1 Objects of interest

Sarcophagus

This sarcophagus was discovered by archaeologists about �fty years ago in a crypt under the

Friedhofs Chapel of theSt. Matthias Abbey, Trier (Germany). Unfortunately, the microclimate

in the crypt is uncontrolled and the �uctuating relative humidity and air �ow around the sar-

cophagus is damaging the stone and its fragmentary remains of polychromy. This is particularly

the case on the area of the sarcophagus facing the entrance of the chamber (see �gures 1.1 and

1.2). This side of the sarcophagus is the most subject to erosion as air enters from the stairway

and �ows out through openings over the sarcophagus. Traces of polychromy on the surface of

the sarcophagus are �aking while the stone itself erodes.

An area of approximately 400 mm × 700 mm � the left half of the most degraded face

� has been digitized and studied. 3D models of this area were acquired in December 2008,

December 2009 and January 2011. A few adhesive targets were stuck to the surface to guide

the 3D registration of the multiple views and to permit the comparison of the 3D models over

time. However, the same process that is damaging the sarcophagus surface is also causing these

targets to fall, making them unreliable global targets for temporal registration. In 2009, seven

multispectral acquisitions were also performed. The need to precisely register the multispectral

data with the 3D model stems naturally from the will to understand the correlations between

the structural and spectral surface degradation.
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Figure 1.2: Front face of the sarcophagus. Notice the remains of polychromy, the surface �aking
and the uncoded targets surrounding the area under study.

Wall paintings

The group of 16th century wall paintings we study is located in the Brömser Hof in Rüdesheim

(Germany) � a small castle that still belongs to the Brömser family and currently houses a

regional museum of mechanical instruments. Two adjacent rooms of this castle are entirely

covered with wall paintings: the chapel (Hauskapelle) and the Ancestor Hall (Ahnensaal).

Three inscriptions on the wall paintings date them to 1558 and 1559 and they are attributed

to Hans Ritter known as Döring and a student of Lucas Cranac the Elder. The wall paintings

were discovered and freed in 1898 � 1900. They are globally well preserved except for a few

small losses. Unfortunately, they are in unstable conditions.

Due to damage to the building roof during the second world war, the wall paintings were

exposed to weathering for several years. In the 1980s the roof was repaired and a horizontal

barrier was installed to stop the penetration of moisture. However, the e�ects of past humidity

are still felt today, causing the surface to �ake as salts resurface. In particular, this has caused

the formation of an overlying casein �lm on the wall paintings. Not only does this �lm have

a strong visual impact per se, as it turns yellow with aging, but it also binds highly to dust

and dirt, further tarnishing the readability of the painting. Moreover, this �lm becomes brittle

and cracks as it ages, ripping o� the paint layer. This process is exacerbated by the climate

variability in the building. The humidity has more impact on the coating than on the wall,

causing the two to dissociate.

In the 1990s small-scale consolidation experiments were performed on the paint layer without

removing the heterogeneous casein �lm. Unfortunately it became evident in 2005 that these

experiments had no lasting e�ects. These wall paintings were again partially cleansed in 2009
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Figure 1.3: Flaking wall painting representing a bird on a balcony. Coded and uncoded targets
are scattered around the area of interest.

to try to remove this casein �lm. Our goal is to monitor changes in these wall paintings and to

detect any di�erences in the alteration of the restored and unrestored surfaces.

We have studied three areas in the past. The �rst is area, from the chapel room, measures

approximately 500 mm × 500 mm and represents a bird on a balustrade (see �gure 1.3). The

�aking surface was digitized using a 3D scanner in October 2008. A series of adhesive coded

and uncoded targets was once again used to guide the 3D registration. Two large multispectral

acquisitions were also performed on this area, as well as three smaller ones, in February 2009.

The small acquisitions were repeated in March 2010.

The second wall painting we are interested in is a full wall of the Ancestor Hall representing

Jonah and the whale in the Rhine river, in front of the city of Mainz (see �gure 1.4). It is the

�rst known representation of Mainz. The right half of this wall was cleansed in 2009. Multi-

spectral acquisitions of both the cleansed and non-cleansed side were performed in February

2009 and repeated in March 2010. However, no 3D digitizations were performed of this large

area (measuring more than 1.5 m × 2 m). This would have required a high number of targets

which would have greatly impaired the readability of the wall painting.

The third area we study is a panel near the window of the Ancestor Hall. This last area,

also presents visible �aking (see �gure 1.5). Three multispectral acquisitions were performed in

February 2009 and repeated in March 2010.

1.3.2 Previous registration technique

We acquired both 3D and multispectral data for two areas of interest : the sarcophagus and

the �rst wall painting. Preliminary registration tests were based on the manual input of cor-
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Figure 1.4: Jonas and the whale in the Rhine, in front of the city of Mainz. Wall painting
partially cleansed in 2009 (right side).

Figure 1.5: Third wall painting under study.
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(a) (b)

Figure 1.6: Acquisitions of the surface of the sarcophagus. (a) Color rendering of a multispectral
acquisition (b) Multispectral acquisition mapped to a 3D model.

(a) (b)

Figure 1.7: Acquisitions of the surface of the �rst wall painting. (a) Color rendering of a
multispectral acquisition (b) Multispectral acquisition mapped to a 3D model.

responding points between a Digital Elevation Model (DEM) and a multispectral acquisition.

These points were used to calculate the a�ne transformation to apply to the multispectral

model to map it on the 3D data.

Manually selecting control points is not only a long and tedious task, it also proved to be

di�cult: in the case of the wall paintings there are few common salient features between the

multispectral and 3D data. A pair of resulting mappings are shown �gures 1.6 and 1.7. Each

of these mappings was created by manually selecting �ve corresponding points. However, the

residuals of these control points are not satisfactory: they are between 1.4 pixels and 7 pixels in

the �rst case and reach a maximum of 2 pixels in the second case. This preliminary work has

been published in [Simon et al., 2010].

Challenges

These prefatory acquisitions and processing pinpoint the following problems and di�culties:

� We can only use markers in rare and speci�c cases.
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� These markers were su�cient in number and size for the registration of multiple 3D views

� These markers were not su�cient in number to register the 3D and multispectral data.

� These markers tarnish readability.

� For monitoring purposes, markers have to stay in place over a long time period, but they

fall o� as the surface degrades.

� Hand picking salient points is time-consuming and not robust.

� Sometimes there are few/ no good salient points between di�erent data representations.

A review of the literature taught us that our problems are common when treating with

cultural heritage and that no straightforward solution exists for the multimodal registration of

featureless datasets. We use contactless acquisition systems to avoid damaging the object, as

such we also need a contactless registration technique that works for smooth and featureless

multimodal datasets.

1.4 Contributions

We develop our own registration method based on the photogrammetric tracking of the acqui-

sition systems. The strengths and contributions of this method are:

� A method suitable for registering data with no salient features.

� A registration precision independent from the content of the acquired data.

� A registration method which works for di�erent optical sensors.

� A �exible solution suitable for di�erent applications.

So far this method has only been evaluated on test objects in laboratory settings. It was

essential to solve the practical and logistical di�culties in controlled settings before using the

method in situ. It was also important for us to assess the potential of the method for general

registration purposes, and not only in the two speci�c con�gurations presented here.

Some of these tests were performed on objects with much greater spectral and structural

variability than the objects we developed it for. This enabled a quick visual assessment of the

accuracy of the �nal registration. Other tests were performed on featureless objects which we

covered with targets, using these targets only for the evaluation of the tracking accuracy. Finally

the method was applied to an object which presents similar spatial and spectral variations as

the sarcophagus. These important steps permitted to assess the strengths and the accuracy of

our method before applying it to the study of cultural heritage.
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1.5 Overview

A state of the art of 3D and multispectral acquisition and registration techniques adapted

for the study of cultural heritage is given chapter 2, a version of which has been published

as [Simon Chane et al., 2013a]. This review highlights the need of a registration method for

multimodal featureless datasets for the study of cultural heritage. This chapter also shows that

the optical tracking of the acquisition systems can be a suitable technique on which to base the

registration. The achievable accuracy of tracking the acquisition systems using photogrammetry

was evaluated through a series of simulations, described in chapter 3 and partially published in

[Simon et al., 2012].

This technique was �rst tested for the registration of featureless 3D datasets in chapter 4.

In this chapter we also evaluate the overall tracking accuracy and the stability of the systems

in play. Chapter 5 presents the registration of 3D and multispectral data using our method:

some of these results were published in [Simon Chane et al., 2013b]. Finally, chapter 6 shows

a possible application of these registered 3D/ multispectral datasets. A conclusion presents

future work and perspectives in chapter 7.
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Chapter 2

State of the Art

Cultural heritage is a favorite application domain of the image processing and computer graphics

community. We enjoy developing tools to study and analyze these unique and precious surfaces.

We strive to create accurate virtual representations of cultural heritage objects, even though

this might not be the goal of conservators. When studying highly two dimensional objects

such as paintings, multispectral imaging is the path of predilection. For statues, we favor 3D

digitizations.

Of course it is not uncommon to create 3D models of paintings, and multispectral imaging

is sometimes used on non-planar objects. But the growing interest is in combining these com-

plementary datasets to create 3D models with multispectral texture. Such models can be used

for virtual reality applications such as virtual museums. Most importantly, 3D models with

multispectral texture are an improvement on 3D models for the analysis and study of works of

art. Conservators can gain much insight from these augmented models.

However, multispectral cameras and 3D digitization systems are built on di�erent concepts.

There are di�culties associated with both developing integrated multispectral 3D digitization

systems and registering independent datasets via post-processing. Creating multispectral 3D

models is not a straightforward task.

This review details acquisition systems and algorithms that can be used to obtain multi-

spectral 3D models of cultural heritage objects. The applications of each technique are meant

to highlight the potential of multispectral 3D models for the analysis of works of art. My scope

is limited to the study of cultural heritage objects as opposed to full buildings, archaeological

sites or cities. The term "object" is used to describe anything from the smallest archaeological

fragment to 5m high statues and wall paintings that cover full rooms. Systems and algorithms

optimized for the digitization of full cities or archaeological sites are only mentioned to the

extent that they can be adapted to smaller volumes.

The accent is put on non-contact acquisition systems. Contact acquisition systems are

hardly ever used for the study of cultural heritage, as they risk damaging the object under

study. As such, they are only mentioned in passing. Portable systems that can be used directly

in museums, monuments or any other non-laboratory site are put forward. We also highlight

�exible solutions that can be adapted to the variability of the objects under study. In heritage
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settings, objects of similar size, shape and material have an individual history that can in�u-

ence the acquisition process and systems with variable �eld-of-view and resolution are most

appreciated.

This chapter is organized as follows: We �rst introduce multispectral acquisitions and mul-

tispectral data processing, with an accent on systems developed for the analysis of cultural

heritage objects and the possible uses of such data. Then 3D digitization techniques are ex-

plored. Great 3D digitization campaigns and the various uses of 3D models for conservation

purposes are described. We then present the most common methods used to obtain 3D data

with multispectral or color texture, using either integrated devices or registration algorithms.

Finally, we show the potential of photogrammetry-based optical tracking for multimodal regis-

tration.

2.1 Multispectral imaging

2.1.1 Limitations of color imaging

The perceived color of an object is a function of the spectral re�ectance of its surface, the

spectral distribution of the illumination and the spectral sensitivities of the cones in the eye.

A recorded color image is thus both device and illuminant dependent. When a surface is

acquired under a given illuminant, it is impossible to estimate the surface color accurately

under another illuminant in the absence of additional information on the spectral re�ectance.

In conventional color imaging, each pixel is characterized by three components such as red,

green and blue. These three components are necessary and su�cient to synthesize any color

from a colorimetric point of view, but imaging systems based on three primary colors present

a number of limitations:

� Conventional RGB chips violate the Luther rule which states that a sensor can distinguish

the same colors as the human eye only if the spectral responses of this sensor can be

obtained by a linear combination of the S, M and L eye cone responses.

� Due to metamerism, two surfaces with strongly di�erent spectra can appear identical

under a given illuminant and completely di�erent under another.

� The use of color information in image databases is limited by the fact that recorded RGB

signals depend on the acquisition devices, the illuminants and image preprocessing.

These drawbacks result from the weak spectral resolution of conventional color imaging

systems. A high spectral resolution allows a better estimation of the surface re�ectance. This

in turn permits a better characterization of its intrinsic physical properties regardless of the

acquisition conditions (illuminant, acquisition device). It is possible to acquire color-accurate

images with conventional trichromatic sensors by working in adapted color spaces such as

CIELAB [Berns, 2001]. However, systems that acquire more than three spectral components

permit a better estimation of the re�ectance. Such systems are called "multispectral".

It is common to acquire 31 bands between 400 nm and 700 nm (that is, one channel every

10 nm) but Berns et al. [2005] state comparable spectral precision can be obtained using less

12
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than 10 bands. There is thus a great variability in the number of bands acquired by multispectral

acquisition systems. When more than 100 bands are acquired the term "hyperspectral" is used

while "ultraspectral" describes devices with thousands of bands. During the last two decades,

multi- and hyperspectral imaging systems have shown great potential in domains as varied as

remote sensing, agronomy, industrial quality control, metrology, medical imaging and artwork

digitization.

2.1.2 Multispectral acquisition systems

As opposed to spectrophotometers which acquire spectra with nanometric precision in a single

spot, multispectral imaging systems acquire data along two spatial dimensions and one spectral

dimension. This is usually referred to as a multispectral cube. This data is generally acquired

along two dimensions at a time and scanned across the third dimension. There are thus two

acquisition paradigms: In the �rst case successive images of a given area are acquired at varying

wavelengths. In the second case spatio-spectral images are acquired and there must be some

motion of the acquisition sensor to acquire data along the other spatial dimension [Cotte and

Dupouy, 2003].

Multispectral scanners and imagers are generally categorized based on the �ltering technol-

ogy used:

Optical �lters These �lters (most often interference �lters) are generally mounted on a rotat-

ing wheel or another mechanical device. The �lters are sequentially positioned in front of

a panchromatic sensor to acquire a single image in the range of the �lter [Brauers et al.,

2008; Mansouri et al., 2005c; Pelagotti et al., 2008; Yamaguchi et al., 2008]. We deal

with the case in which the �lters are placed between the light source and the object in

the paragraph titled "tunable light sources".

Various algorithms can be used to compensate geometric distortion [Brauers et al., 2008;

Mansouri et al., 2005c], longitudinal aberrations [Brauers and Aach, 2008a] and ghosting

[Brauers and Aach, 2008b] introduced by the �lter-wheel. The use of optical �lters has the

disadvantage of creating a �x setup, with cumbersome �lter-wheels. The size of the �lter

wheel limits the number of spectral bands. The long acquisition times can be reduced

by using a synchronized �ash [Brauers et al., 2009], though such strong lights are not

adapted to study of cultural heritage.

Electronically tunable �lters LCTFs (Liquid Crystal Tunable Filters), AOTFs (Acousto-

Optic Tunable Filters) and adapted Fabry-Perot devices allow to electronically select the

�ltering band. This greatly speeds up the acquisition process compared to �lter-wheel

systems [Berns, 2005a; Hardeberg et al., 2002; Hardeberg, 1999; Miyazawa et al., 2001;

Novati et al., 2005]. Devices based on such �lters are also very �exible since the number

and width of bands can be changed programmatically.

Poger and Angelopoulou [2001] have compared the characteristics of these three types

of electronically tunable �lters. Most importantly, AOTFs have a high transmission rate

(98%) but they require collimated light while LCTFs and Fabry-Perot devices su�er from

a low transmission rate (lower than 50%).
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I (λ)

r (λ)

t k (λ) o(λ) c (λ)

d k

Figure 2.1: Spectral model of emission �ltering multispectral acquisition systems. I (λ) repre-
sents the spectral radiance of the illuminant, r (λ) is the spectral re�ectance of the surface, tk (λ)
denotes the spectral transmittance related to the kth �lter, o (λ) is the spectral transmittance
of the optical system, c (λ) is the spectral sensitivity of the camera.

I (λ)

r (λ)

t k (λ)

o(λ) c (λ)

d k

Figure 2.2: Spectral model of excitation �ltering multispectral acquisition systems. Notations
are the same as those used in �gure 2.1.

Extension of Color Filter Arrays (CFAs) Instead of positioning �lters in front of the sen-

sor, extended mosaicking of CFAs is used to obtain more than three color bands [Berns

et al., 2005; Brauers and Aach, 2006; Miao et al., 2004]. The practical use of this type of

multispectral system is still being investigated.

Tunable light sources Instead of �ltering the light re�ected from the object (emission �l-

tering), it is possible to successively project light at di�erent wavelengths on the object

(excitation �ltering). Emission and excitation �ltering are illustrated �gures 2.1 and 2.2,

respectively.

A common strategy in excitation �ltering is to use multiplex multicolor LED illumination

as a tunable light source [Bouchard et al., 2009; Everdell et al., 2009; Park et al., 2007].

This solution is gaining popularity with the increasing availability of LEDs in an increasing

variety of colors. Other systems based on excitation �ltering rely on optical �lters [Jolivot

14



2.1. Multispectral imaging

et al., 2011; Martinez et al., 2002; Tominaga and Tanaka, 2008] or digital light processing

[Zuzak et al., 2009] to create a tunable light source.

To avoid contaminating the acquisition with stray light, multispectral acquisition systems

based on excitation �ltering must be used either in contact with the object, or in a dark

environment. Because of these constraints, few multispectral imagers for cultural heritage

are built on excitation �ltering.

Additionally, spatially varying �lters [Schechner and Nayar, 2002] or prisms [Du et al.,

2009] can be used in scanning devices to acquire wide-�eld of view multispectral images or

multispectral videos.

Among the recent advances in multispectral imaging, Kawakami et al. [2011] combined a

high spatial resolution RGB sensor with a low resolution MS camera to obtain high spatial

resolution spectral images. The results are promising though the method produces some errors

and is thus not mature enough to be used for the analysis of cultural heritage.

2.1.3 Multispectral imaging for cultural heritage

Many multispectral acquisition systems have been developed for the study of cultural heritage.

We present a selected few, starting with the most well known and large projects and �nishing

with lab-scale projects and the applications of multispectral imaging for cultural heritage. Ta-

ble 2.1 summarizes the technical characteristics of existing acquisition systems developed for

the study of cultural heritage.

In the early 1990's the VASARI project [Martinez et al., 2002] focused on the development

of a 12 band multispectral acquisition system based on a �lter-wheel tunable light source. Using

a 3000 × 2000 pixel CCD and a gantry, the system captured 20 000× 20 000 pixel acquisitions.

At the time, such high spectral resolution came at a high cost : it took about 3 hours to

digitize a 1 m× 1 m painting. However, this was a remarkable project that opened the path to

multispectral imaging of paintings for conservation, material identi�cation and multispectral

printing.

The European project CRISATEL [Ribés et al., 2005] also aimed at developing a multi-

spectral acquisition system for the analysis of paintings. The device is based on a linear CCD

(12 000 pixel) which is mechanically displaced to acquire 20 000 vertical lines. 13 interference

�lters are used (10 in the visible and 3 in the near infrared) to cover the 380 nm to 1000 nm

range. This multispectral camera is used in conjunction with a dedicated synchronized lighting

system. With a comparable spatial resolution to the VASARI camera, this device digitized the

surface of the Mona Lisa (78 cm × 82 cm) in an hour and a half [Cotte and Dupraz, 2006b].

This system is also less bulky than the one developed by the VASARI team.

Both the VASARI and the CRISATEL systems were developed within large projects, but it is

possible to develop small-scale multispectral acquisition systems with reasonable means [Berns

et al., 2008; Novati et al., 2005; Pelagotti et al., 2008; Tominaga and Tanaka, 2008]. These four

systems are image-based and they acquire much smaller areas than the previous two systems.

However, their acquisition time is less than a few minutes and tiling can be used to acquire

larger areas. The system developed by Pelagotti et al. [2008] is particularly impressive as it
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2.1. Multispectral imaging

acquires visible re�ectance, infrared re�ectography and UV-�uorescence, a combination of data

most adapted for the study of paintings.

Applications

Multispectral data alone lacks the spectral resolution necessary to distinguish artist pigments

[Martinez et al., 2002] but it can be used as a complement to spot techniques for material iden-

ti�cation [Delaney et al., 2005; Pelagotti et al., 2008] or to distinguish metamers [Colantoni et

al., 2006; Delaney et al., 2005], an important step before restoration campaigns. Multispectral

imaging has been used to increase the readability of palimpsests using pseudocoloring [Bloechl

et al., 2010; Easton Jr. Et al., 2003; Rapantzikos and Balas, 2005]. In the same vein, virtually

restoring the original colors of paintings [Berns, 2005b] can increase their readability. Multi-

spectral images can be used for the analysis of cracks and the study of varnish aging [Cotte

and Dupraz, 2006a,b]. This is both important to understand the history of the painting and

to guide the virtual restoration. The use of multispectral data for virtual archives is also a

common application [Martinez et al., 2002; Tominaga and Tanaka, 2008].

The possibility to view the digitized surface under arbitrary illuminants [Ribés et al., 2005;

Tominaga and Tanaka, 2008] is a real strength of multispectral data. This can be used to view

digitized versions of the artworks under broad daylight when such conditions could damage

fragile pigments such as those of watercolors. It is also possible to simulate the illumination

environment before exhibiting a work of art. Multispectral acquisitions are also the �rst nec-

essary step for multispectral printing using 6 or 7 color inks [Berns et al., 2008; Imai et al.,

2001].

2.1.4 Re�ectance estimation from multispectral data

Multispectral imaging aims at acquiring the re�ectance of the surface of the scene rather than

its color. Increasing the number of acquisition channels eases this process but re�ectance

estimation from the acquired images is not trivial and requires appropriate models. The most

used spectral model of the acquisition chain in color and multispectral systems is illustrated

�gure 2.1.

Using the notations introduced in this �gure, and with ηk representing the spectral noise

for the kth channel with k = 1 . . .K, the camera output dk, related to the channel k for a single

pixel of the image is given by:

dk =

∫ λmax

λmin

I (λ) r (λ) o (λ) c (λ) tk (λ) dλ+ ηk. (2.1)

If we assume that the noise is removed by preprocessing [Mansouri et al., 2005a,c], and assume

a linear optoelectronic transfer function, we can replace I (λ), c (λ), o (λ) and tk (λ) by the

spectral sensitivity Sk (λ) of the kth channel. Equation 2.1 thus becomes:

dk =

∫ λmax

λmin

Sk (λ) r (λ) dλ. (2.2)
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By regular sampling of the spectral range at N wavelengths, equation 2.2 can be written in

matrix notation as follows:

dk = STk (λ) r (λ) , (2.3)

where STk (λ) = [sk (λ1) sk (λ2) . . . sk (λN )] is the vector which describes the spectral sensitivity

of the kth channel of the acquisition system, r (λ) = [r (λ1) r (λ2) . . . r (λN )]
T is the vector of

the sampled spectral re�ectances of the scene and T is the transpose vector operator. If we

consider a system with all channels, equation 2.3 can be written as:

d = ST r, (2.4)

where d is the vector containing all dk camera outputs and S = [s1 s2 . . . sK ] is the matrix

containing the channels' spectral sensitivities Sk. The �nal goal is to recover r from the camera

output given by equation 2.4. This is obtained by �nding an operator Q that satis�es r̃ = Qd.

Many methods permit this estimation [Cheung et al., 2005; Day, 2003; Haneishi et al., 2000;

Imai et al., 2000; Imai et al., 2003; Shi and Healey, 2002; Zhao and Berns, 2007] , most of which

can be categorized depending on how matrix S is determined.

� If S is obtained by a direct physical system characterization [Imai and Berns, 1999; Shen

et al., 2007; Tominaga, 1996; Zhang and Xu, 2008], the operator Q is the inverse of S.

However, since S is usually not a square matrix, its inverse does not exist. Only a pseudo-

inverse or another regularized inverse such as Wiener can be calculated. Thus Q = S+

where + is the pseudo-inverse operator. The main drawback of this technique is that it is

highly noise sensitive and the matrix inversion further ampli�es the noise.

� S can also be obtained indirectly by matching a set of M patches of known theoretical

re�ectance with a multispectral acquisition of these patches captured by the camera [Imai

and Berns, 2002; Mansouri et al., 2005b]. We then have a set of corresponding pairs

(dm, rm), for m ∈ J1,MK, where dm is a vector of dimension K containing the camera

responses, and rm is a vector of dimension N representing the spectral re�ectance of

the mth patch. The rm re�ectances are gathered in matrix R and the camera outputs

for the M patches are gathered in matrix D. The operator Q is obtained directly by

calculating this match. Any optimization method can ful�ll this aim (neural networks,

least squares regression, etc.). Q is obtained from R = QD through the pseudo-inverse

of D : Q = RD+.

� The third paradigm for spectral re�ectance estimation consists in directly interpolating

the camera outputs dk [Bianco et al., 2008; Connah and Hardeberg, 2005]. No knowledge

about the matrix S is required. However, rigorous conditions about the shape and number

of �lters make this technique ine�ective for re�ectance estimation in the general case.

As part of the re�ectance estimation based on a di�use light model, it is also necessary to

separate specular components of the images [Bajcsy et al., 1996; Lin and Shum, 2001; Tan and

Ikeuchi, 2005; Wol�, 1990]. The �rst and third paradigms also require the separation of the

illumination and surface re�ectance [Chang and Hsieh, 1995; Drew and Finlayson, 2007; Ho

18



2.2. 3D digitization

et al., 1990; Maloney and Wandell, 1986; Ohta and Hayashi, 1994; Tominaga and Wandell,

1989].

2.1.5 Perspectives

Multispectral acquisition systems with high spatial and spectral resolutions are currently re-

stricted to large laboratories and projects with considerable means. There are still many aspects

of multispectral imaging that require deeper investigation for its widespread use in conserva-

tion. It is possible to develop multispectral cameras with high spectral resolution and somewhat

limited spatial resolution with a reasonable budget. The spatial resolution of such systems is

increasing as bigger sensors become widely available. Though somewhat portable, these systems

remain cumbersome and require a computer to pilot them. It is thus necessary to develop fully

integrated, portable multispectral acquisition systems with high spatial and spectral resolution.

Also, the spectral acquisition range of existing systems is often limited to the visible. Though

it is di�cult to �nd sensors with a high responsivity from the UV to the IR, multispectral

cameras which can acquire data over larger ranges are needed for the analysis of cultural

heritage. UV �uorescence and IR re�ectography are common imaging tools for conservators.

The former is mainly used to study varnishes while the later permits the study of charcoal

and pencil underdrawings. Improving these techniques' spectral resolution results in useful and

easily grasped data for the conservation community.

Characterization and calibration algorithms currently used for light/re�ectance separation

and spectral reconstruction are based on simpli�ed light/matter interaction models. Acquisition

systems and algorithms adapted for the digitization of non-planar, glossy, transparent, surfaces

must still be developed. This is of utmost importance since such surfaces are often found on

cultural heritage objects: glossy varnishes on paintings, metal and glass artifacts, bas-reliefs,

etc.

For the widespread adoption of multispectral imaging by conservators it is also necessary to

improve existing visualization and analysis tools [Jordan and Angelopoulou, 2010; Kim et al.,

2010]. The amount of data acquired by multispectral imaging systems can be overwhelming

for the non expert and it is di�cult both for computers and humans to interpret such high-

dimensional data. It is also important to develop intuitive interfaces adapted to users with no

computer science background. Image processing algorithms generally used for the analysis of

cultural heritage [Barni et al., 2005] must be extended to multispectral imaging. This includes

Speci�c algorithms that exploit the wealth of data acquired by multispectral systems must also

be developed. Such tools have to be created hand in hand with the conservation community to

provide them with methods they need.

2.2 3D digitization

2.2.1 3D digitization as a conservation tool

The reproduction and documentation of works of art is traditionally based on photography, even

for three dimensional objects such as statues. Color photos are part of condition assessment
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reports which are elaborated by museums prior to lending an object of their collection to another

museum. They illustrate the current condition of the object and are relied on if it is necessary

to prove that the object was damaged during the loan. The use of multispectral acquisitions

can make this process more rigorous by recording the spectral re�ectance though, like photos,

multispectral acquisitions only record two spatial dimensions.

There are obviously serious limitations to using two spatial dimensions to describe a three

dimensional object. A collection of pictures (or a video) can only represent the object from

prede�ned viewpoints and not as a comprehensive whole. No matter how methodical and pro-

fessional, there is always the risk that a photographic campaign does not record with su�cient

detail an area which will undergo spatial damage that may need a quantitative evaluation. In

comparison, a digital 3D model can record the surface condition of an entire object at a given

moment.

This section �rst gives a concise overview of the existing 3D digitization systems. We then

present various large-scale 3D digitization projects for the study and conservation of cultural

heritage. Other uses of 3D models for the study of cultural heritage are given at the end of this

section.

2.2.2 Principles and devices

3D digitization techniques are generally categorized in active and passive techniques. Active

digitization systems integrate a light emitting system which is used to highlight surface struc-

tures and �ne details, whereas passive techniques depend on ambient light.

Passive 3D digitization techniques

Historically, photogrammetry is the passive digitization technique most used for the study

of cultural heritage. Photogrammetry is the science of measuring the position and shape of

objects using photography. It is often used in surveying by processing satellite images or aerial

photographs. When the camera is relatively near the subject (a few meters), as in the case

when studying cultural heritage, the technique is called close range photogrammetry and relies

on di�erent geometric assumptions. In the rest of this document the word "photogrammetry"

denotes close range photogrammetry.

The advent of digital cameras has prompted the widespread use of photogrammetry in the

cultural heritage community and elsewhere. This �exible and well documented technique [Luh-

mann, 2010b; Remondino et al., 2008] can be performed with consumer cameras. Though

practice makes for more reliable measurements, the technique is easy to apprehend by non

experts since it consists in simply taking pictures of the scene. Not only is photogrammetry

a contact-less digitization technique, it is also performed at very safe distance from the object

and large volumes can be digitized quickly [Yilmaz et al., 2008].

In stable and well calibrated setups, o�-line photogrammetry systems, reach a potential

measurement precision of up to 1:500,000 with respect to the largest object dimension [Luh-

mann, 2010a]. To achieve such precision, the intrinsic camera parameters must be determined

with great accuracy. Such intrinsic parameters are also called the camera interior orientation
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(I.O.) and include sensor resolution, focal length, lens distortion, principle point o�set, pixel

ratio, pixel skew, etc. The exterior orientation (E.O.) of a sensor is its position and orienta-

tion in a �xed system. These parameters, as well as the object coordinates, are estimated by

recognizing corresponding points in the images.

Lately, several algorithms have emerged which automatically create 3D models from un-

calibrated images [Agarwal et al., 2009], for example using Multi-View Stereopsis [Furukawa

and Ponce, 2010]. This type of techniques is well adapted to the documentation of archaeological

sites [Pollefeys et al., 2003]. To encourage the use of such techniques by conservators, Vergauwen

and Van Gool [2006] have developed a web-based 3D reconstruction service for cultural heritage.

The user must simply upload a set of photos and is noti�ed when the 3D reconstruction is

done. He can then download the original images, the camera calibrations, quality parameters

and depth maps. The authors also provide an interactive viewer to analyze the data.

Other passive digitization techniques include shape from shading [Zhang et al., 1999], shape

from silhouette [Forbes et al., 2006], as well as shape from edges, -texture, -focus. Though

generally easy to setup, these techniques su�er from low accuracy [Pavlidis et al., 2007].

Active 3D digitization techniques

The most used active digitization techniques are time of �ight (TOF) and triangulation laser

scanners as well as systems based on the projection of structured light. Time of �ight laser

scanners digitize a scene point by point based on the time a laser beam takes to hit an obstacle

and re�ect back. This technique is suitable to digitize large object � even full archaeological

sites [Guidi et al., 2008] � with a resolution of a few millimeters.

Triangulation laser scanners project a line of light on an object and derive the shape of the

object from the line deformation. These systems are adequate to scan small [Seulin et al., 2006]

and medium-size objects with an accuracy of a few micrometers.

The projection of structured light is another triangulation-based 3D digitization technique

and achieves comparable accuracy as triangulation laser scanners. A projector illuminates the

surface with predetermined patterns. These images are captured with one or more cameras and

the deformation of the pattern is used to evaluate the shape of the object. This technique is

the most used for the digitization of cultural heritage objects. It is relatively easy to develop

a lab prototype [Rocchini et al., 2001a], and many commercial systems exist. The most widely

used for conservation purposes are those developed by GOM, Breuckmann, and Steinbichler.

Fraunhofer has developed a compact, cordless, handheld device [Fraunhofer, Kolibri ].

State-of-the art active digitization techniques include shape from polarization [Ferraton et

al., 2009] using a multispectral light source or shape from heating [Bajard et al., 2011; Eren

et al., 2009].

2.2.3 From 3D acquisitions to a 3D model

3D digitization is but a single step in creating 3D models, the full 3D processing pipeline is

described in [Bernardini and Rushmeier, 2002]. Since my focus is on data registration, I will

examine these techniques in greater detail. Even if we only acquire 3D data, a registration phase
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is often necessary to create a complete 3D model. When digitizing but the smallest objects,

multiple acquisitions must be performed and stitched together. The registration process highly

in�uences the accuracy of the end model and is thus a critical step in digitizing cultural heritage

artifacts.

Algorithms

In the case of highly spatially-structured objects such as statues, the registration may pro�t

from the spatial characteristic of the object itself and use local shape information expressed

in grouped points, which are then transformed by algorithms like the Iterative Closest Point

algorithm (ICP) [Besl and McKay, 1992]. Given an initial positioning of two 3D point clouds,

the algorithm converges by minimizing the root mean square derivation of the overlapping areas.

However, the initial positioning must be quite precise otherwise the algorithm converges towards

a local minimum. Also, this algorithm requires a 30 � 40% overlap between contiguous views to

ensure a reliable registration. This algorithm is generally not adapted to register views of �at

objects such as painting or wall paintings, though some variants tackle this issue [Rusinkiewicz

and Levoy, 2001].

There is great focus on automating the registration process to boost the use of 3D models

by the conservation community [Andreetto et al., 2004; Guarnieri et al., 2003]. Andreetto et al.

[2004] describe a fully automatic registration pipeline for 3D models of cultural heritage objects

which takes into account both shape and texture information and is thus particularly useful for

symmetrical objects with a distinct texture, such as painted vases.

Mechanical tracking

When scanning small objects, the registration process can be easily sped up by placing the

object on a turntable and relying on its positioning information. In this case another technique

must be used to register top and bottom views of the object. Often targets are placed on the

turntable to be used as corresponding points between views.

Many commercial handheld scanners rely on the deformation of a six degrees of freedom

(6DoF) arm to evaluate the relative position of each stripe acquisition [Faro, Edge]. In this

case, the surface that can be digitized is limited by the range of the arm.

Optical tracking

A new generation of handheld laser scanners relies on optical tracking of the scanning probe to

register the �ow of acquisitions. In this setup active or passive targets are �xed to the acquisition

system. A �xed laser tracker [Leica, T-Scan] or a �xed photogrammetric setup [Creaform,

MetraScan; NDI, ScanTrak ; Steinbichler, T-Scan] determines the position and orientation of

the sensor at each moment.

A variation on the use of optical tracking for range registration is presented in [Kawasaki

and Furukawa, 2004]. Active targets are �xed to a laser projector. The object under study is

placed on a turnable and a �xed video camera observes the full scene (projector, turntable and
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object). The video stream provides both the relative position of the object and projector and

the shape of the object given the deformation of the projected stripe.

This type of optical tracking can also be performed by �xing targets around the scene and

attaching the tracking sensors to the acquisition system. This is the con�guration used in

[Valkenburg et al., 2006]: Six cameras are �xed to a handheld TOF laser scanner and observe

the surroundings while the scanning occurs. Since active targets have been placed in the scene,

it is possible to compute the position and orientation of the scanner relative to the targets.

This data is in turn used to register the range data.

An example of optical tracking for 3D registration in the context of cultural heritage study

is given by Blais et al. [2005]. They scanned a painting with both a high resolution color laser

scanner and a lower-resolution laser scanner. The lower-resolution scanner acquired the full

painting in a single scan and was also used to project optical markers on the surface of the

painting, de�ning the sub-areas to scan with the high-resolution scanner. White spheres were

mounted on the high resolution scanner and the third tasks of the low resolution scanner was

to track the position and orientation of this second scanner while in use.

2.2.4 3D digitization of cultural heritage

The following are a few remarkable projects where the previously described 3D digitization

techniques were applied to study cultural heritage. These projects illustrate the variety of uses

of 3D models for conservation purposes.

In 1998�99, Levoy et al. [2000] digitized ten Michelangelo statues and over a thousand

fragments of a marble map as part of "The Digital Michelangelo Project". The David statue

alone was made of about 2 billion polygons. The extent of this dataset pushed the authors

to develop an algorithm adapted to the global registration of large 3D datasets [Pulli, 1999].

The model of the statue of David was used during its restoration to index and visualize data,

to evaluate the exposure of the statue to the fall of contaminants and to perform measures

(distances, surface, volume) that can not be performed on a statue [Callieri et al., 2004]. A

similar project of smaller scope consisted in monitoring the restoration of a statue of Minerva

by digitizing it before and after restoration [Rocchini et al., 2001b].

The focus of the Great Buddha Project [Ikeuchi et al., 2007] was the digital preservation and

restoration of large outdoor objects, namely the Nara Buddha statues and the temple they sit

in. This project demonstrated one of the great advantages of 3D models: they can be manip-

ulated in a way real objects can not, altering their proportions, removing additions to increase

readability [Bernardini et al., 2002], restoring the object's original color, reconstructing missing

information [Li et al., 2010]. In the same vein, it is also possible to interact with archaeological

fragments to reconstruct broken objects, either automatically or based on algorithms [Koller

et al., 2006; Zheng et al., 1998] while digitized wooden stamps [Seulin et al., 2006] can be used

for virtual printing.

3D models also provide very rich communication tools. For example, visitors can digitally

approach a 5m high statue with dedicated interactive kiosks in a museum [Levoy, 2002], or

immerse themselves in larger settings through virtual displays [Li et al., 2010].
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2.2.5 Perspectives

Passive techniques are generally easy to set up. Though they do not provide very accurate

results, they are well adapted to visualization purposes.

For applications which include surface analysis and metrology, active sensors are better

suited. These are mature techniques that have been widely used to digitize heritage and many

commercial systems exist. However, they do not perform well in daylight, as the resulting

contrast is insu�cient.

Triangulation laser scanners have a large acquisition range and provide 3D data which is

automatically registered. They are thus easy to use. Digitization techniques based on the

projection of structured light have the advantage of being somewhat �exible: by changing the

sensors and performing a calibration, the �eld of view and resolution can be changed. The same

system can thus be used to acquire both small artifacts (of the order of ten centimeters) and

larger ones (half a meter or more). The need to register multiple views to acquire most objects

is a drawback (using a turntable is only possible for the smallest ones). Not as intuitive as

triangulation laser scanners, some training and technical background is necessary to use them.

Active sensors are not suitable for the digitization of glass and metal surfaces, though these

materials are common in cultural heritage. In industrial settings, this limit is overcome by

covering the surface with a �ne powder with cooperative re�ective properties but this is not

possible when dealing with unique and fragile objects. The use of heating to scan metallic [Ba-

jard et al., 2011] and glass surfaces [Eren et al., 2009] has been proposed, but this solution is

also unadapted for cultural heritage applications.

There is ongoing research to develop digitization systems based on both active and passive

sensors. The integration of several sensors requires a calibration procedure, but the comple-

mentary strengths of each technique then provide more accurate 3D models. For example one

or more cameras can be used to improve the depth maps provided by a TOF sensor [Chan

et al., 2010; Zhu et al., 2008].

Hybrid systems based on the integration of normal data to enhance the geometry have been

developed, but such systems are cumbersome since they include �xed light sources [Nehab et al.,

2005; Rushmeier and Bernardini, 1999]. Recently, comparable results have been achieved using

a simpler system based on a projector, a low resolution camera and a high resolution camera

[Lu et al., 2010].

Generally speaking, the digitization of cultural heritage often involves large objects that

must be scanned with high precision [Guidi et al., 2006; Levoy et al., 2000]. To be used in

situ, the acquisition systems must be portable. Ease of use and automatic post-processing are

important if this technique is to gain acceptance by conservators and be of widespread use for

archiving applications, and not merely reserved to a few objects of great fame.

2.3 Integrated 2D � 3D measurements

The usefulness of 3D digitization and multispectral acquisitions of cultural heritage objects

has been well proven by past projects. Since these two methods of studying and archiving

object properties provide complementary data, it would be most useful for art historians and
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conservators to have both datasets present in an integrated frame. Such need is highlighted

in [Lahanier et al., 2005] where the authors successively perform multispectral acquisitions of

"La dame en prière" and two 3D digitizations of its surface but they rely on independent viewers

to explore each dataset.

2.3.1 Integrated acquisition systems

Multispectral imaging is seldom used in combination with 3D digitization, though there is an

abundant literature on 2D to 3D registration. Since multispectral imaging is an extension of

color imaging these registration methods can often be adapted to registration of multispectral

texture on 3D models. This section �rst details the integration of color and 3D models, us-

ing algorithms or unique sensors before surveying the existing integrated multispectral � 3D

acquisition systems.

Integrated color � 3D acquisition devices with a single sensor

The acquisition of RGB 3D models has been a topic of research for longer than the past decade.

When using a single sensor, shape and texture are automatically registered. The National

Research Council of Canada, in particular, has been very active in developing an RGB laser

scanner and using it to study various works of art, of which the Mona Lisa [Beraldin et al.,

2000; Blais et al., 2007; Blais and Beraldin, 2006; Blais et al., 2005; Taylor et al., 2003]. Fringe

projection systems with a color sensor also exist [Rocchini et al., 2001a] as do integrated laser

stripe projection and a color camera [Zheng et al., 1998].

Integrated color � 3D acquisition devices with di�erent sensors

When di�erent sensors are used to acquire the two types of data we lose the natural correspon-

dence between color and 3D data. We must thus �nd the correct transformation to project the

2D data on the 3D model. When the sensors are attached to one another, a simple calibration

procedure can determine the internal parameters and the �xed relative position and orientation

of the sensors. A few sensors based on this technique were developed to acquire 3D models of

cultural heritage [Bernardini et al., 2001; Ikeuchi et al., 2007; Levoy et al., 2000].

Integrated multispectral � 3D acquisition devices

A few integrated 3D/multispectral acquisition devices have been developed over the last decade,

mostly for cultural heritage applications, but not solely. They are described in table 2.2.

Mansouri et al. [2007] and Sitnik et al. [2010b] have each developed an integrated acquisition

system based on an interference �lter-wheel, a projector and a single sensor to acquire both

3D and multispectral data. The system developed by Sitnik et al. has the particularity of

also integrating a �ash lamp (for the multispectral acquisitions) and eleven LEDs to acquire

additional images which permit the estimation of the surface BRDF. The system developed by

Tonsho et al. [2001] also acquires a combination of multispectral, 3D and gonio-photometric

data using a triangulation laser scanner, a multispectral camera and a tungsten lamp in seven

successive positions. A turntable is used to survey the full object.
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Although [Mansouri et al., 2007; Sitnik et al., 2010b; Tonsho et al., 2001] all cite cultural

heritage as a possible application, to our knowledge only Brusco et al. [2006] have developed an

integrated 3D/multispectral acquisition system and used it in-situ. Compared to the previous

systems developed for the study of small objects (vases, small statues, etc), this system is aimed

at digitizing frescoes: large, planar objects. It is based on a commercial spectrophotometer

and a time-of-�ight laser scanner. A rotating mirror and a rotating stage are used to scan the

surroundings respectively vertically and horizontally. The calibration parameters are calculated

using the correspondence between projected spots from the laser scanner and their image in

multispectral datasets.

2.3.2 2D � 3D registration

When studying cultural heritage we value the possibility of choosing the 3D digitization system

and the multispectral acquisition system independently. However, when separate devices are

used, the registration procedure is no longer trivial. The internal parameters may be the same

for a group of acquisitions but the relative position and orientation of the sensors must be

determined independently for each view.

Using corresponding points

The traditional approach is to use homologous points in the 2D and 3D data to retrieve

the unknown intrinsic and extrinsic camera parameters using the Tsai camera calibration

method [Pulli, 1997; Rocchini et al., 2002; Tsai, 1987]. The main defect of this method is

the di�culty to identify corresponding points between the 2D and 3D data, be it manually

or automatically. Color discrepancies do not necessarily correspond to structural discrepancies

and vice versa.

Targets may be used to guide the registration process, but they are usually not adapted

to cultural heritage applications where we want to minimize the disturbance to the object.

Depending on the target resolution and registration accuracy, many targets may be necessary,

partially occluding the object. However, there have been e�orts to minimize user interven-

tion [Franken et al., 2005] in this type of registration setup.

Mutual Information methods

The need to �nd corresponding points is altogether eliminated if one uses fully automated

maximization of mutual information methods [Corsini et al., 2009; Maes et al., 1997; Palma

et al., 2010b; Remondino et al., 2009; Viola and Wells, 1997] for the registration of 2D on 3D.

Mutual information is a statistical measure of similarity between two images. It is used to

compare the 2D data to be mapped with a rendering of the 3D model. Many renderings have

been used (depth map [Remondino et al., 2009], gradient map [Palma et al., 2010b], silhouette

map, re�ection map and other illumination-based renderings [Corsini et al., 2009]). The camera

parameters are iteratively optimized and a new rendering is created until the registration is

achieved. The precision of the ensuing registration is of the order of a few pixels, though the

success of such methods greatly depends on the rendering strategy [Corsini et al., 2009]. This
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method provides good results for visualization purposes, even using low quality images, as in

[Remondino et al., 2009].

Registration based on known sensor position

There is no need to estimate the camera parameters from the data if their position is known

with su�cient precision at the time of each acquisition. In theory, coordinate measurement

machines can be used, but they are too cumbersome to be used in situ. Another possibility is

to use magnetic tracking [Paperno et al., 2001; Raab et al., 1979] to derive the position and

orientation of the sensor in use. However, even recent sensors [Sherman et al., 2007] are not

su�ciently precise: they have over a millimeter of error in positional accuracy and 4° in angular

accuracy. Furthermore, surrounding metals in the acquisition space increase this error to the

point of rendering the measures useless [Bernardini et al., 2002].

2.3.3 Perspectives

Integrated multispectral/3D digitization systems can acquire an impressive amount of data.

The absence of a registration procedure (or ease of such) is a strong advantage of integrated

color/multispectral and 3D acquisition systems, be they single sensor or multisensor. However,

these systems lack �exibility. They are often built for a speci�c application and, especially in

the case of single sensor devices, it is impossible or di�cult to adapt the acquisition system to

objects of a di�erent scale. It may also be di�cult to acquire clean data since 3D digitization

and multispectral (or color) acquisitions often require di�erent illumination setups or poses.

When relying on algorithms to register data from independent sensors, the accuracy of

the registration greatly depends on the quality of the data acquired. To perform well, these

algorithms need structured surfaces or salient points. Cultural heritage does not always present

natural salient points and the use of arti�cial targets is frowned upon.

Registration is greatly simpli�ed when the position of the sensor at the time of the acquisition

is known. However, mechanical structures are cumbersome while magnetic tracking does not

reach the necessary accuracy.

The strength and �exibility of tracking resides in the fact that it is independent from the

acquisition system in use. Section 2.2.3 showed that optical tracking can greatly aid the 3D

� 3D registration process [Blais et al., 2005; Creaform, MetraScan; Kawasaki and Furukawa,

2004; Leica, T-Scan; NDI, ScanTrak ; Steinbichler, T-Scan; Valkenburg et al., 2006]. Similar

techniques can be used to extract the position and orientation of any acquisition system for

multimodal registration.

Breuckmann and Metronor have developed a multisensor digitization system, the Navi-

SCAN [Breuckmann, NaviSCAN ], based on two photogrammetric cameras, a structured light

projection scanner, a frame to �x on the digitization system and a probing unit. The NaviSCAN

can measure a 1m stick 6m away from the tracking cameras with a 0.03mm (1σ) accuracy.

The photogrammetric cameras track the position and orientation of the reference frame which

is �xed to the digitization system. Acquisitions from multiple views are thus automatically

stitched together and data from the probing unit are seamlessly integrated in the same coordi-
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nate system.

This type of setup is based on close range photogrammetry, and can be extended to register

multispectral data on 3D models. Close range photogrammetry is a mature �eld which is widely

used in industrial settings [Luhmann, 2010a] and has long been used for real-time applications

[Maas, 1997a]. In industrial settings photogrammetry is often used to track robot end e�ectors.

This tracking is used to carry out factory calibration and is increasingly being investigated as

a method to monitor and calibrate a robot while in use on factory �oor. Two main setups

are possible: either the robot end e�ector is equipped with one or more cameras that detect

targets in the workspace to derive its position and orientation [Clarke and Wang, 2000; Hefele,

2002; Hefele and Brenner, 2001] or cameras survey the workspace to obtain the position and

orientation of the e�ector, which is enhanced with a target object [Hefele and Brenner, 2001;

Maas, 1997b; Schütze et al., 2009]. The Optopose system developed at i3mainz, Institute for

Spatial Information and Surveying Technology (Germany), based on this second setup, tracks

the position and orientation of a robot e�ector with a precision of 0.05mm [Boochs et al., 2009].

Our work extends this type of setup to track multiple optical acquisition systems in cultural

heritage settings to permit a precise integration of multispectral and 3D data. We believe the

use of optical tracking presents a good compromise in terms of �exibility, portability and end

precision. The following chapter presents the method devised and describes the simulations

performed to evaluate the achievable tracking accuracy of such setup.
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Chapter 3

Simulations

3.1 Overview

Our goal is to devise a �exible technique to register featureless multispectral and 3D datasets

describing cultural heritage objects. We want to achieve a registration with a sub-pixel accuracy,

more accurate than mutual information methods (for which the accuracy is a couple of pixels).

We thus de�ne a registration accuracy goal of half a pixel. We saw in the previous chapter

that tracking the acquisition system is a practical technique to register 3D data. We extend

such methods for the registration of 3D and multispectral datasets. Our method relies on close

range photogrammetry techniques to track the acquisition systems in use.

3.1.1 Method description

The proposed acquisition setup is illustrated �gure 3.1: A set of cameras observe the acquisition

systems while they successively digitize the surface under study from various positions. These

cameras are subsequently called "tracking cameras" to di�erentiate them from the other camera

systems mentioned throughout this dissertation. The tracking cameras are �xed for the duration

of the acquisitions and must survey the full volume that each acquisition system will occupy.

By processing the images acquired by the tracking cameras we can measure the position and

orientation of the acquisition systems in a coordinate system de�ned by the tracking cameras.

The subsequent registration procedure is straightforward: the acquired datasets are projected

in a world coordinate system, using the known position and orientation of each acquisition

system for each acquisition.

To ensure a precise tracking, all optics and objects in play must be carefully calibrated.

We introduce the following coordinate systems, linked to the materials in use and illustrated

�gure 3.2:

� CSi , (OSi , ~xSi , ~ySi , ~zSi) is the coordinate system linked to acquisition system i.

� CCj ,
(
OCj , ~xCj , ~yCj , ~zCj

)
is the coordinate system linked to tracking camera j. OCj is the

optical center of the camera; (~xCj , ~yCj ) de�ne the image plane; ~zCj is collinear to the

optical axis.
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under study

Figure 3.1: Overview of the tracking procedure.

� C0, (O0, ~x0, ~y0, ~z0) is the world coordinate system.

We now describe the necessary calibrations and how they are performed. The following

notations will be used throughout: A|CU
are the homogeneous coordinates (xA, yA, zA, 1) of

point A in coordinate system CU . We de�ne TCU ,CV
the transformation matrix between two

coordinate systems CV and CU such that for all points A, A|CU
= TCU ,CV

· A|CV
.

Internal orientation of the tracking cameras The calibration of the tracking cameras

is performed by taking close to a hundred images of a calibration plate from various points of

view. The calibration plate is covered with coded and uncoded targets and two distances are

precisely known. From this we can measure the internal camera parameters such as focal length,

principle point o�set and lens distortions. Several tracking cameras can be calibrated together

if they are placed side by side and observe the same area. Previous experience has taught us

that the internal orientation can stay stable for over a week if the cameras are handled with

care during this time frame. We often perform the interior orientation a few days before the

acquisitions.

Internal orientation of the acquisition systems It is necessary to know the distortions

introduced by the acquisition system to project the acquired data correctly. When using mul-

tispectral cameras, the procedure is the same as that for the tracking cameras. Commercial 3D

digitization systems generally have a speci�c calibration procedure that must be performed so

that the output data is automatically corrected by the acquisition software.
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Figure 3.2: Coordinate systems de�ned for the tracking procedure.

Exterior orientation of the tracking cameras Once the tracking cameras have been

positioned to observe the area in front of the surface under study, we can measure their relative

position and orientation. This is done by acquiring approximately eighty images of a scale bar

in various positions and orientations, simultaneously by all calibrated tracking cameras. The

position and orientation of the cameras are measured with respect to the �rst. We generally

de�ne the coordinate system of the �rst tracking camera to be the world system: C0 = CC1.

Calibration of the acquisition systems The accuracy of any photogrammetric setup is

greatly improved if well de�ned arti�cial targets are used instead of relying on natural features.

A variety of photogrammetric targets are thus placed on the acquisition systems. It is necessary

for us to know the position of these targets in the coordinate system de�ned by the acquisition

system. This requires an additional calibration. It is essential to note that we have moved the

disturbance away from the object under study and on to the acquisition system, which we do

not mind manipulating.

This calibration is performed by taking between �fty and one hundred images of the acqui-

sition surrounded by a scale bar and additional targets, while it digitizes another target-covered

object. The photogrammetric processing of these images provides us with the coordinates of

all targets in a common coordinate system Ctemp. These targets include those �xed to the ac-

quisition system, those on the target-covered object, those on the scale bar and any additional

targets in the scene. The 3D or multispectral acquisitions of the target-covered object provide

us with the coordinates of the targets in CSi
. It is thus possible to calculate TSi,temp and thus

to evaluate the position of the targets describing the acquisition system in CSi
. The accuracy of

this calibration is improved if it is performed for varying relative positions of the target-covered
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object and the acquisition system.

Data processing

We rely on two pieces of software for all photogrammetric image processing: Tritop [Gom,

Tritop] and i3AxOriGui, a lab-developed software based on the AXOri library [Axios3D, Axori ].

Tritop is used to print coded targets of the dimensions we need. This software also recognizes

the coded and uncoded points in the images and computes a �rst assessment of the position of

the cameras. This data is then exported to i3AxOriGui in which we have more �exibility and

control on what we want to compute given our input parameters.

i3AxOriGui performs the bundle adjustment of the data both for the calibrations and the

tracking. Each parameter can be set either as an unknown or an input parameter, depending

on what we want to calculate.

For example, we can estimate the target coordinates or the object position by assuming the

tracking cameras' interior and exterior orientation are known. It is also possible to assess the

exterior orientation of the tracking cameras assuming the interior orientation and the object

coordinates are accurate. If we assume the tracking camera exterior orientation and the object

coordinates are known then we can determine the tracking cameras interior orientation. The

bundle adjustment results also provide us with an internal accuracy measure of the parameters

calculated.

Each acquisition provides us with the coordinates of a group of surface points in a given

sensor system, A|CSi
. The simultaneous tracking provides us with TC0,CSi

for each acquisition.

The known interior orientation of the tracking cameras and their relative orientation ensures

that TC0,CSi
is su�ciently accurate. We can thus calculate A|C0

, the coordinates of the surface

points in the world system using:

A|C0
= TC0,CSi

· A|CSi
. (3.1)

3.1.2 Simulation procedure

The tracking accuracy depends on many parameters such as the number, focal length, position,

and sensor characteristics of the photogrammetric cameras; the dimensions of the acquisition

area; the dimensions of the acquisition system, etc. We rely on a series of simulations to evaluate

how accurately we can track the position and orientation of a given acquisition system.

These simulations are used to evaluate the accuracy with which we can determine the exte-

rior orientation of the tracking cameras, as well as the accuracy of tracking of the acquisition

systems. The input parameters are the characteristics of the tracking cameras, their position

and orientation, the position and orientation of the acquisition systems, the accuracy of the

calibration of the acquisition systems. These simulations enable us to easily test many con-

�gurations, to detect the stable setups that will provide the registration accuracy we aim to

attain and to discard unstable setups. Though they only concern the tracking and part of the

calibrations, these simulations enable us to evaluate the accuracy of the global registration.

Our four stage simulation pipeline is based on the following steps:
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(a) Scene creation (b) Image gen-
eration

camera translation
and rotation

object
coordinates

picture coordinates

(c) Noise addition

Figure 3.3: First three simulation steps.

1. Scene creation (�gure 3.3a).

2. Image generation (�gure 3.3b).

3. Noise addition (�gure 3.3c).

4. Bundle adjustment.

Scene creation A 3D representation of the simulation scene is created using 3ds Max [Au-

todesk, 3ds Max ]. This scene must contain the tracking cameras and the acquisition devices in

the positions we want to track them. We can vary the �eld of view of the tracking cameras to

match our needs. It is important that the cameras survey the full volume that the acquisition

systems will successively occupy. We call this volume the acquisition system "bounding box".

The dimension of each bounding box depends on the dimensions of the surface under study,

the acquisition distance and the acquisition system volume.

The scene can also represent the object under study to help guide the positioning of the

acquisition systems. Each acquisition system is modeled by a box de�ned by a variable number

of points. These points represent the targets that we will �x to the acquisition device. The

scene is exported as a *.WRL �le which includes the tracking cameras' position and orientation,

their �eld of view and the coordinates of the points representing the tracked object.

Image generation This *.WRL �le is read by a lab-developed software, jbb-i3mainz. The

input scene parameters are used to calculate the images captured from each camera. The sensor

dimensions must be entered manually and it is possible to provide lens distortion parameters.

This software can also remove the points that are hidden by other surfaces.

Noise addition Jbb-i3mainz is also used to add Gaussian noise to the following four scene

parameters:

� Picture coordinates: the coordinates of the targets in the images taken by the tracking

cameras. These are usually known with an accuracy better than 1/10th of a pixel. In
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favorable conditions (su�cient contrast and focus, well resolved targets) the picture co-

ordinates can be resolved with an accuracy of 1/30th of a pixel or even 1/50th [Luhmann,

2010a].

� Object coordinates: the coordinates of the points that de�ne the tracked object. The

calibration of the acquisition systems should provide these coordinates with an accuracy

better than 0.05mm.

� Camera translation: the position of the tracking cameras (X, Y, Z coordinates). The

accuracy of these values depends on the camera setup and on the results of the calibration

procedures. We can usually resolve the exterior camera orientation with an accuracy

better than 0.05mm spatially.

� Camera rotation: the orientation of the tracking cameras (Ω, Φ , K coordinates). We

usually know these coordinates with an accuracy better than 0.05mrad though this also

depends on the success of the exterior orientation.

The noisy scene and image parameters are then exported as an *.axo �le.

Bundle adjustment This *.axo �le is treated by i3AxOriGui, which performs the bundle

adjustment of the simulation data just as it would treat real data. The accuracy results provided

by the bundle adjustment are those given in the simulation results.

3.1.3 Simulation con�gurations

The simulations are performed for prede�ned con�gurations that include three acquisition sys-

tems owned by our laboratories and three objects of interest partially de�ned by our motivating

objects.

Acquisition systems

The simulations are based on the characteristics of two multispectral cameras and an optical

3D digitization system owned by our institutions. Two of these acquisition systems have been

used in the past to digitize our objects of interest and all three are adapted for the study of

cultural heritage objects.

The two multispectral cameras are a commercial camera from FluxData and a lab-designed

multispectral camera. A few characteristics of both cameras are given in table 3.1. The lab-

designed multispectral camera [Mansouri, 2005; Mansouri et al., 2005c], shown �gure 3.4, is

based on interference �lters mounted on a �lter-wheel and has been used in the past to docu-

ment the Trier sarcophagus and the Rüdesheim wall-painting. Careful calibration and a neural

network algorithm provide us with a re�ectance spectra for each pixel [Sanchez et al., 2005].

The FluxData FD-1665-MS camera [FluxData], shown �gure 3.5, is based on a 3 CCD

system which provides simultaneous data for each spectral band. This camera acquires less

spectral bands than the lab-designed multispectral camera, but the bigger sensor and pixel size

will allow us to register the data more precisely. The output data can also be used in conjunction
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3.1. Overview

Table 3.1: Characteristics of the lab-designed and FluxData multispectral cameras.

Multispectral camera
Sensor size Cell Focal
W × H size length

(mm×mm) (pixels× pixels) (µm) (mm)

Lab-designed 8.9× 6.7 1392× 1040 6.45 25
FluxData 7.5 × 6.2 659× 494 9.9 25

Multispectral camera
Filtering Number of bands Acquisition range
technology (nm)

Lab-designed interference 9 400− 1000
FluxData 3 CCD 7 380− 1000

(a) (b)

Figure 3.4: Exterior (a) and interior (b) of the lab-developed multispectral camera. The camera,
�lter wheel and controllers are visible in the interior view.
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© FluxData

Figure 3.5: FluxData multispectral camera.

Table 3.2: External characteristics of the acquisition systems.

Acquisition system
External dimensions

Weight
W×H×D

(mm×mm×mm) (kg)

Lab-designed multispectral camera 270× 320× 180 5
FluxData multispectral camera 92× 112× 187 1.51
Gom Atos III 490× 170× 300 7.5

with a neural network algorithm for re�ectance estimation. The FluxData multispectral camera

is more compact and lighter than our lab-designed camera (see table 3.2). This camera is better

suited to the in situ study of cultural heritage objects.

We perform all 3D digitizations using a commercial fringe projection system, the Atos III,

manufactured by GOM [Gom, Atos] and shown �gure 3.6. The Atos is composed of two

4Mpx cameras and a projector. Di�erent acquisition con�gurations can be built by varying

the position, orientation and lens of the cameras and projector. The resolution of the system is

proportional to the dimensions of the �eld of view. Among the many possible con�gurations,

we use the one that provides a 500 mm × 500 mm �eld of view. This setup entails a 0.24mm

resolution and a �xed distance of 760mm between the acquisition system and the object under

study.

Simulation con�gurations

Our goal is to show that this registration technique is �exible and adapted to a variety of

cultural heritage applications. Three simulation con�gurations were de�ned to evaluate the

potential of the method for the study of a variety of cultural heritage objects. In addition to

the objects which motivated this study, we imagine studying a small statue. Our three case

studies are thus:

� an area of 0.4 m× 0.7 m, corresponding to the study of the Trier sarcophagus;
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© Gom

Figure 3.6: Gom Atos III 3D digitization system.

� an area of 2 m×1.5 m, corresponding to the analysis of the largest Rüdesheim wall painting;

� a cylinder 1m high and with a 0.3m radius, representing a small statue.

The remainder of this chapter successively presents the simulations performed in these three

con�gurations. The simulations performed in the sarcophagus con�guration were used to �ne

tune many tracking parameters. As such, they are presented in greater detail. For the wall

painting and statue simulations we assume we use the tracking material de�ned during the

sarcophagus simulations. In these last two setups, the simulations are primarily used to optimize

the number and position of the tracking cameras to reach our tracking accuracy goal.

3.2 Sarcophagus con�guration

3.2.1 Con�guration overview

The �rst simulations are performed in a setup that corresponds to the digitization of a small

area of the surface of the Trier sarcophagus. The sarcophagus is approximately 1.5m high, 1m

wide and 2.3m long. It occupies a quasi-central position in a fairly small crypt. The crypt

is 6m at its widest, 6.6m deep and 3.8m high. The ground around the sarcophagus is set

8 cm lower than the rest of the crypt. Since the area we are interested in faces the entrance,

the stairs also limit the space that is available to position the tracking cameras. Such spatial

constraints are not unusual in cultural heritage settings. The acquisition systems and the

tracking cameras must �t in the two meters between the sarcophagus and the bottom steps, as

illustrated �gure 3.7.

In the current con�guration, the area of interest is 0.4m × 0.7m and is very close to the

�oor, as shown in �gure 3.8. This means that our acquisition systems must sit very low to

digitize the lower areas of the sarcophagus. The Gom Atos III measuring distance is 760mm

for the �eld of view we have chosen. If the Atos is perfectly perpendicular to the surface it

can digitize the complete area of interest by moving in a volume that is approximately 500mm

wide, 370mm high and 300mm deep, as illustrated �gure 3.9.
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1 m 1 m
6
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Figure 3.7: Crypt interior, top view. The sarcophagus is shown in the center of the room. The
entrance of the crypt is at the top of the stairs, on the left. The hatched area represents the
space that is available to position the tracking cameras and the acquisition systems.
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Figure 3.8: Dimensions of the front face of the sarcophagus. The black rectangle represents the
approximate position of the area of interest.
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Figure 3.9: Top and bottom position of the Gom Atos III acquiring an area of 400 mm×700 mm.

Table 3.3: Characteristics of the multispectral acquisitions at varying distances.

Multispectral camera On object
Distance

500 600 700 800 (mm)

Lab-designed

image width 178 213.6 249.2 284.8 (mm)
image height 134 160.8 187.6 214.4 (mm)
pixel size 0.129 0.154 0.181 0.206 (mm)
required images 3× 6 2× 5 2× 4 2× 4 (W × H)

FluxData

image width 130 156 182 208 (mm)
image height 96 115.2 134.4 153.6 (mm)
pixel size 0.198 0.238 0.277 0.317 (mm)
required images 4× 8 3× 7 3× 6 2× 5 (W × H)

To evaluate the bounding box of each multispectral camera, we must �rst settle on an

acquisition distance. The measuring distance for the multispectral cameras is a compromise

between the desired level of detail and the number of acquisitions necessary to cover the full

area of interest. Table 3.3 gives the image and pixel dimensions and the number of necessary

acquisitions to cover the sarcophagus area of interest for various acquisition distances. We

usually use the lab-designed multispectral camera at approximately 500mm from the surface.

In this case however, we will be able to track the acquisition systems with greater accuracy

if they are all at the same distance from the sarcophagus since this limits the total tracking

volume. We thus assume the multispectral cameras are 700mm from the sarcophagus. At

this distance we can acquire the full area of interest with eight images using the lab-designed

multispectral camera and eighteen images using the FluxData multispectral camera. We also

retain a resolution that is under 0.3mm.

A 3D rendering of the three resulting bounding boxes is shown �gure 3.10; their dimensions

are given table 3.4. There is approximately 1m available between the Gom Atos III bounding

box and the bottom step of the stairs to position the tracking cameras.
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Figure 3.10: Bounding boxes of the Gom Atos III (red), the lab-designed multispectral camera
(blue) and the FluxData multispectral camera (green) in front of the sarcophagus.

Table 3.4: Bounding box dimensions to digitize an area of 0.4 m× 0.7 m.

Acquisition system
Bounding box Acquisition
W × D × H distance

(mm×mm × mm) (mm)

Lab-designed multispectral camera 421× 832 × 180 700
FluxData multispectral camera 310× 678 × 187 700
Gom Atos III 490× 370 × 300 760
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Figure 3.11: Notations used to calculate the simulation target accuracy.

Table 3.5: Target accuracy for each acquisition system.

Acquisition system
Acquisition Target accuracy
distance D spatial d angular α

(mm) (mm) (mrad)

Lab-designed multispectral camera 700 0.090 0.128
FluxData multispectral camera 700 0.139 0.198
Gom Atos III 760 0.120 0.158

Simulation goal

Our goal is to track the acquisition systems with an accuracy better than half an image pixel.

The target accuracy is calculated with simple geometric considerations. If f is the camera focal

length, D the acquisition distance, a the target accuracy of the sensor and d the spatial target

accuracy on the object, α the target angular accuracy (see �gure 3.11), we have:

α ≈ tanα =
a

f
=

d

D
.

For the multispectral cameras a is half the pixel size, and it is easy to calculate α. Because

of the di�erence in sensor dimensions, this translates into a value which is lower � and thus

harder to achieve � for the lab-designed multispectral camera, compared to the FluxData

multispectral camera. In the case of the Gom Atos, the value we have is the resolution on

the object (2d = 0.24 mm) so the target spatial accuracy is half the resolution. The target

spatial and angular accuracy for each acquisition system is given table 3.5. Note that for a

given acquisition system, only the spatial target accuracy depends on the acquisition distance.
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3.2.2 Positioning the tracking cameras

We position the cameras based on general guidelines in close range photogrammetry, such as

those given by Remondino and El-Hakim [2006, p. 275]:

(a) the accuracy of a network increases with the increase of the base to depth (B:D)

ratio and using convergent images rather than images with parallel optical axes;

(b) the accuracy improves signi�cantly with the number of images in which a point

appears. But measuring the point in more than four images gives less signi�cant

improvement;

(c) the accuracy increases with the number of measured points per image. How-

ever, the increase is not signi�cant if the geometric con�guration is strong and

the measured points are well de�ned (like targets) and well distributed in the

image;

(d) the image resolution (number of pixels) in�uences the accuracy of the computed

object coordinates: on natural features, the accuracy improves signi�cantly

with image resolution, while the improvement is less signi�cant on well-de�ned,

large, resolved targets.

Item (b) motivates us to perform our �rst simulations with four tracking cameras. As much

as possible, we try to position them at 90° angles with respect to one another.

To ensure the most accurate tracking achievable, each photo must be �lled as much as

possible with targets. Since each acquisition system occupies only a portion of its bounding

box, the cameras must be as close as possible to the bounding boxes, while still observing them

entirely.

3.2.3 Choice of sensor and lens

The limited space in front of the sarcophagus constrains our choice of material. The tracking

cameras must be used in conjunction with lenses that provide a wide �eld of view. The re-

lationship between a cameras' angle of view Ω, its focal length f and its sensor dimension s

is:

Ω = 2× arctan
(

s

2× f

)
. (3.2)

The smaller the focal length, the larger the �eld of view. We opt for 6mm lenses so the tracking

cameras can see the full bounding box from a short distance.

The �rst goal of the simulations is to determine whether 2Mpx tracking cameras can be used

or if we need 5Mpx cameras to reach our target tracking accuracy. These �rst simulations were

based on the sensor characteristics of two Baumer cameras, given in table 3.6. These cameras

are representative of the 2Mpx and 5Mpx cameras available from other manufacturers.

Equation 3.2 shows that the �eld of view depends not only on the focal length, but is also

a function of the camera sensor dimensions. The 2Mpx cameras used with the 6mm lens have

a smaller �eld of view and must be positioned further from the sarcophagus than the 5Mpx

cameras with the same lens. The resulting camera arrangements are illustrated �gure 3.12.
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Table 3.6: Characteristics of the cameras and lens used in the simulations.

Sensor size (W × H) Cell size
Ωhorz

Lens
(mm×mm) (pixels× pixels) (µm) (mm)

Baumer TXF20 7.1× 5.4 1624× 1236 4.40 61.2° 6
Baumer TXF50 8.4× 7.1 2448× 2050 3.45 70.0° 6

camera 1
camera 2

camera 3
camera 4

(a) Front view

camera 1
camera 2

camera 3
camera 4

(b) Side view

camera 1
camera 2

camera 3
camera 4

(c) Front view

camera 1
camera 2

camera 3
camera 4

(d) Side view

Figure 3.12: Tracking cameras and acquisition system bounding boxes. (a-b) 2Mpx cameras.
(c-d) 5Mpx cameras.

Even though the camera characteristics are di�erent, it is possible to obtain equivalent views,

as shown �gure 3.13.

We do not place the tracking cameras exactly at 90° angles because of the constraints of the

room. The multispectral camera bounding boxes are in front of a small step and the bottom

cameras can not be positioned much lower � they are ten centimeters above the ground. It is

also not recommended to position the top cameras higher since this would result a lower number

of targets visible from all four cameras, which would hurt the achievable tracking accuracy.

The acquisition systems are represented in the simulations by a box the size of their outer

dimensions. This is an accurate representation in the case of the lab-designed multispectral

camera. If the objects are smaller and more intricate than their representation � as is the case

for the FluxData and Atos acquisition systems � then the simulations will overestimate the

achievable tracking accuracy.

Each box is itself represented by a given number of points, which corresponds to the number

of targets that are placed on its surface. Figure 3.14 shows the boxes representing our three ac-
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(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4

(e) Camera 1 (f) Camera 2 (g) Camera 3 (h) Camera 4

Figure 3.13: View of the bounding boxes from the tracking cameras. (a-d) 2Mpx cameras.
(e-f) 5Mpx cameras.
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Figure 3.14: Representation of the acquisition systems for the simulations: lab-designed mul-
tispectral camera (blue), FluxData multispectral camera (cyan) and Atos digitization system
(red).

quisition systems. The points de�ning each acquisition system are the corners and intersections

of the wireframe view overlaid on the boxes. The number of points per acquisition system is

chosen based on the dimensions of the box and thus the surface available to �x photogrammetric

targets.

The lab-designed multispectral camera is represented by eighteen points, the FluxData

multispectral camera by twelve and the Atos digitization system by twenty four. Once again,

this is a realistic estimate for the lab-designed multispectral camera but less so for the other two

acquisition systems. Very little surface is available to �x targets on the FluxData multispectral

camera and the Atos. We would not place any targets on the lens of the FluxData multispectral

camera but they occupy almost half of the volume of the complete camera.

The simulations are run for several positions of each acquisition system in both tracking

camera con�gurations. In the case of the multispectral cameras �ve positions are used: the

four corners and the center of the corresponding bounding box. Since the Atos bounding box

is quite small and as large as the acquisition system itself, only three positions are used: the

top, center and bottom of the bounding box.

For all positions we add a Gaussian noise of standard deviation 0.345µm to the picture

coordinates. This corresponds to 1/10th of the pixel size of the 5Mpx sensors and approximately

1/13th of the pixel size of the 2Mpx sensors. The simulation results are presented table 3.7.

This table gives the maximum value of the spatial and angular tracking inaccuracy reached by

a given acquisition system for each con�guration. The full results are available in the appendix

(tables A.2 to A.8, page 145). Unless otherwise noted, all accuracy results presented throughout

this thesis are given at 2σ, that is with a 95% con�dence interval.

We notice that the tracking the accuracy is always better in the 5Mpx con�guration than

in the 2Mpx con�guration, even though this simulation protocol does not take into account the

47



Chapter 3. Simulations

Table 3.7: Simulation results, tracking the acquisition systems successively with 2Mpx and
5Mpx cameras.

Acquisition system Points
2Mpx 5Mpx

Spatial Angular See Spatial Angular See
(mm) (mrad) table (mm) (mrad) table

Lab-designed MS camera 18 0.020 0.292 A.2 0.017 0.238 A.6
FluxData MS camera 12 0.025 0.536 A.3 0.022 0.536 A.7
Gom Atos III 24 0.013 0.168 A.4 0.011 0.142 A.8

sensor resolution. The di�erence in tracking accuracy between the two con�gurations is thus

only due to the di�erence in sensor size. The results would be even more distant if the resolution

were taken into account. Since the 5Mpx cameras appear to provide a tangible improvement

on the achievable accuracy the subsequent simulations are run with the characteristics of the

5Mpx cameras.

The most accurately tracked acquisition system in both con�gurations is the Gom Atos III.

This is not surprising since it is the biggest object, de�ned by the highest number of targets

and placed in the center of the tracking volume.

In all con�gurations the attained spatial accuracy is better than our most constraining target

value of 0.09mm. The di�culty resides in reaching our target angular accuracy of 0.128mrad

in the most restrictive case (for the tracking of the lab-designed multispectral camera). Even

when tracking the Atos with the 5Mpx cameras, which is the most favorable con�guration, we

do not attain this target angular accuracy.

3.2.4 Target frame necessity

The tracking accuracy can be improved by increasing the number of tracking cameras that

survey the bounding box. However, using more than four cameras to track the acquisition

systems when the area of interest is 0.4 m × 0.7 m seems disproportionate. We thus explore

another strategy to better the achievable tracking accuracy: increasing the dimensions of the

tracked object.

The angular accuracy of the tracking strongly depends on the object size and less so on the

number of targets. We would obtain better results if the acquisition systems were bigger. In

practice this can be achieved by �tting a 2D or 3D frame around the acquisition systems. This

virtually increases the dimensions of the acquisition system. Photogrammetric targets cover the

frame instead of the acquisition systems and it is the frame which is the object of the tracking.

The modi�ed acquisition overview is illustrated �gure 3.15.

We design a target frame such that all three acquisition systems �t in it. The frame is 0.5m

wide to �t the width of the Atos, 0.4m high to �t the height of the lab-designed multispectral

camera and 0.3m deep to accommodate the depth of the Atos.

By increasing the dimensions of the acquisition system we also increase the bounding box

dimensions. The cameras must be slightly repositioned to account for this accretion. Since

all acquisition systems can �t in the target frame we position the tracking cameras based on

a single bounding box. The tracking accuracy no longer depends on the dimensions of the
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target frame

tracking cameras acquisition system

surface 
under study

Figure 3.15: Overview of the tracking procedure using a target frame.

Table 3.8: Simulation results, tracking a target frame of varying dimensions.

Target frame dimensions
Points

Output accuracy
W × H × D Spatial Angular See
(m × m × m) (mm) (mrad) table

(a) 0.5 × 0.4 × 0.3
26 0.015 0.144 A.10
56 0.012 0.124 A.11

(b) 0.5 × 0.5 × 0.5
26 0.017 0.120 A.12
56 0.012 0.088 A.13

acquisition system but on those of the target frame. Any acquisition system that is attached

to the target frame will be tracked with the same accuracy.

The target frame is bigger than the acquisition systems and can be covered by a greater

number of targets. We alternatively represent it by a total of twenty six and �fty six targets.

Some of these targets are useless since they face the sarcophagus and not the cameras. Once

again we run the simulations for �ve positions of the target frame (the four corners and the

center of the bounding box). Section (a) of table 3.8 shows the maximum inaccuracy values

obtained spatially and angularly.

There is no improvement in the achieved tracking accuracy if only twenty six points are

used to de�ne the frame. This is due to the increase of the bounding box dimensions: the

target frame occupies close to the same proportion of the image than the acquisition system

did previously. However, when �fty six points are used to de�ne the target frame, there is a

tangible improvement in the achievable angular tracking accuracy. We can track this target

frame with an angular accuracy of 0.124mrad while our target angular accuracy is 0.128mrad.

Unfortunately, this improvement is not su�cient since these preliminary simulations only take
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into account the picture coordinate inaccuracy. Future complete simulations will also take

into account the noise on the object coordinates and on the tracking cameras' position and

orientation. With these added values the tracking inaccuracy will necessarily exceed 0.128mrad.

We now run the simulations with a larger target frame, a cube of side 0.5m, represented

successively by twenty six and �fty six points. Section (b) of table 3.8 shows that the achievable

tracking accuracy when using �fty six targets seems compatible with our target accuracy. All

the following sarcophagus simulations are thus performed on a tracking frame of dimensions a

0.5 m× 0.5 m× 0.5 m represented by �fty six targets in the �ve positions de�ned previously.

Modi�ed calibration and data processing

The use of a target frame modi�es the necessary calibration steps: we no longer calibrate the

acquisition systems, since they are not covered with targets. Instead, we must calibrate the

target frame and estimate the orientation between each acquisition system and the target frame.

This could be done in an integrated setup as was the case for the calibration of the acquisition

systems. However, we choose to calibrate the target frame independently since it will be used

for several acquisition systems.

We introduce a new coordinate system CF , (OF , ~xF , ~yF , ~zF ), linked to the target frame.

Calibration of the target frame We take over one hundred images of the target frame

surrounded by a scale bar and additional targets. We can then de�ne CF and know the position

of each target in this coordinate system.

Orientation of the acquisition system with respect to the target frame To know

the position of the acquisition system in the system de�ned by the target frame, we proceed in

three steps:

1. Fix the acquisition system to the target frame.

2. Use the acquisition system to digitize another target-covered 3D object.

3. Take over �fty photos of the target frame and the additional 3D object.

We associate a coordinate system Ctemp to the 3D object. Step 2 provides us with TCSi
,Ctemp

,

which describes the position and orientation of the 3D object in CSi
. Similarly, step 3 provides

us with TCF ,Ctemp , the position and orientation of the 3D object in CF previously de�ned.

We can thus easily calculate the transformation between CSi
and CF :

TCF ,CSi
= TCF ,Ctemp

·
(
TCSi

,Ctemp

)−1
.

The simultaneous tracking now provides us with TC0,CF
(we track the frame, and no longer

the acquisition system). We now calculate A|C0
, the coordinates of the surface points in the

world system using:

A|C0
= TC0,CF

· TCF ,CSi
· A|CSi

.
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Figure 3.16: Overview of the orientation scene for the simulations.

3.2.5 Complete simulations

Up to now, the simulations were run with noise only on the picture coordinates. A thorough

simulation must also take into account the inaccuracy of the object coordinates and the accuracy

with which we know the position and orientation of the tracking cameras. For the object

coordinate accuracy we will use the conservative estimate of 0.05mm. The tracking camera

exterior orientation accuracy greatly depends on the setup. We thus perform a set of simulations

to estimate the camera translation and rotation values to use for the comprehensive simulations.

Orientation simulations

The estimation of the relative position and orientation of a group of cameras is performed

by acquiring a series of simultaneous acquisitions of the same target-covered object. For the

simulations, this target plane is modeled by a 0.8 m × 1 m plane represented by 99 points and

positioned at 0.1m intervals between the tracking cameras and the sarcophagus, as illustrated

�gure 3.16.

The orientation simulations are run with noise only on the picture coordinates. We assume

the target plane is perfectly calibrated; the camera positions and orientations are our unknowns.

We de�ne two levels of noise: in the realistic scenario we assume that the picture coordinates

are resolved with an accuracy of 1/10th of a pixel; in the best-case scenario we assume the

picture coordinates are resolved with an accuracy of 1/30th of a pixel.

The resulting orientation accuracy is given in table 3.9. These results are used to de�ne a

realistic amount of noise to add to the camera translation and rotation. Since the orientation

simulations result in an 0.023mm spatial accuracy and 0.058mrad angular accuracy in the

realistic scenario, we will use 0.03mm and 0.07mrad respectively as input values. Similarly,

we add a small margin to the best case scenario simulation results, yielding an input noise of

0.02mm and 0.03mrad.
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Table 3.9: Orientation simulation results, sarcophagus con�guration.

Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

1/10 0.345 0.00 0.00 0.00 0.023 0.058 A.15
1/30 0.115 0.00 0.00 0.00 0.009 0.020 A.16

Table 3.10: Comprehensive simulation results, sarcophagus con�guration.

Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

1/10 0.345 0.05 0.03 0.07 0.023 0.176 A.17
1/30 0.115 0.05 0.02 0.03 0.016 0.116 A.18

Comprehensive simulations

It is now possible to simulate the complete tracking pipeline using the tracking frame de�ned in

section 3.2.4 and the orientation parameters from the previous simulations. The comprehensive

simulations are also run both with realistic and best-case scenario levels of noise for �ve positions

of the target frame. The maximum output inaccuracy for each noise sequence is given table

3.10. In both cases we largely reach our target spatial accuracy of 0.09mm but our target

angular accuracy of 0.128mrad is only attained in the best-case scenario.

3.2.6 Simulations with actual material characteristics

For practical reasons we bought AVT Stingray cameras instead of the Baumer cameras used

during the simulations. The AVT camera sensors are only slightly bigger, as can be seen

in table 3.11. There is a more signi�cant di�erence between the lens used in the previous

simulations and those bought for the experiments: no 6mm C-Mount lenses were available for

2/3 " sensors so we bough 8mm lenses (Pentax C814-5M). These camera and lens parameters

are used for the remaining simulations.

We repeat the simulations to take into account these new parameters. Since the focal

length of the lens is longer, the tracking cameras must be positioned slightly further from the

target frame bounding box to maintain an equivalent view. Figure 3.17 shows this slightly

modi�ed con�guration, which �ts in the space available in front of the sarcophagus. Once

again, we simulate tracking the 0.5m × 0.5m × 0.5m frame covered with �fty six targets in

�ve positions.

Section (a) of table 3.12 shows the achieved tracking accuracy both when we add noise

only on the picture coordinates and when we use the comprehensive level of noise de�ned for

the Baumer cameras with 6mm lens. The achieved tracking accuracy is comparable to that

obtained previously.
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Table 3.11: Characteristics of the AVT Stingray cameras used for the tracking. Characteristics
of the Baumer sensors used for the �rst simulations are given for comparison.

Sensor size (W × H) Cell size
Ωhorz

Lens
(mm×mm) (pixels× pixels) (µm) (mm)

Baumer TXF20 7.1× 5.4 1624× 1236 4.40 61.2° 6
Baumer TXF50 8.4× 7.1 2448× 2050 3.45 70.0° 6

AVT Stingray F-504B 8.5× 7.1 2452× 2056 3.45 56.0° 8

camera 1 camera 2

camera 3camera 4

(a) Front view

camera 1
camera 2

camera 3
camera 4

(b) Side view

Figure 3.17: Tracking camera and target frame positions for the simulations based on actual
material characteristics. The �ve superimposed green boxes represent the �ve target frame
positions. The yellow squares on the box represent the direction pointed at by the tracking
cameras.

Moving the cameras away from the sarcophagus has the positive e�ect that there is more

space available between the tracking cameras and the sarcophagus to perform the orientation.

The orientation is now more accurate, as shown in section (b) of table 3.12. We use these

output values to de�ne the amount of noise to add to the orientation parameters for the new

comprehensive simulations. The results of these comprehensive simulations is given in section

(c) of table 3.12. The �nal tracking accuracy is slightly improved in the best-case scenario but

we still do not reach our target angular tracking accuracy in the realistic scenario.

We have found a stable tracking setup that enables us to reach our tracking accuracy goal in

the sarcophagus con�guration. This setup uses four 5Mpx cameras with 8mm lens and a cubic

target frame of side 0.5m covered with �fty six targets. These cameras, lens and target frame

will be used for the remaining simulations. Our setup also requires that we ensure a picture

coordinate accuracy of 1/30th of a pixel.

3.3 Painting con�guration

The next simulations are based on the tracking of the target frame when the acquisition systems

digitize the Rüdesheim wall paintings. The area of interest in now 2m × 1.5m but the target

accuracy (table 3.5) does not change: our most constraining case is tracking the lab-designed
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Table 3.12: Simulation results, sarcophagus con�guration. Tracking based on actual material
characteristics.

Setup Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

(a)

1/10 0.345 0.00 0.00 0.00 0.015 0.104 A.19
1/30 0.115 0.00 0.00 0.00 0.005 0.032 A.20

1/10 0.345 0.05 0.03 0.07 0.028 0.198 A.21
1/30 0.115 0.05 0.02 0.03 0.016 0.112 A.22

(b)
1/10 0.345 0.00 0.00 0.00 0.021 0.030 A.23
1/30 0.115 0.00 0.00 0.00 0.007 0.010 A.24

(c)
1/10 0.345 0.05 0.03 0.04 0.024 0.172 A.25
1/30 0.115 0.05 0.01 0.02 0.014 0.100 A.26

(a) Preliminary simulations.

(b) Orientation simulations.

(c) Comprehensive simulations.

multispectral camera, for which we must obtain an accuracy better than 0.09mm spatially and

0.128mrad angularly. The sensor characteristics are those of the Stingray cameras used in the

experiments and the object we track is the target frame de�ned previously. This target frame

moves in a plane that is 0.7m from the painting.

3.3.1 Preliminary simulations

Tracking with four tracking cameras

We optimize the positioning of four cameras tracking the target frame in front of a 2m ×
1.5m area. This time we can position the cameras at exactly 90° with respect to one another,

without being bothered by the �oor. The cameras are positioned at 2m from the painting to

fully observe the tracking volume.

As previously, the �rst simulations are performed with noise only on the picture coordinates.

Even by varying the orientation of the cameras we are unable to reach the target angular

accuracy with no noise on the object coordinates nor on the orientation parameters (see results

table 3.13). Four cameras seem insu�cient to track our target frame with the desired accuracy

in this con�guration. Because the area under study is quite large, it does not seem exaggerated

to increase the number of tracking cameras. On the other hand, increasing the dimensions of

the target frame would result in an object that is di�cult to manipulate in situ.

Tracking with six cameras

We try to reach our target tracking accuracy using six cameras. Since we know that using more

than four cameras to observe the same points does not greatly increase the tracking accuracy,

we divide the bounding box in two overlapping reduced bounding boxes (see �gure 3.18). Each

reduced bounding box is now observed by three cameras.
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Table 3.13: Preliminary simulation results, painting con�guration. The bounding box is sur-
veyed by four cameras. The camera positions vary slightly between each setup.

Setup Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

(a) 1/10 0.345 0.00 0.00 0.00 0.028 0.196 A.28
(b) 1/10 0.345 0.00 0.00 0.00 0.026 0.186 A.29
(c) 1/10 0.345 0.00 0.00 0.00 0.029 0.214 A.30

Top Left Top Right

Bottom Left

Top Center

Bottom Center

Center Left

Bottom Right

Center Right

Figure 3.18: Reduced bounding boxes and target frame positions de�ned for the painting sim-
ulations.
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Table 3.14: Preliminary simulation results, painting con�guration. The reduced bounding box
is surveyed by three cameras. The camera positions vary slightly between each setup.

Setup Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

(a) 1/10 0.345 0.00 0.00 0.00 0.025 0.174 A.31
(b) 1/10 0.345 0.00 0.00 0.00 0.026 0.170 A.32
(c) 1/10 0.345 0.00 0.00 0.00 0.023 0.162 A.33
(d) 1/10 0.345 0.00 0.00 0.00 0.025 0.172 A.34
(e) 1/10 0.345 0.00 0.00 0.00 0.024 0.160 A.35
(f) 1/10 0.345 0.00 0.00 0.00 0.026 0.172 A.36

We �rst perform the simulations for �ve frame positions in one of the reduced bounding

boxes surveyed by three tracking cameras. We slightly vary the position and orientation of these

three cameras to optimize this con�guration. The results are given table 3.14. The angular

accuracy is slightly improved compared to the four camera setup: we reach 0.160mrad in the

best-case instead of 0.186mrad previously.

There is not much variation in the achieved accuracy among the di�erent three camera

arrangements. Since moving the cameras does not greatly modify the output accuracy, we have

found a strong geometric con�guration. The two best con�gurations are those described row (c)

and (e). Row (c) we reach the best spatial accuracy and the second best angular accuracy while

the second best spatial accuracy and the best angular accuracy are reached row (e). Since the

bottleneck is reaching the target angular accuracy we choose the con�guration corresponding

to row (e) to be used as a basis for the full six camera con�guration.

The next step is to perform the simulations with the other three cameras positioned sym-

metrically to observe the other sub-area of interest. We expect the simulation results to be

improved by the presence of these other three cameras because the two sub-areas overlap. Fig-

ure 3.19 shows the position and orientation of all six cameras in front of the painting while

�gure 3.20 shows the view from these tracking cameras. We perform the simulations when the

target frame is successively in all eight positions de�ned previously. The results are summarized

in section (a) of table 3.15. There seems to be su�cient margin on the accuracy values to add

the noise corresponding to a practical situation.

3.3.2 Complete simulations

Orientation simulations

As in the sarcophagus con�guration, we now try to evaluate how accurately we can obtain

the tracking camera exterior orientation parameters. The procedure is the same as previously.

Since the tracking area is larger, we use a 3 m × 2 m plane represented by 7 × 5 points. This

plane is positioned in ten positions every 0.1m between the cameras and the painting, starting

at 0.5m from the painting to avoid disturbing it (in practice we would use a smaller plane in

more positions.) The simulations are run both with a picture coordinate accuracy 1/10th of a
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camera 1 camera 3 camera 5

camera 2 camera 4 camera 6
(a) Front view

camera 1
camera 3
camera 5

camera 2
camera 4
camera 6

(b) Side view

Figure 3.19: Tracking cameras and the target frame positions in the painting con�guration.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4 (e) Camera 5 (f) Camera 6

Figure 3.20: View of the target frame positions from the tracking cameras for the painting
simulations.

Table 3.15: Simulations results, painting con�guration. The bounding box is surveyed by six
cameras.

Setup Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

(a)
1/10 0.345 0.00 0.00 0.00 0.016 0.116 A.37
1/30 0.115 0.00 0.00 0.00 0.005 0.038 A.38

(b)
1/10 0.345 0.00 0.00 0.00 0.052 0.050 A.39
1/30 0.115 0.00 0.00 0.00 0.017 0.016 A.40

(c)
1/10 0.345 0.05 0.06 0.06 0.032 0.216 A.43
1/30 0.115 0.05 0.02 0.02 0.015 0.106 A.45

(a) Preliminary simulations.

(b) Orientation simulations.

(c) Complete simulations.
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pixel and with a picture coordinate accuracy 1/30th of a pixel. The results (given in section

(b) of table 3.15) are roughly linear: increasing the picture coordinate accuracy three times, we

can evaluate the position and orientation of the cameras three times more accurately.

To determine a realistic amount of noise to add to the orientation parameters of the next

simulations, we add a small margin to the highest values obtained. In the case of an accuracy

of 1/10th of a pixel on the picture coordinates the maximum values are 0.052mm spatially

and 0.050mm angularly. Thus, adding a Gaussian noise of 0.06mm standard deviation on

the orientation translation and 0.06mrad on the orientation rotation seems reasonable. These

values can be lowered to 0.02mm and 0.02mrad if we assume the picture coordinates accuracy

is 1/30th of a pixel.

Comprehensive simulations

The noise parameters previously de�ned are applied to the six camera con�guration for eight

positions of the cube. The full results are summarized in section (c) of table 3.15. There is

no di�culty in attaining the target spatial accuracy: our most constraining goal is 0.09mm

while the worst achieved accuracy is 0.027mm. However, to ensure that we reach our angular

accuracy goal of 0.128mrad we must once again ensure a pixel precision of 1/30th of a pixel.

3.4 Statue con�guration

We now assume the object under study is a 1m high statue with a radius of approximately 0.3m.

The distance between the object and the acquisition systems is still 0.70m to 0.76m. The target

accuracy stays the same, the constraining target value is 0.128mrad angular accuracy. We still

assume the object we track is the previously de�ned tracking frame. With the acquisition

system in the center of the frame, this yields a distance of at least 0.5m between the frame and

the object under study. This is a reasonable stand-o� distance when studying cultural heritage

objects.

To observe the full statue, the acquisition system must be positioned all around the statue

at di�erent heights, and observe it from above and below. We de�ne �ve heights for these

simulations numbered row 0 to row 4, bottom up. This column of positions is wrapped around

the statue in eight positions, as illustrated �gure 3.21. The global size of the tracking volume

can be enclosed in a box of dimensions 2.3 m× 2.3 m× 2.5 m.

3.4.1 Preliminary simulations

Tracking with four cameras

We �rst base the tracking on four cameras placed at 90° angles. We take advantage of the

symmetry of the con�guration to simplify the �rst simulations: we only consider two of the

eight columns and three of the four cameras. Furthermore we consider only three rows per

column. This simpli�ed con�guration is illustrated �gure 3.22. The view of from these cameras

is shown �gure 3.23.
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row 4

row 3

row 2

row 1

row 0

(a) (b) (c)

Figure 3.21: Target frame positions de�ned for the statue simulations. Purple cylinder repre-
sents the statue. Row 2 is not represented, it is in the middle of rows 1 and 3. (a) Side view of
a single column. (b) Top view of all columns. (c) Perspective view of all columns.

camera 3

camera 1

camera 2
(a) Top view

camera 3 camera 1

camera 2
(b) Front view

camera 1
camera 3

camera 2
(c) Side view

Figure 3.22: Subset of cameras and target frame positions used in the simulations when the full
volume of interest is surveyed by four cameras.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 1 (e) Camera 2 (f) Camera 3

Figure 3.23: View of target frame positions from the tracking cameras when the full volume
of interest is surveyed by four cameras. (a-c) All target frame positions. (d-e) Subset used in
simulations.
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camera 3
camera 6

camera 1
camera 4

camera 2
camera 5

(a) Top view

camera 3 camera 5 camera 1

camera 6 camera 2 camera 4
(b) Front view

camera 3
camera 1

camera 5

camera 6
camera 4 camera 2

(c) Left view

camera 6

camera 3

camera 1

camera 4

camera 5
camera 2

(d) Top view

camera 3
camera 1
camera 5

camera 6 camera 2 camera 4
(e) Front view

camera 1
camera 3
camera 5

camera 4
camera 6 camera 2

(f) Left view

Figure 3.24: Subset of six cameras and six target frame positions used in the simulations when
the full volume of interest is surveyed by eight cameras. (a-c) Cameras are vertically aligned
two by two. (d-f) Cameras are staggered at 45° angles.

For these preliminary simulations we only add noise to the picture coordinates. Even with

a low amount of noise (1/10th of a pixel), we can only track the target frame with an accuracy

of 0.056mm spatially and 0.308mrad angularly (see table 3.16, row (a)). The angular accuracy

is more than two times worse than than our target value of 0.128mrad. It is not surprising that

the accuracy reached is very low since many frame faces are seen only by a single camera. For

example all the bottom faces are seen only by camera 2. Four cameras are insu�cient to track

the target cube in this con�guration.

Tracking with eight cameras

We double the total number of tracking cameras to eight. Four cameras look down from above

the statue and four look up from below. Two di�erent con�gurations are tested: either the

top and bottom cameras are vertically aligned, or they are staggered at 45° angles. Only the

position of the top cameras (number 1, 3 and 5) di�er between the two camera arrangements.

As previously, we take advantage of the symmetry of the con�guration: we use a subset of six

cameras and the same six acquisition positions as before. The camera positions are illustrated

�gure 3.24 and the view from the cameras is shown �gure 3.25.

We run the simulations with noise only on the picture coordinates. The results show that
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(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4 (e) Camera 5 (f) Camera 6

(g) Camera 1 (h) Camera 2 (i) Camera 3 (j) Camera 4 (k) Camera 5 (l) Camera 6

Figure 3.25: View of target frame positions from the tracking cameras de�ned for the simulations
when the full volume of interest is covered by eight cameras. Each row presents a variation of
the camera arrangement. (a-f) Cameras are vertically aligned two by two. (g-l) Cameras are
staggered at 45° angles.

the two con�gurations are equivalent (see rows (b) and (c) of table 3.16). We thus settle on the

setup with the vertically aligned cameras, since it will be easier to build in practice.

3.4.2 Complete simulations

Orientation parameters

Because of the opposite positions of the cameras and the fact that there is an object in the

center, all eight cameras can not be oriented in a single pass: they can not all view the same

plane. A suitable approach is to calibrate them in overlapping pairs of four, considering at a

given moment only two neighbors from the top and the two corresponding bottom cameras.

This is somewhat equivalent to the orientation procedure for the painting con�guration

where half of the cameras point towards the left and the other half towards the right. On

one hand the real results should be less accurate since there is less space available between

the cameras and object to perform the orientation. On the other hand each camera will be

oriented twice, improving the accuracy of the results. We thus use the parameters de�ned

by the painting orientation simulations for the statue simulations. These values are 0.06mm

and 0.06mrad for the realistic scenario (picture coordinate accuracy of 1/10th of a pixel) and

0.02mm and 0.02mrad for the best-case scenario (picture coordinate accuracy of 1/30th of a

pixel).
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Table 3.16: Simulation results, statue con�guration.

Setup Input noise Output accuracy
Picture Object Orientation Orientation

Spatial Angular
See

coordinates coordinates translation rotation table
(pixel) (µm) (mm) (mm) (mrad) (mm) (mrad)

(a) 1/10 0.345 0.00 0.00 0.00 0.056 0.308 A.47

(b) 1/10 0.345 0.00 0.00 0.00 0.031 0.210 A.48
(c) 1/10 0.345 0.00 0.00 0.00 0.031 0.196 A.49

(d) 1/10 0.345 0.05 0.06 0.06 0.057 0.362 A.51
(e) 1/30 0.115 0.05 0.02 0.02 0.019 0.122 A.52

(a) Four cameras are used to track the full scene, only three for this subset.

(b) Eight cameras are used to track the full scene, only six are used in the simulations.

(c) Same as (b) with cameras vertically aligned instead of staggered.

(d) Same as (c) with realistic noise.

(e) Same as (c) with best-case scenario noise.

Comprehensive simulations

These simulations are still performed with a subset of six out of eight cameras but realistic noise

is applied to all positions considered. The last section of table 3.16 shows that we reach our

target accuracy in the best-case scenario (row (e)) but not in the realistic scenario (row (d)).

Once again, the angular accuracy goal is the the hardest to reach. As previously, we must

thus ensure a pixel accuracy of 1/30th of a pixel. Though we have managed to design a

con�guration where we reach our target accuracy, it must be noted that this con�guration will

be harder to set up in practice than the sarcophagus or wall painting con�gurations. Eight

cameras are a lot to manage, their presence may disturb the surrounding artwork, and will

complicate the manipulation of the target frame and acquisition systems.

3.5 Conclusion

This chapter described the photogrammetric tracking procedure developed for the registration

of multimodal datasets. The potential accuracy of such procedure was explored with a wide

range of simulations. Material parameters were based on the available acquisition systems while

the object parameters were de�ned by three case studies. Two of these case studies were based

on existing objects we are interested in. The constraints posed by these setups were taken

into account in the choice and positioning of the tracking cameras. These simulations were

also used to evaluate the characteristics of the tracking material best adapted to these three

con�gurations and to determine a coherent amount of noise to apply to the �nal simulations.

The �rst simulations showed the advantages of using 5Mpx cameras instead of 2Mpx cam-

eras. These �rst simulations also established that the acquisition systems were too small to be

accurately tracked as is. A second batch of simulations showed that �xing a target frame to the

acquisition systems improved the achievable tracking accuracy. This target frame was de�ned

to be a cube of side 0.5 m covered with �fty six targets.
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The following simulations were run with the real material parameters based on the sensors

and lens bought for the experimental tracking. When the acquisition systems are �xed to the

target frame and survey an area of 0.4 m×0.7 m, the simulations show that they can be tracked

with a spatial accuracy of 0.020mm and an angular accuracy of 0.100mrad by four cameras.

This would enable us to digitize the area of interest of the Trier sarcophagus and register the

data from our acquisition systems with an accuracy better than half an image pixel.

Equivalent tracking accuracy can be obtained using six cameras when the acquisition systems

digitize an area of 2 m×1.5 m. If the object under study is a 1m high statue with a 0.3m radius,

then the target frame can be tracked with comparable spatial accuracy and an angular accuracy

of 0.122mrad. This, however, requires eight tracking cameras and would be harder to achieve

in practice.

These promising results are based on assumption that we can resolve the picture coordinates

with an accuracy of 1/30th of a pixel. This entails that our camera calibrations will have to

be very accurate and stable. We must also make sure our tracking cameras acquire images

with well resolved, sharp targets with good contrast. These experimental details are explored

thoroughly in the next chapter, where we validate the simulation results and use the tracking

protocol to register 3D datasets.
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Tracking Accuracy and 3D

Registration

In this chapter we present a series of laboratory experiments used to evaluate our method.

These experiments were performed both to validate the simulation results and to assess the

accuracy of our technique to register a set of 3D meshes. After quickly presenting the design

choices made to set up an experiment that matches the simulation con�gurations, we evaluate

the achievable accuracy by simultaneously tracking the target frame with a commercial laser

tracker and using our method. In section 4.2 we evaluate the accuracy of the registration of

thirteen 3D meshes representing a car door. The digitization of this smooth surface is performed

while tracking our target frame, with the Gom Atos III attached to it using four cameras, as

in the sarcophagus con�guration. In the following section we evaluate the stability of each

component of the full setup. Finally, we assess the accuracy of the tracking achieved in the

wall-painting con�guration, using six cameras.

Practical considerations

Part of the tracking material has already been described in the previous chapter. The tracking

cameras are 5Mpx AVT Stingray cameras used with 8mm Pentax lenses. The target frame is

de�ned in the simulations as a cube of side 500mm uniformly covered by �fty six targets. In

practice, di�erent target frames made of aluminum pro�les were used throughout the experi-

ments. These frames were covered with 48 to 80 targets and are described in greater detail in

appendix B.1, page 167. The �nal prototype is illustrated in �gure 4.1, as well as the system

used to �x the tracking cameras in the positions described by the simulations.

4.1 Laser tracker measurements

In addition to the tracking parameters, the processing of our acquisition and calibration data

provides us with internal accuracy measurements. Though these values are a good indication of

the tracking accuracy, they are not su�cient to validate our method. We thus simultaneously
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(a) (b)

Figure 4.1: Target frame (a) and tracking camera supports (b).

track our target frame with a laser tracker, which will provide the ground truth, and our method.

The laser tracker we use is a Leica LTD500. The targets used to re�ect the laser beam back

to the base are Corner Cube Re�ector (CCR) targets, shown �gure 4.2 in a magnetic target

holder. We �x �ve of these CCR targets to the target frame in addition to the photogrammetric

targets and perform the simultaneous tracking of the frame with the photogrammetric cameras

and the laser tracker. Holes are drilled in the target holders so they can be securely screwed to

the target frame.

The laser tracker can be used in two modes: either it follows a single CCR target that is

positioned successively in all sockets, or we use several CCR targets that stay in place and we

manually point the laser tracker to the successive targets. The �rst mode provides a positional

accuracy of 0.003mm at 1σ (based on our own measurements given in appendix B.2.1, page

170). The second setup provides a positional accuracy of approximately 0.020mm.

We performed three tracking experiments with simultaneous laser tracker measurements.

All these experiments were run in the four camera con�guration by tracking an empty target

frame, with no acquisition system in it. The reduced acquisition protocol is composed of the

following steps:

� Tracking cameras interior orientation (performed a few days earlier).

� Target frame calibration.

� Tracking cameras exterior orientation.

� Simultaneous tracking of the target frame with the laser tracker and the tracking cameras.
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Figure 4.2: CCR target used with the laser tracker.

OCOC

OF O L

Q
P

position 0

position 1

Figure 4.3: Simultaneous tracking of the target frame using our method and a laser tracker.
The red crosses represent the photogrammetric targets and the green dots the CCR targets.

4.1.1 Laser tracker data processing

Comparing the data provided by the photogrammetric tracking and by the laser tracker is not

a straightforward task. Unfortunately, the coordinates of the photogrammetric targets, noted

Q, are available only in the target frame coordinate system CF while the CCR targets' coor-

dinates, noted P , are available only in the laser tracker coordinate system CL, (OL, ~xL, ~yL, ~zL),

as illustrated �gure 4.3. For each acquisition, the laser tracker provides us with the coordinates

of the CCR targets in the laser tracker coordinate system, while the photogrammetric tracking

provides us with the transformation matrix between the target frame coordinate system CF

and the position of the target frame.

Before comparing the data, we start by surveying the accuracy of the photogrammetric

tracking, given by the internal accuracy of the bundle adjustment. As in the previous chapter,

these values are provided at 2σ. We also evaluate the accuracy and the stability of the laser

tracker data both by calculating the point to point distance between all targets for every

acquisition, and by evaluating the accuracy of the transformation matrix estimated between
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every pair of positions, as explained below.

Point to point distance

The laser tracker provides us with Pk|Li, the coordinates of CCR target k (k ∈ J1,KK) in the

laser tracker coordinate system for position i (i ∈ J1, IK) expressed in homogeneous coordinates.
K = 5 for our acquisitions. The relative position of the CCR targets on the target frame is �xed

during every series of acquisitions. This means the distance between any two CCR targets of

the target frame should be the same for every acquisition. We calculate the di�erence between

every pair of target points (k, l) ∈ J1,KK2 for every acquisition i:

Pk|Li − Pl|Li . (4.1)

This distance should be constant when i varies for a �xed pair of points (k, l) so we also

calculate its standard deviation. We expect this standard deviation to be less than twice the

laser tracker punctual accuracy. If it is higher, it means the targets have moved with respect

to one another of a distance that is detectable with the laser tracker.

Transformation accuracy

For every pair of positions (i, j) we calculate TLi,Lj such that

Pk|Li = TLi,Lj · Pk|Lj (4.2)

for every point Pk using a Singular Value Decomposition (SVD). Then, we calculate the average

of the norm of the di�erence vector between the measured points and the points calculated using

the estimated transformation matrix:

1

K
·
K∑
k=1

∥∥∥Pk|Li − TLi,Lj · Pk|Lj∥∥∥
2
. (4.3)

This result can be interpreted as a distance, and tends towards zero as the accuracy of the laser

tracker measurements increases.

Comparing the photogrammetric and laser tracker measurements

The simultaneous tracking of our target frame with a laser tracker and our photogrammetric

setup provides us with the following data:

� The coordinates of the CCR targets for each acquisition position, Pk|Li, which is our

ground truth.

� The transformation matrix between each of these positions, TLi,Lj , which we estimate

from the ground truth.

� The transformation matrix between the target frame in its coordinate system and each

position of the target frame measured by our photogrammetric setup, TCi,F .
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Since the laser tracker data and the photogrammetric measurements are not in the same

coordinate system we can not compare them easily. It is possible to calculate TCi,Cj from the

various TCi,F , but this is di�erent from TLi,Lj .

For every acquisition i we have:

Pk|Li = TLi,Ci · TCi,F · Pk|F ,

where Pk|F are the coordinates of CCR target k in the frame coordinate system and TLi,Ci is

the transformation between the tracking cameras coordinate system and laser tracker system.

Since the transformation between these two systems is �xed, TLi,Ci = TLj,Cj = TL,C for every

pair of positions (i, j).

Using all target positions Pk and a variety of TCi,F it is possible to estimate TL,C and Pk|F
using a least-squares �tting. We have 27 unknowns: 12 for TL,C (this is a 4 × 4 matrix with

the last row equal to [0 0 0 1]) and 3 × 5 for the coordinates of Pk|F . Each position provides

with 3× 5 equations so theoretically two positions are su�cient to estimate TL,C and Pk|F . In
practice, we need at least three positions to obtain a matrix of su�cient rank.

We can use all available positions to estimate the coordinates of the CCR targets in the

target frame coordinate system. This simply enables us to check that the estimated CCR target

coordinates are consistent with their position on the frame. However, we can not use the same

TCi,F values to estimate the parameters and to evaluate the tracking accuracy. We have to

partition our dataset and use a subset of the values of TCi,F to estimate TL,C and Pk|F and

the rest to evaluate the accuracy of the tracking.

We use all but one position (position i) to estimate TL,C and Pk|F . To compare the pho-

togrammetric tracking results with the laser tracker results we calculate Pk|Ci in two di�erent

ways. Using the laser tracker data and estimated TL,C we have:

Pk|Ci = (TL,C)−1 · Pk|Li . (4.4)

On the other hand, the photogrammetric tracking results and the estimated Pk|F enable us to

calculate

Pk|Ci = TCi,F · Pk|F . (4.5)

These two values should be equal, with equation 4.4 representing the ground truth from the

laser tracker and 4.5 representing the measured values. We estimate the accuracy of the pho-

togrammetric tracking for target k and position i with:

∥∥(TL,C)−1 · Pk|Li − TCi,F · Pk|F
∥∥
2
. (4.6)

4.1.2 Target frame �xed to a theodolite tripod

For these �rst laser tracker measurements we used a target frame covered with 40 targets

(target frame A from appendix B.1) and �xed it to a theodolite tripod. The target frame is

tracked in four successive positions which correspond to the four corners of the bounding box

in the sarcophagus con�guration: two positions are close to the �oor, while the other two are
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Figure 4.4: Relative position of the target frame (M1 to M4) and tracking cameras (dark grey)
during the laser tracker measurements with the target frame �xed to a theodolite tripod.

approximately 50 cm higher (see �gure 4.4). The �ve CCR targets are attached to the side of

the target frame that faces the laser tracker, opposite from the tracking cameras.

Photogrammetric tracking

The spatial and angular internal accuracy of the phogrammetric tracking for all four positions

is illustrated �gure 4.5. It is compared to the simulation results and to the target accuracy

values. We notice that the spatial accuracy is much worse than the simulation results, even

in the less constraining "realistic" case. However, for all three acquisition systems considered

the spatial accuracy is better than the target value. The angular accuracy, however, is not

only worse than the simulation results, but also worse than the target values for all acquisition

systems and all positions. These disappointing results prompted us to change the target frame

design.

Laser tracker acquisitions

We evaluate the stability of the target frame from the laser tracker data by calculating the point

to point distance between the �ve targets for all positions. The standard deviation of this point

to point distance for each pair of targets is given row (a) of table 4.1 (all distances are given in

appendix B.2.3, page 171). The cells of this table are colored based on a linear RGB scale that

goes from green for a standard deviation of 0mm to magenta for values greater than 0.04mm.

0.04mm is twice the positional accuracy of the laser tracker when it is used with �xed CCR

targets.

In this �rst con�guration, the standard deviation of the point to point distance between every

pair of CCR targets varies between 0.005mm and 0.259mm. Since we use the laser tracker by

repositioning a single CCR target, we expect the standard deviation to be less than 0.006mm,
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Figure 4.5: Spatial and angular accuracy of the photogrammetric tracking during the laser
tracker measurements with the target frame �xed to a theodolite tripod, compared to the
simulation results and target accuracy.

Table 4.1: Standard deviation of the point to point distances between every pair of CCR targets
for all laser tracker measurements. Values greater than 0.040mm are colored magenta.

Standard deviation of point to point distance (mm) See
1 to 2 1 to 3 1 to 4 1 to 5 2 to 3 2 to 4 2 to 5 3 to 4 3 to 5 4 to 5 table

(a) 0.005 0.258 0.026 0.032 0.254 0.029 0.022 0.006 0.150 0.008 B.5
(b) 0.460 0.018 0.162 0.339 0.398 0.314 0.139 0.197 0.387 0.508 B.6
(c) 0.009 0.019 0.014 0.035 0.012 0.013 0.030 0.037 0.042 0.023 B.7

(a) Target frame �xed to theodolite tripod, four positions.

(b) Target frame �xed to marble table, �ve positions.

(c) Target frame with �xed CCR target, ten positions.
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which is the case only between two pairs of targets. For all other pairs, the standard deviation

is much greater. This means the distance between the CCR targets varies noticeably. During

the measurements, we could feel the target frame vibrate when we detached and reattached the

CCR targets to its magnetic holders. Though we waited for the vibrations to die out before

each measure, they hurt the accuracy of the laser tracker measurements.

If this data is to be used as the ground truth against which we compare our photogrammetric

tracking, it should be more accurate than the photogrammetric tracking data. The spatial

accuracy of the photogrammetric tracking is better than 0.05mm. A comparable accuracy of

the laser tracker is represented by a standard deviation of less than 0.10mm, which is reached

for only three positions. This laser tracker data can not be used as a ground truth for evaluation

of our photogrammetric tracking.

4.1.3 Target frame �xed to a marble table

To remedy the vibrations of the target frame, we clamp the frame to a stable marble table (see

�gure 4.6). We also use an improved target frame, which is much lighter and covered with 78

targets instead of 40 (target frame B2). This target frame is tracked in �ve positions, illustrated

�gure 4.7. There is not much diversity in these positions since we are limited by the height and

rail of the table. We vary the inclination of the target frame by setting it on wooden blocks of

varying heights before clamping.

Photogrammetric tracking

The tracking accuracy provided by our method is shown �gure 4.8. We have hardly improved

the tracking accuracy compared to the previous con�guration: once again the spatial accuracy

is su�cient for the registration purposes, even though it is worse than the values expected

from the simulations. The angular accuracy is acceptable for the registration of data from the

FluxData multispectral camera for only two of the �ve positions (M3 and M4). These two

positions are strikingly better than the other three: the angular tracking accuracy is close to

two times better. Nothing obvious di�erentiates these two positions from the lot, except the

fact that they are very close to one another (see �gure 4.7).

Looking at the photo acquisitions from the tracking cameras, it appears clear that the

globally disappointing tracking accuracy is due to the fact that the marble table hides many

of the targets from the bottom two cameras. Though we have added close to 40 targets to the

target frame since the previous measurements, the marble table hides approximately the same

amount. The two positions with the best tracking accuracy are the positions where the target

frame slightly protrudes from the table (see �gure 4.9). The di�erence seems small but it also

appears to highly in�uence the tracking accuracy. This is not due to the increase in targets

visible from the tracking cameras, since these values are very close (as shown in the appendix,

table B.3). The accuracy of the target detection in the input images, however, is better for

positions M3 and M4 (shown in the appendix, table B.4). This is not the single factor that

explains the improved accuracy, or position M5 would be more accurately tracked. However,

this is the factor which seems to have the single highest contribution.
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Figure 4.6: Target frame clamped to a marble table.

−1500 −1000 −500 0 500 1000
−1500

−1000

−500

0

500  

X

 

Y

M1
M2
M3
M4
M5

Figure 4.7: Relative position of target frame and tracking cameras during the laser tracker
measurements with the target frame clamped to a marble table.
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Figure 4.8: Spatial and angular accuracy of the photogrammetric tracking during the laser
tracker measurements with the target frame clamped to a marble table, compared to the sim-
ulation results and target accuracy.

There are at least two possible explanations for the variation in pixel accuracy: First, the

"limited" depth of view of the tracking cameras can result in the inadequate positioning of these

cameras with respect to the marble table, given their �xed focus. This drawback is due to a

change in calibration procedure: instead of performing the interior and exterior calibration in a

single run (as was the case for the �rst experiment), all four cameras were calibrated beforehand

and their focus �xed for the duration of the series of experiments. The exterior orientation was

then calibrated using the known interior orientation. This procedure can greatly improve the

accuracy of the exterior and interior tracking camera calibration. In turn, it can improve the

tracking accuracy, though it requires the object under study to be correctly positioned with

respect to the prede�ned focus. It is also possible that the illumination conditions were more

favorable for measurements M3 and M4, resulting in sharper targets.

Laser tracker acquisitions

We expect the accuracy of the laser tracker measurements to be improved by this setup. Instead,

row (b) of table 4.1 shows us that it is much worse than previously. The standard deviation

is now between 0.139mm and 0.508mm for all but one pair of targets. Clamping the target

frame to the table has bent the frame, causing a deformation of the cube and a variation in the

distance between the CCR targets. This laser tracker data can not be used as a ground truth

to evaluate the accuracy of the photogrammetric tracking.

4.1.4 Target frame with �xed CCR targets

To remedy the vibration and deformation problem, we use the laser tracker with �ve CCR tar-

gets that are �xed to the target frame and remain in place for the duration of the measurements.

With this setup the accuracy of the laser tracker measurements is reduced, but the stability

is improved. We use target frame B3, which is covered with 80 photogrammetic targets. The
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(a) (b)

Figure 4.9: Target frame on the marble table seen from a bottom tracking camera. (a) repre-
sentative of the badly tracked positions M1, M2 and M5. (b) representative of better tracked
positions M3 and M4.

target frame is �xed to a tripod so that photogrammetric targets are easily visible from the

tracking cameras and all CCR targets can be reached by the laser tracker. The simultaneous

tracking with the laser tracker and the tracking cameras is performed for ten positions num-

bered M1 to M10. The relative position of the target frame and tracking cameras is illustrated

�gure 4.10. There is not much variation in the orientation of the target frame, since all CCR

targets must at all times face the laser tracker and we were reluctant to move them during

the acquisitions to ensure the most stable con�guration possible. The target frame positions

are con�ned to an area that is approximately 1.2m from the tracking cameras, 0.6m wide and

0.6m high.

Photogrammetric tracking

The spatial and angular accuracy of the target frame tracking using our method is given �g-

ure 4.11. The results are much improved from the previous acquisitions. The spatial tracking

accuracy is within the realistic simulation results and thus noticeably better than all target

values. The angular orientation is also better than the target accuracy for the registration of

data from the Gom Atos III and the FluxData multispectral camera. Five of the ten positions

are borderline for the registration of data from the lab-designed multispectral camera and one

is approximately ten percent worse.

Laser tracker acquisitions

The standard deviation of the point to point distance between the coordinates of the CCR

targets measured by the laser tracker is between 0.009mm and 0.042mm (see row (c) of table

4.1). The laser tracker acquisitions are much more stable than previously. However, we wish to

validate a tracking accuracy better than 0.025mm, which is the maximum value of the internal
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Figure 4.10: Relative position of the target frame and tracking cameras during the laser tracker
measurements with �xed CCR targets.
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Figure 4.11: Spatial and angular accuracy of the photogrammetric tracking during the laser
tracker measurements with �xed CCR targets compared to the simulation results and target
accuracy.
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Table 4.2: Accuracy of the transformation estimated from the laser tracker data with the �xed
CCR targets for every pair (i, j) of acquisition positions. Calculated using equation 4.3, all
values in mm.

i, j 1 2 3 4 5 6 7 8 9 10

1 0.064 0.057 0.063 0.021 0.033 0.025 0.027 0.031 0.025
2 0.064 0.040 0.036 0.051 0.045 0.045 0.044 0.043 0.049
3 0.057 0.040 0.013 0.040 0.042 0.038 0.036 0.034 0.043
4 0.063 0.036 0.013 0.046 0.048 0.042 0.040 0.036 0.044
5 0.021 0.051 0.040 0.046 0.021 0.020 0.020 0.023 0.021
6 0.033 0.045 0.042 0.048 0.021 0.027 0.023 0.029 0.030
7 0.025 0.045 0.038 0.042 0.020 0.027 0.012 0.009 0.016
8 0.027 0.044 0.036 0.040 0.020 0.023 0.012 0.015 0.014
9 0.031 0.043 0.034 0.036 0.023 0.029 0.009 0.015 0.015
10 0.025 0.049 0.043 0.044 0.021 0.030 0.016 0.014 0.015

Avg. 0.038 0.046 0.038 0.041 0.029 0.033 0.026 0.026 0.026 0.029

tracking accuracy of our photogrammetric measurements. Unfortunately, our ground truth is

not as accurate as what we try to measure. Nevertheless, we try to compare our datasets, as

these are the most accurate laser tracker measurements we managed to perform.

We estimate the transformation matrix for every pair of positions from the laser tracker

data. The accuracy of these estimates is give table 4.2. The minimum value (highest accuracy)

is 0.009mm between positions 7 and 9. The highest value is 0.064mm between positions 1

and 2. These values are slightly worse than the point to point distances, but of the same order.

Globally, the average accuracy per position varies between 0.026mm and 0.046mm. We

notice that the least well tracked position is position 2, while the most accurately tracked

positions are 7, 8 and 9. These inaccuracies are mostly a result of the inaccurate laser tracker

measurements.

Comparing datasets

Using all but the current position of interest we estimate the transformation matrix and the

target frame coordinates. The accuracy of this estimate is given table 4.3. Globally we see that

target 5 presents the most errors and targets 3 and 4 the least.

The average value per position of this estimated external accuracy of the photogrammetric

measurements is compared with the average errors for each position of the laser tracker trans-

formations in table 4.4. In both cases the least well tracked position is position 2 while the

most accurately tracked position is position 7.

The calculation of the external photogrammetric accuracy is based on the data from the

laser tracker. Since the laser tracker has an accuracy of the order of 0.030mm, the estimated

photogrammetric tracking accuracy can not be lower than 0.030mm. The high inaccuracy of

the laser tracker data makes it di�cult to evaluate what fraction of the inaccuracies are inherent

to the photogrammetric setup. It can be noted that, globally, the estimated external accuracy

photogrammetric measurements is approximately the sum of the laser tracker inaccuracies and

the internal photogrammetric accuracy. Though this tends to validate our internal accuracy
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Table 4.3: Photgrammetric tracking accuracy for each position and each CCR target during
the laser tracker measurements with the �xed CCR targets. Calculated using equation 4.6. All
values in mm.

Position
Target

Average
1 2 3 4 5

1 0.069 0.043 0.035 0.046 0.073 0.053
2 0.117 0.093 0.071 0.030 0.215 0.105
3 0.116 0.073 0.044 0.040 0.140 0.083
4 0.062 0.041 0.036 0.054 0.051 0.049
5 0.059 0.051 0.069 0.055 0.083 0.063
6 0.028 0.021 0.037 0.035 0.079 0.040
7 0.057 0.029 0.012 0.026 0.043 0.033
8 0.057 0.069 0.035 0.010 0.068 0.048
9 0.026 0.036 0.033 0.066 0.033 0.039
10 0.044 0.063 0.071 0.075 0.060 0.062

Average 0.064 0.052 0.044 0.044 0.084 0.058

measurements, it is in no way a con�dent interpretation of the data. We can not precisely

evaluate how the laser tracker inaccuracies in�uence the photogrammetric accuracy estimation

and it is always possible that our internal accuracies are but a minimized estimate of the global

tracking accuracy.

Though using the laser tracker in the mode where it follows the CCR target would provide

better ground truth data, we were unable to devise a con�guration that is stable enough to

perform those measurements. Another improvement would be to use spherical photogrammetric

targets that provide the same centerline value as a CCR target during the photogrammetric

measurements. This would greatly ease the comparison and processing of the two datasets and

eliminate errors that come from the estimation of TL,C and Pk|F . However, we would still

need to perform the laser tracker measurements with several �xed CCR targets, resulting in a

punctual accuracy of approximately 0.020mm.

4.2 Tracking and 3D registration

We now present a tracking and registration test performed with a single acquisition system in

the target frame. This experiment is still performed in the four camera con�guration, using a

target frame covered by 78 targets (target frame B2). The Gom Atos III is used to digitize a car

door that measures approximately 1100 mm× 600 mm. Since the simulation con�guration was

optimized for an area of 400 mm×800 mm, we only digitize a portion of the car door measuring

close to 800 mm× 600 mm.

The smooth surface of the car door makes it a good test object: there are few salient features

and this is typically the type of object where conventional registration algorithms fail. We no

longer use the laser tracker to perform simultaneous acquisitions, but we cover the car door with

un-coded photogrammetric targets that are used to evaluate the accuracy of our registration

procedure. These targets are not use to guide the tracking nor the registration.
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Table 4.4: Average tracking accuracy for each position during the laser tracker measurements
with the �xed CCR targets. The laser tracker data is from table 4.2 while the photogrammetry
data is an average of each line of table 4.3. The internal spatial tracking accuracy shown �gure
4.11 is given for comparison.

Tracking accuracy (mm)
Position Laser tracker Photogrammetry

Estimated Estimated Internal

1 0.038 0.053 0.015
2 0.046 0.105 0.020
3 0.038 0.083 0.024
4 0.041 0.049 0.020
5 0.029 0.063 0.015
6 0.033 0.040 0.019
7 0.026 0.033 0.021
8 0.026 0.048 0.022
9 0.026 0.039 0.022
10 0.029 0.062 0.020

Average 0.033 0.058 0.020

The bulk of the calibrations were performed the same day as the acquisitions. The necessary

acquisitions and calibrations are the following:

� Tracking cameras interior orientation (a few days in advance).

� Tracking cameras exterior orientation.

� Target frame calibration.

� Gom Atos III interior orientation.

� Target frame to Gom Atos III orientation.

� Simultaneous digitization of the car door and tracking of the target frame.

We �rst present the accuracy achieved for the individual calibrations. Then, we analyze

the accuracy with which we track the target frame and �nally we evaluate the accuracy of the

global registration.

4.2.1 Individual calibrations

The accuracy of the individual calibrations is given in table 4.5. When available, they are

compared with the corresponding simulation parameters and results from chapter 3.

The accuracy of the tracking cameras interior orientation is between the results for the

best-case and realistic simulations. Since the interior orientation accuracy directly in�uences

the accuracy of the tracking cameras exterior orientation, it is not surprising that this last value

is also between the best-case and realistic simulation results.

The target frame calibration is performed with much higher accuracy than expected but

the target frame to acquisition system orientation introduces a non negligible amount of errors.
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Table 4.5: Accuracy of the individual calibrations during the car door digitizing, compared to
the accuracy expected from the simulations.

Calibration Experiment
Simulations

Unit
Realistic Best-case

Tracking cameras I.O. 0.056 0.100 0.033 pixel

Target frame calibration 0.015 0.050 mm

Target frame to Gom 0.025 � mm
Atos III orientation 0.054 � mrad

Tracking cameras E.O.
0.017 0.030 0.010 mm
0.030 0.040 0.020 mrad
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Figure 4.12: Relative position of the target frame and tracking cameras during the car door
digitization.

A more accurate frame to acquisition system calibration can be executed by performing the

calibration with several relative position of the frame and acquisition system with respect to

the calibration target-covered object, instead of one as is the case here.

4.2.2 Tracking the target frame

Thirteen acquisitions were performed with the 3D digitization system; they are numbered M1

to M13. The relative position and orientation of the four tracking cameras and the target frame

for each measurement is illustrated �gure 4.12.

This subsection examines the accuracy with which we evaluate the position of the target

frame in the world coordinate system for each measurement. The accuracy of the tracking of the

target frame depends on the accuracy of the tracking cameras interior and exterior orientation

calibrations, as well as the target frame calibration. Given the results of the previous section,

we can not expect the frame tracking accuracy to reach the levels of the best-case scenario

simulations.

Table 4.6 shows the position and orientation of the frame given by the photogrammetric
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Table 4.6: Tracking results and accuracy during the car door digitization. Position and orien-
tation values are signi�cantly rounded.

Position Orientation Accuracy
X Y Z Ω Φ K Spatial Angular

(mm) (mm) (mm) (rad) (rad) (rad) (mm) (mrad)

M1 133 =95 =1440 0.589 =0.445 =0.007 0.026 0.132
M2 139 =204 =1525 0.589 =0.444 =0.007 0.024 0.118
M3 321 =259 =1440 0.591 =0.445 =0.008 0.030 0.146
M4 267 =404 =1595 0.591 =0.512 =0.014 0.023 0.114
M5 266 =405 =1594 0.590 =0.682 =0.033 0.023 0.110
M6 261 =306 =1515 0.589 =0.681 =0.033 0.022 0.110
M7 250 =108 =1362 0.589 =0.684 =0.033 0.027 0.140
M8 243 95 =1222 0.394 =0.684 =0.091 0.028 0.176
M9 117 =219 =1567 0.350 =0.848 =0.163 0.028 0.148
M10 57 88 =1355 0.297 =0.974 =0.237 0.025 0.138
M11 74 =214 =1590 0.296 =0.973 =0.238 0.029 0.158
M12 117 =258 =1600 0.370 =0.772 =0.128 0.025 0.134
M13 =73 =203 =1687 0.282 =0.993 =0.253 0.026 0.140

tracking, as well as the accuracy of these parameters. In �gure 4.13 these accuracy parameters

are compared with the simulation results and with the target tracking accuracy for the regis-

tration of data from our three acquisition systems. Although only the Gom Atos III was used

here, this permits a better evaluation of achieved tracking accuracy.

This �gure shows that the spatial accuracy of the tracking is hardly never as good as expected

from the simulation results, though it is not much worse. However, we are more than three

times better than the target spatial accuracy for the registration of data from the lab-designed

multispectral camera, the most constraining case. The angular accuracy more closely matches

the simulation results. Though the accuracy is always worse than the best-case simulation

results, it is always better than the realistic simulations, except for position M8. In this case,

the angular accuracy is less than 10% worse than expected.

The angular accuracy is always su�cient to register data from the Gom Atos III and the

FluxData multispectral camera, with the exception, once again, of position M8. It is not

surprising that M8 is the least well-tracked position: as �gure 4.12 shows, this position of

the frame is slightly o�-center compared to the other positions and thus partially out of the

simulation bounds.

4.2.3 3D registration

The registration of all 13 positions using the tracking data is illustrated �gure 4.14. When we

interact with these meshes, the registration seems seamless. Our goal however, is to create a

3D model that is not only visually satisfying, but that can also be used for metrology purposes.

The Gom Atos III acquisition software recognizes any coded or uncoded target present in

the scene. In our case the full surface is covered with over 48 uncoded targets of diameter

6mm. We export the list of targets visible in each mesh, this number varies between 8 and 16

per mesh. This provides us with Aki |CS
the coordinates of target point k from mesh i in the
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Figure 4.13: Spatial and angular tracking accuracy during the car door digitization, compared
to the simulation results and to the target accuracy.

(a) (b)

Figure 4.14: All 13 meshes representing the car door registered in a single model. (a) One color
per mesh. (b) All meshes in grey.
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4.2. Tracking and 3D registration

acquisition system coordinate system.

We apply the same transformation to these points as we applied to the meshes and obtain

Aki |C0
for all targets of all meshes. For every target k and for every pair of meshes (i, j) where

target k is visible, we now calculate

Aki |C0
− Akj

∣∣
C0

.

If the registration were perfect, the result of this subtraction would be a null vector. This

provides us with a measure of the accuracy of the registration. Table 4.7 shows the average

over k of ∥∥∥Aki |C0
− Akj

∣∣
C0

∥∥∥
2

for all pairs of meshes. This value varies between 0.097mm and 2.376mm with an average of

0.889mm.

We reach our target registration accuracy of 0.12mm for only two mesh-pairs: between

M1 and M2 (0.10mm) as well as between M5 and M6 (0.12mm). This is partially due to

the fact that M1, M2, M5 and M6 are among the most accurately tracked measurements (see

�gure 4.13). However, a high tracking accuracy for two positions does not necessarily result in

a high registration accuracy. The pairwise registration between M1 and M5 on one side and

M2 and M6 on the other size is more than seven times worse than M1 to M2 or M5 to M6.

Table 4.6 shows that the frame orientation hardly changes between M1 and M2, as well

as between M5 and M6, though there is a translation of over 100mm in both cases. The

accurate tracking in these two cases suggests that the acquisition system and target frame are

not as tightly �xed as we need them to be: changing the frame orientation slightly changes the

position of the acquisition system in the frame, resulting in an imprecise registration. The fact

that the registration accuracy between M1�M5, M2�M5, M1�M6 and M2�M6 is almost the

same (0.86mm or 0.87mm) con�rms this interpretation. The bulk of the registration error in

this subset seems to be a �x error resulting from the unstable position of the acquisition system

in the tracking frame.

This also explains why succeeding measurements generally have a better registration accu-

racy: the position of the acquisition system has not moved as much in the frame. The exceptions

are always cases in which the orientation changes signi�cantly between two consecutive mea-

surements (M11 to M12, M12 to M13 and M7 to M8).

We also notice that a low number of shared points, which denotes positions with little

overlap, does not necessarily correspond to a low tracking accuracy: positions M4 and M7, as

well as positions M5 and M7 respectively share three and two points. Nevertheless, they are

tracked with an accuracy of 0.33mm, which places them among the ten most accurately tracked

pairs of positions.

Though it is possible to register 3D datasets with an accuracy of 0.12mm using our setup,

this is con�ned, in this experiment, to very speci�c cases. To generalize this registration accu-

racy, the overall stability of the setup must be improved. In particular, the acquisition system

must be more tightly �xed to the target frame. The hexagonal �xtures used ensure that the

acquisition system does not move during each acquisition, but not that it stays in the same
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Chapter 4. Tracking Accuracy and 3D Registration

Table 4.7: Average point to point distance between the targets on the car door for every pair of
positions, in mm. The number of points shared by each pair is given in parenthesis. Cells are
colored on a linear RGB scale with green for 0mm and magenta for values greater than 2mm.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

M1
0.12 0.59 0.68 0.86 0.87 0.83 0.81 1.64 0.91 1.17 0.58 1.60
(9) (5) (3) (1) (3) (3) (2) (2) (2) (2) (2) (2)

M2
0.12 0.65 0.67 0.86 0.87 0.87 0.79 1.59 0.92 1.10 0.68 1.48
(9) (10) (6) (2) (4) (4) (2) (3) (3) (3) (5) (5)

M3
0.59 0.65 0.57 0.65 0.61 0.47 0.36 1.37 0.79 0.99 1.20 1.50
(5) (10) (9) (4) (8) (7) (5) (7) (6) (7) (8) (8)

M4
0.68 0.67 0.57 0.16 0.20 0.33 � 0.97 0.54 0.65 1.41 0.92
(3) (6) (9) (6) (6) (3) (0) (8) (3) (8) (10) (10)

M5
0.86 0.86 0.65 0.16 0.10 0.33 � 0.81 0.51 0.57 1.64 0.79
(1) (2) (4) (6) (5) (2) (0) (8) (2) (8) (8) (8)

M6
0.87 0.87 0.61 0.20 0.10 0.25 0.82 0.84 0.50 0.57 1.60 0.88
(3) (4) (8) (6) (5) (6) (2) (10) (5) (10) (6) (7)

M7
0.83 0.87 0.47 0.33 0.33 0.25 0.64 1.01 0.61 0.74 1.51 1.13
(3) (4) (7) (3) (2) (6) (10) (5) (13) (5) (2) (2)

M8
0.81 0.79 0.36 � � 0.82 0.64 1.44 0.69 1.00 � �
(2) (2) (5) (0) (0) (2) (10) (1) (9) (1) (0) (0)

M9
1.64 1.59 1.37 0.97 0.81 0.84 1.01 1.44 0.85 0.60 2.38 0.73
(2) (3) (7) (8) (8) (10) (5) (1) (5) (13) (9) (10)

M10
0.91 0.92 0.79 0.54 0.51 0.50 0.61 0.69 0.85 0.30 1.55 1.06
(2) (3) (6) (3) (2) (5) (13) (9) (5) (5) (2) (2)

M11
1.17 1.10 0.99 0.65 0.57 0.57 0.74 1.00 0.60 0.30 1.85 0.81
(2) (3) (7) (8) (8) (10) (5) (1) (13) (5) (9) (10)

M12
0.58 0.68 1.20 1.41 1.64 1.60 1.51 � 2.38 1.55 1.85 2.08
(2) (5) (8) (10) (8) (6) (2) (0) (9) (2) (9) (12)

M13
1.60 1.48 1.50 0.92 0.79 0.88 1.13 � 0.73 1.06 0.81 2.08
(2) (5) (8) (10) (8) (7) (2) (0) (10) (2) (10) (12)
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position in its socket for successive acquisitions. The stability we require is very high, of the

order of a few micrometers. These are di�cult constraints to reach for a camera �xture that

must support 7.5 kg (weight of the Atos III) in varying orientations (ideally even sideways and

upside down).

Part of the inaccuracies may also come from a deformation of the target frame, due to

its manipulation or to temperature changes that result in an expansion or contraction of the

aluminum bars. This hypothesis will be tested in the following section.

Barone et al. [2012a,b] have developed a similar tracking technique for the registration of 3D

meshes. In their case, the tracking is performed by stereo vision and the registration is the �rst

step of a two-step registration process: the coarse registration supported by the optical tracking

is used as an input for an ICP optimization. The use of only two cameras makes their setup

more easily transportable that ours, but it yields a tracking and registration accuracy that must

be completed by an optimization step. Their setup is better adapted to registration of highly

three-dimensional objects, such as statues, while our method is targeted for the registration of

smooth, featureless meshes.

4.3 Stability of the individual calibrations

We assess the stability of the individual calibrations by comparing measurements performed in

the same con�guration over a period of time that varies from a single day to a few weeks.

4.3.1 Target frame stability

During one of our campaigns of laboratory experiments, we performed twelve calibrations of the

target frame (target frame B3) over the course of two weeks. The internal accuracy of each of

these calibrations is given in table 4.8. All calibrations were far more accurate than our target

0.05mm from the simulations. The least accurate calibrations, G and H, are more accurate

than 0.03mm.

We compute all point to point distances between the 80 photogrammetric targets for all

pairs of calibrations. For every pair of calibrations, we then calculate the average over all

targets of the absolute di�erence between the point to point distances. The results are given

table 4.9. This is a symmetric matrix but all data is given to improve readability. Groupings

show calibrations that were performed the same day.

As with the internal accuracies, calibrations G and H stand out. This is probably due to a

bad image quality and an overall unstable internal accuracy of the camera during the acquisi-

tions. If we ignore these two acquisitions, the stability of the calibration is quite satisfactory:

it varies between 0.02mm and 0.06mm.

Though the internal accuracy values give us an indication of the accuracy of the calibration,

they are not su�cient: Looking at the RMS of the target residuals it seems that H is the worst

calibration. The comparison of the average point to point distance between the targets shows

that, though calibration H is bad, calibration G is far worse. Also, looking at the RMS of the

target residuals, G seems only slightly worse than L, when in reality L is a good calibration.
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Table 4.8: Internal accuracy of the target frame calibrations. Groupings show calibrations that
were performed the same day. RMS of the residuals of the target coordinates.

RMS of residuals RMS of number Number
x y z of rays per point of images

(mm) (mm) (mm)

A 0.018 0.018 0.021 24.5 113

B 0.013 0.013 0.014 46.5 133
C 0.014 0.015 0.017 50.0 127

D 0.010 0.010 0.011 48.5 119
E 0.013 0.013 0.016 45.7 119

F 0.011 0.011 0.012 50.2 128

G 0.019 0.019 0.020 49.2 123
H 0.023 0.023 0.026 53.8 139

I 0.013 0.014 0.017 51.3 130
J 0.011 0.012 0.014 51.8 129

K 0.010 0.010 0.011 53.4 145
L 0.018 0.018 0.020 38.1 101

Table 4.9: Average absolute di�erence in the point to point distances between the photogram-
metric targets for every pair of target frame calibrations, in millimeters. Cells are colored on a
linear RGB scale that goes from green for 0mm to magenta for 0.1mm.

A B C D E F G H I J K L

A 0.04 0.05 0.05 0.04 0.05 0.10 0.07 0.05 0.05 0.05 0.06

B 0.04 0.03 0.03 0.03 0.03 0.08 0.06 0.04 0.04 0.05 0.04
C 0.05 0.03 0.03 0.03 0.04 0.10 0.07 0.02 0.04 0.04 0.04

D 0.05 0.03 0.03 0.04 0.02 0.07 0.05 0.04 0.04 0.05 0.04
E 0.04 0.03 0.03 0.04 0.05 0.10 0.08 0.03 0.04 0.04 0.05

F 0.05 0.03 0.04 0.02 0.05 0.07 0.05 0.05 0.04 0.06 0.04

G 0.10 0.08 0.10 0.07 0.10 0.07 0.04 0.10 0.07 0.09 0.07
H 0.07 0.06 0.07 0.05 0.08 0.05 0.04 0.07 0.05 0.06 0.05

I 0.05 0.04 0.02 0.04 0.03 0.05 0.10 0.07 0.04 0.04 0.04
J 0.05 0.04 0.04 0.04 0.04 0.04 0.07 0.05 0.04 0.03 0.03

K 0.05 0.05 0.04 0.05 0.04 0.06 0.09 0.06 0.04 0.03 0.04
L 0.06 0.04 0.04 0.04 0.05 0.04 0.07 0.05 0.04 0.03 0.04

Average 0.06 0.04 0.04 0.04 0.05 0.04 0.08 0.06 0.05 0.04 0.05 0.05
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4.3. Stability of the individual calibrations

Our target object coordinate accuracy is of 0.05mm. In practice, the target frame calibration

accuracy is generally better than 0.02mm. We thus have a tolerance of 0.03mm for inaccuracies

due to the limited stability of the target frame. If we only compare calibrations performed the

same day, this value is reached only for target frame calibrations B and C. For all other pairs

of calibrations performed a given day, the average absolute di�erence in the photogrammetric

targets is of 0.04mm. To ensure an optimal tracking accuracy, the stability of target frame

should be improved, for example by designing a target frame made of carbon, which is less

prone to deformations due to temperature changes than aluminum.

4.3.2 Tracking cameras internal orientation stability

Three cameras were calibrated twice the same week, on Monday and Friday. The di�erence in

the estimation of the focal length is less than 0.001mm, which is an absolute percentage error

of approximately 0.01%.

There is a greater di�erence in the principle point o�set, particularly in the x direction. The

absolute error is less than 0.085mm, but this represents 68% of the original value. However, it

is di�cult to evaluate the impact of these inaccuracies that can be compensated by the accurate

calibration of the exterior orientation of the cameras as well as by the calibration of the target

frame.

4.3.3 Tracking cameras exterior orientation stability

We compare the stability of ten exterior orientation camera calibrations (A to J) of four tracking

cameras, performed over a two week period. The internal accuracy provided by the bundle ad-

justment is given table 4.10. The calibrations are once again grouped when they were performed

the same day.

Compared to the simulation results, the exterior orientation accuracy is quite satisfying: we

are always twice as good as the expected values in the realistic scenario (0.03mm spatially and

0.04mrad angularly). Compared to the best-case simulation result, we are always better than

the angular target value. The experimental spatial accuracy is always worse or equal to the

spatial accuracy used for the simulations. As the angular accuracy is generally harder to reach,

this may not have too much of a negative impact on the tracking accuracy.

The orientation of the tracking cameras changed between each group of acquisitions, so that

the cameras faced the evolving area of interest. All calibrations can not be compared with one

another, only the calibrations performed in a single position can be compared over time. For

every set of calibrations performed in a given con�guration we calculate for every camera the

di�erence in its position between every pair of con�gurations. The absolute average of these

three values (since one camera is set as the origin) is calculated for all pairs of con�gurations.

This data is given table 4.11.

The stability of a given con�guration is generally better for calibrations that were performed

the same day, but the data varies threefold between 0.06mm and close to 0.18mm. There are

two weak points of our setup that can explain these variations. First, the camera support, like

the target frame, is made of aluminum bars that are sensitive to temperature changes. Though
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Table 4.10: Exterior orientation accuracy reached when tracking with four cameras, compared
to the simulation values.

Con�guration
Max. std. deviation
Spatial Angular
(mm) (mrad)

Experiments

A 0.014 0.016
B 0.013 0.018
C 0.014 0.018

D 0.010 0.012
E 0.011 0.014
F 0.014 0.018

G 0.011 0.012
H 0.011 0.014

I 0.010 0.012
J 0.011 0.010

Simulations
Realistic 0.030 0.040
Best-case 0.010 0.020

Table 4.11: Average absolute displacement of the cameras for every pair of exterior orientation
calibrations, in millimeters. Cells are colored on a linear RGB scale that goes from green for
0mm to magenta for 0.2mm.

A B C D E F G H I J

A 0.175 0.111
B 0.175 0.075
C 0.111 0.075

D 0.081 0.090 0.085 0.121
E 0.081 0.110 0.136 0.172
F 0.090 0.110 0.115 0.139

G 0.085 0.136 0.115 0.060

H 0.121 0.172 0.139 0.060

I 0.080
J 0.080

Avg. 0.143 0.125 0.093 0.094 0.125 0.114 0.099 0.123 0.080 0.080
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4.3. Stability of the individual calibrations

Figure 4.15: Calibration between the target frame and the Gom Atos III. The target-covered
object used for the calibration is shown on the �oor.

these bars are thicker than those used for the target frame, they are also much longer, varying

between 1.4m and 1.7m. A temperature change can thus produce measurable di�erences.

The ball-joints used to orient and support the tracking cameras were not photo-quality.

They may have resulted in the cameras barely tilting down over time.

4.3.4 Target frame to Atos III stability

The calibration between target frame B3 and the Gom Atos III was performed three times.

For calibrations A and B, we used two relative positions of the target frame and target-covered

object (the setup is shown �gure 4.15) to measure the position of the acquisition system in the

target frame. These relative positions are numbered a1, a2, b1, b2 and processed as individual

calibrations to compare with the global calibration made by processing the data in pairs. A

glitch during the third calibration resulted in data from only one relative position of the target

frame and target-covered object adequate to be used for the calibration, labeled 'c'.

The calibration results and associated accuracy are given table 4.12. The di�erences in the

spatial positioning are of the order of a few tenths of a millimeter while the di�erence in the

orientation angles are of the order of a few tenths of a milliradian. Combining two positions

seems to improve the calibration accuracy by approximately 25%. The integration of the data

from two di�erent relative positions does not necessarily result in values that are between the

values calculated with the individual positions. For example the Z coordinate for A is greater
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Table 4.12: Results and accuracy of the target frame to Gom Atos III calibrations.

Position Orientation Accuracy
X Y Z Ω Φ K Spatial Angular

(mm) (mm) (mm) (rad) (rad) (rad) (mm) (mrad)

a1 18.235 =319.384 846.368 0.2450 =0.0400 =0.0457 0.040 0.074
a2 18.066 =319.294 846.302 0.2450 =0.0402 =0.0457 0.045 0.080

A 18.160 =319.382 846.395 0.2450 =0.0401 =0.0457 0.029 0.056

a1 17.885 =319.564 846.031 0.2469 =0.0393 =0.0452 0.053 0.098
a2 18.191 =319.611 846.177 0.2472 =0.0391 =0.0452 0.046 0.082

B 18.037 =319.611 846.173 0.2471 =0.0392 =0.0452 0.036 0.068

c 18.238 =319.578 846.263 0.2465 =0.0398 =0.0453 0.066 0.106

than both the Z coordinates for a1 and a2.

There seems to be as much variation between two positions that make up a single calibration

as between measurements performed on di�erent days. This is di�cult to establish with great

con�dence without performing a statistical analysis that would require more data than what

is available here. However, the variation between di�erent calibrations is also greater than

the accuracy of the measurements. This tends to corroborate our hypothesis that the target

acquisition system moves in the target frame to an extent that hurts the �nal registration

accuracy.

4.4 Tracking with six cameras

All tests presented so far were performed using four cameras. We now test our method in the

six camera con�guration. For this, we track the target frame in sixteen positions (M1 to M16).

The relative position and orientation of the target frame and cameras for these acquisitions is

illustrated �gure 4.16.

4.4.1 Individual calibrations

Since no acquisitions are performed and we only evaluate the tracking, only three calibrations

are necessary:

� Tracking cameras interior orientation (performed a few days earlier).

� Target frame calibration.

� Tracking cameras exterior orientation.

The accuracy of the individual calibrations is given table 4.13. The calibration of the

tracking cameras follows the same protocol as previously, though it takes longer because of the

increase in the number of cameras. We expect the accuracy of the interior orientation to be of

the same order as that reached in the four camera con�guration. In practice we have improved

the accuracy of this calibration from worse than 1/20th of a pixel to better than 1/30th of a pixel
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Figure 4.16: Relative position of the target frame and tracking cameras when tracking with six
cameras.

Table 4.13: Accuracy of the individual calibrations when tracking with six cameras, compared
to the accuracy expected from the simulations.

Calibration Experiment
Simulations

Unit
Realistic Best-case

Tracking cameras I.O. 0.029 0.100 0.033 pixel

Target frame calibration 0.014 0.050 mm

Tracking cameras E.O.
0.031 0.030 0.010 mm
0.034 0.040 0.020 mrad

for all six cameras. This last result is better than the best-case simulation constraints. The

improvement in calibration accuracy is due to a better control of the illumination conditions

during the internal orientation acquisitions.

The target frame calibration procedure is exactly the same as previously and was part of

the results presented in section 4.3.1. Two calibrations, B and C, were performed the same day.

Since calibration B is slightly more accurate than calibration C, we use calibration B for the

data processing. The RMS of the residuals is better than 0.014mm, which is more than twice

as good as the values used for the simulations.

The exterior orientation of the tracking cameras, is longer and more complicated now that

we have six cameras. This is because they do not all observe the same area, and there is

only a small overlap in their common view. The setup is that of the wall painting simulations

and is shown �gure 4.17). As predicted by the simulations, we expect the accuracy of these

calibrations to be slightly worse than in the four camera con�guration.

Two exterior orientations were performed. Their accuracy is compared to the simulation

results in table 4.14. The experimental results do not reach the best-case scenario simulation
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Figure 4.17: Calibration of the exterior orientation of six tracking cameras.

Table 4.14: Exterior orientation accuracy reached when tracking with six cameras, compared
to the simulation values.

Spatial Angular
(mm) (mrad)

Experiments
A* 0.045 0.048
B* 0.031 0.034

Simulations
Realistic 0.060 0.060
Best-case 0.020 0.020

results, but they are always better than the realistic simulation results. We process the tracking

with the results from exterior orientation B*, since it is the most accurate of the two (table

B.8 page 174 in the appendix shows that this indeed results in more accurate tracking results).

Given the exterior orientation accuracy, we do not expect the tracking results to reach the

best-case scenario results, though they should reach the realistic tracking accuracy.

4.4.2 Tracking accuracy

The tracking accuracy of all sixteen positions is given �gure 4.18 and compared with the target

and simulation values. Looking �rst at the spatial accuracy we notice that only a few posi-

tions (M11 and M16) are tracked with the accuracy expected from the best-case simulations.

And even then, they are just slightly better than the target value. However, all positions are

tracked with the spatial accuracy expected from the realistic simulations. Most importantly,

all positions are tracked with a spatial accuracy many times better than that necessary for the

registration of the 3D data from the Atos III and the multispectral data from both cameras
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Figure 4.18: Spatial and angular tracking accuracy when using six cameras, compared to the
simulation results and to the target accuracy.

that we use.

All positions are tracked with an angular accuracy that is better than the realistic simulation

results, the target value for the FluxData multispectral camera and the target value for the

Gom Atos III. Two positions (M1 and M2) are tracked with less accuracy than the lab-designed

angular target and �ve positions (M1, M2, M4, M5 and M14) are tracked with less accuracy

than the best-case scenario simulations.

Though the least well tracked positions are all in somewhat extreme positions (highest,

lowest, most left) this can not solely account for their disappointing tracking accuracy since

other extreme positions such as M3, M10 and M15 are well tracked. Other factors must also

cause this inaccuracy for example the orientation of the target frame with respect to the cameras.

We are satis�ed with the tracking accuracy in the six camera con�guration and believe it can

be used to accurately register 3D and multispectral datasets. Globally, these tracking results

are close to the best-case simulation values, leaving a wide margin for the registration of data

from the Gom Atos III digitization system and the FluxData multispectral camera.

4.5 Conclusion

All the tracking results of this chapter are grouped in �gure 4.19. We de�ned an experimental

setup that corresponds to two of the three simulation con�gurations. We extensively tested the

tracking of a target frame of dimensions 500 mm× 500 mm× 500 mm using four cameras, in a

setup that corresponds to the sarcophagus simulations.

The �rst tests of our photogrammetric setup were performed simultaneously with a laser

tracker, to provide an external measurement of the tracking accuracy of our system. The

di�erent constraints to obtain accurate measurements by both the photogrammetric setup and

the laser tracker made it di�cult to obtain satisfactory data with the two systems in a given

con�guration. The data processing and comparison was complicated by the fact that no common

coordinate system exists between the two types of measurements. Nevertheless, the data seems
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Figure 4.19: Spatial and angular accuracy of all photogrammetric tracking experiments from
this chapter. 'lt1', 'lt2' and 'lt3' represent, respectively, the �rst, second and third laser tracker
measurements. 'car' represents the digitization of the car door and '6cam' the tracking using
six cameras.

consistent with our tracking accuracy of approximately 0.02mm. The best tracking accuracy

was obtained during the third laser tracker measurements, performed with the �nal version of

the target frame. The use of spherical photogrammetric targets that provide the same centerline

value as a CCR and can be placed in the CCR sockets could help the processing. However, this

would not provide more accurate laser tracker measurements in a con�guration that is favorable

for the photogrammetric tracking.

The �rst registration test based on our method was performed with only 3D data. The

registration of these thirteen independent 3D meshes representing a smooth surface highlighted

a weak point of our setup: the attach between the target frame and the acquisition system.

When the orientation between two successive positions was stable, we were able to reach our

registration accuracy goal of 0.12mm. For the other positions, the accuracy of the registration

was of the order of a millimeter.

The stability of the target frame over time is globally satisfying, as is the interior orientation

stability. The exterior orientation stability could be improved, but is currently su�cient for

acquisitions performed during a single day. The calibration between the target frame and

acquisition system should be improved, though this would require a better �xture between the

two.

We also test the tracking in the six camera con�guration. The accuracy is slightly reduced

compared to the four camera con�guration, but these results are quite satisfying given the

increased di�culty of maintaining a stable con�guration when the setup is scaled up. The

calibration of an increased number of cameras is more accurate than the realistic simulation

results, thought the best-case accuracy is not reached. In most cases, the �nal tracking accuracy

is adequate to register data from our three acquisition systems.

The tracking and registration tests have yeilded promising results. Our method can now be

applied to the registration of 3D and multispectral data.
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Integration of 3D and Multispectral

Data

In this chapter, our tracking method is applied to a multispectral camera and a 3D digitization.

The digitizations are executed with the Gom Atos III, as previously, while all multispectral

acquisitions rely on the FluxData multispectral camera. The acquisitions from both acquisition

systems are registered using the data provided by the tracking.

This experiment is performed for two objects, a cross-stitch canvas and a bas-relief. In both

cases, four tracking cameras survey the scene, as in the sarcophagus con�guration. The tests

presented here were performed in laboratory settings to validate the method in controlled set-

tings. The �rst section of this chapter presents the two objects digitized and the corresponding

acquisition setup. We then describe the multispectral data processing. Finally, we present the

tracking and registration results for the two con�gurations.

5.1 Con�guration overview

5.1.1 Cross-stitch canvas

The frame of the cross-stitch canvas measures 45 cm × 36 cm and the cross-stitch itself covers

an area of 32 cm× 23 cm. Though it is smaller than the area of interest of the sarcophagus, the

cross-stitch canvas is a good test object for the registration of 3D and multispectral data. It

contains both spatial surface variations on the frame and in the stitches, as well as re�ectance

variations in the color of the thread. During the digitizations, the frame sat on a small metallic

shelf and the four tracking cameras were positioned to observe the acquisition systems while

they digitized the surface. Figure 5.1a shows the object under study being digitized by the

Atos III �xed to the target frame. The last iteration of the target frame (target frame B.3

described in appendix B.1, page 167), which is covered with 80 targets, is used for this and all

subsequent experiments.

We performed �ve 3D digitizations and seventeen multispectral acquisitions of the cross-

stitch, which were largely su�cient to digitize the full canvas. The 3D datasets are labeled G1
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(a) (b)

Figure 5.1: Multisensor acquisitions using the target frame. (a) Detail of the cross-stitch canvas
3D digitization. (b) Detail of the plaster bas-relief multispectral acquisition. Even though the
ring-light is still �xed to the multispectral camera, only the two halogen lights are used during
the acquisitions.

to G5, while the multispectral acquisitions are labeled FD1 to FD17. These were our �rst 3D

� multispectral registration tests. As such, we acquired overlapping multispectral acquisitions

to better evaluate the �nal registration accuracy.

The multispectral acquisitions must be performed with an external light source (the 3D

digitizations do not require any external light � they are actually not as accurate in bright

environments). An LED ring light was �xed to the multispectral camera to uniformly light the

surface of the cross-stitch canvas. This ring light provides a fairly uniform illumination in the

visible range. Unfortunately, it does not emit in the near infrared, so these �rst multispectral

acquisitions are composed of only six channels acquired in the visible spectrum. Since the cur-

rent object of interest is smaller than the sarcophagus, the multispectral camera was positioned

closer to the surface under study, at approximately 500mm from the canvas.

5.1.2 Bas-relief

The bas-relief we study is a painted plaster provided by the RGZM (Römish-Germanishes Zen-

tralmuseum � Roman-German Central Museum, Mainz, Germany). This bas-relief measures

approximately 500 mm × 800 mm and is slightly bigger than the sarcophagus area of inter-

est (400 mm × 700 mm). Surface and color variations are comparable to those present on the

sarcophagus. The goal of this digitization was to closely mimic the acquisitions that were pre-

viously perform on the sarcophagus in Trier: the full surface of interest is acquired by the Gom

Atos III while speci�c sub-areas of interest are acquired by the multispectral camera.

The bas-relief sits close to the �oor, on a few pieces of wood to ensure its stability. The

tracking setup is similar to the one used for the cross-stitch digitization. In this case, twelve

3D acquisitions (G1 to G12) and four multispectral acquisitions (FD1 to FD4) were performed.

The multispectral camera is now approximately 700mm away from the surface under study, as
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(a) CCD A (b) CCD B (c) CCD NIR

Figure 5.2: Sample image acquired by each CCD.

was the case during the simulations. We no longer use the ring light to illuminate the scene for

the multispectral acquisitions. Instead, a halogen light is placed on each side of the bas-relief,

as shown �gure 5.1b. These halogen lights also illuminate the NIR, so all seven bands of the

multispectral acquisitions can be used.

5.2 Multispectral data representation

The FluxData multispectral camera is made of two RGB CCDs that acquire data in the visible

(six channels) and one greyscale CCD that acquires data in the Near InfraRed (NIR). An

example of the individual acquisitions of the three CCDs is given in �gure 5.2. Using this sample

image we will quickly present the processing performed on the multispectral acquisitions from

the FluxData camera to obtain re�ectance data and color representations from the acquired

data. The spectral response of each channel is plotted in �gure 5.3. This �gure clearly shows

that CCD A has a high sensitivity mapped to the red channel, while CCD B has a higher

sensitivity assigned to the green channel. The better equilibrium between the channels of CCD

B explains why, despite its green tinge, �gure 5.2b is more representative of the true colors of

the original painting.

The acquisitions from seven individual channels of the sample acquisition are shown �g-

ure 5.4. In image 5.4e we see that the red channel from CCD A has such high sensitivity that

it is saturated, while the other channels from the same sensor (�gures 5.4a and 5.4c) are under

exposed. Similarly, the blue channel of CCD B (�gure 5.4b) is clearly underexposed, while the

other two (�gures 5.4d and 5.4f) are satisfactory. It is di�cult to set an acquisition time per

CCD that is adapted to all three channels of a given sensor. This is further complicated by the

fact that, during the acquisition, the software only shows us the images in �gure 5.2, making it

di�cult to detect when individual channels are saturated.

To recover re�ectance information with physical signi�cance from these images, a series of

spectral calibration steps are necessary. We �rst present how we compensate nonuniform light

conditions. We then brie�y describe the spectral reconstruction. Finally, we show a few RGB

representations created from the spectral data. This section describes widespread techniques

in dealing with multispectral data, as well as previous work done in our institutions. We revert

to presenting original work in section 5.3.
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Figure 5.3: FluxData multispectral camera spectral response, as measured by the manufacturer.

(a) Blue A (b) Blue B (c) Green A (d) Green B (e) Red A (f) Red B (g) NIR

Figure 5.4: The seven individual spectral bands of the sample image.

5.2.1 Multispectral white balance

We start by leveling the images to compensate the spatially uneven light conditions and the

varying sensitivities of the channels. For this, we acquired a plane white surface in several

positions in the measurement acquisition conditions. From the white acquisitions we create a

mean image for each spectral band. This white multispectral acquisition represents the light

conditions. The averaging of the several takes smoothens out any irregularity that may describe

the surface itself.

This white multispectral data is used to normalize the acquisitions by applying the following

simple algorithm; where A denotes an 8-bit multispectral acquisition and W the corresponding

white multispectral acquisition:

for every spectral plane k do

for every image row i do

for every image column j do

A(i, j, k)← A(i, j, k)× 255/W (i, j, k)

if A(i, j, k) > 255 then

A(i, j, k) = 255

end if
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(a) Blue A (b) Blue B (c) Green A (d) Green B (e) Red A (f) Red B (g) NIR

Figure 5.5: The seven individual spectral bands of the sample image after the white balance.

end for

end for

end for

The result for our test image is shown �gure 5.5. The individual channels are globally better

balanced, though the saturated channel still stands out.

In dark images, this normalization introduces some noise: a pair of pixels with similar values

can be mapped to two values with a large gap. This creates a grainy image. This e�ect can

be compensated by applying a 3 × 3 mean �lter to each normalized channel. By smoothening

the features this can attenuate some �ne details in the representation, but it also reduces the

graininess of the image.

When digitizing several areas of a given objects, a set of white acquisitions per position is

necessary to compensate the uneven illumination over the full object. However, when using

a ring-light and a �xed acquisition distance and orientation, the acquisition of a single set of

white surfaces is neccessary, since the illumination is stable.

5.2.2 Re�ectance estimation

As explained in chapter 2, a series of multispectral images does not directly represent the

surface re�ectance. The spectral estimation presented here is based on previous work at the Le2i

laboratory, in particular Alamin Mansosuri's PhD [Mansouri, 2005]. This re�ectance estimation

is based on a heteroassociative neural network algorithm (see [Mansouri, 2005, p.109] as well

as [Mansouri et al., 2005b; Sanchez et al., 2005]).

The spectral calibration requires the acquisition of several patches of varying and known

re�ectance. We use the GretagMacbeth ColorChecker (shown in �gure 5.6) to obtain 24 di�use

reference patches. We place the ColorChecker in the scene in the same acquisition conditions

as the object under study. The resulting acquisitions are shown in �gure 5.7. We also perform

the white balance presented previously on these acquisitions. Then, we compute the average

multispectral value of the 24 patches in these acquisitions.

On the other hand, we obtain the theoretical re�ectance of each patch using a portable

spectrometer (JETI specbos 1200). This provides us with the re�ectance spectrum of each patch

from 380 nm to 1060 nm with a 1 nm step. We average this data by 10 nm steps between 380 nm

and 780 nm. The averaging reduces the noise of the theoretical spectra while the truncation

re�ects our chosen output spatial range. The reference re�ectance of the 24 patches is compared

with the mean multispectral acquisition values of the ColorChecker for our sample image in

�gure 5.8. Notice the exaggerated values and saturation of channel 5.

99



Chapter 5. Integration of 3D and Multispectral Data

Figure 5.6: Gretag Macbeth ColorChecker.

(a) CCD A (b) CCD B (c) CCD NIR

Figure 5.7: ColorChecker acquired by each CCD. A and B in the visible, C in the near infrared.
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Figure 5.8: ColorChecker acquisitions. (a) Re�ectance measured by a spectrometer and
smoothened over 10 nm. (b) Values from the 8-bit multispectral acquisition shown �gure 5.7.
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Figure 5.9: A few re�ectance spectra reconstructed from the sample image.

These datasets are used to create a neural network that can then process our input data, as

explained in chapter 2 (section 2.1.4, page 17). This provides us with a re�ectance cube storing

the re�ectance of each pixel sampled every 10 nm between 380 nm and 780 nm. Figure 5.9 shows

a few of these spectra. Though this data is very useful for �ne data analysis, it is not easy to

apprehend it its integrity. We now present various color representations of this re�ectance data.

5.2.3 Color representations

Using the estimated re�ectance of each pixel, it is possible to create color representations that

are accurate from a colorimetric point of view. Each spectrum is multiplied by the spectrum

of a given illuminant and by a standard observer. This provides us with a triplet of values in

the XYZ color space. This triplet is then covered to RGB for representation purposes. The

necessary colorimetric data is available on the website of the International Commission on

Illumination (CIE � Comission Internationale de l'Éclairage [CIE ]). Using the 1931 observer

and standard illuminant D65, which simulates daylight, we obtain the image used in �gure 5.9.

It is also possible to create false color representations that can ease certain interpretations

of the spectral data. Such representations are often based on either a Principle Component

Analysis (PCA) or an Independent Component Analysis (ICA) of the spectral data. The �rst

three resulting bands are used to create an image. Many di�erent renderings can be produced

depending on which color space is used to interpret the output of the PCA/ICA. The three

channels can be directly assigned as RGB channels, but it is also possible to interpret them as

values from another color space. A few of examples are shown �gure 5.10.

5.3 3D � multispectral registration

We now present the tracking and registration accuracy achieved when both the Atos III and the

FluxData multispectral camera are used to digitize our two test objects. The target registration

accuracy for both acquisition systems imposed by the acquisition distance and by our goal

of a half-pixel tracking accuracy is given table 5.1. For the cross-stitch canvas, the reduced
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(a) direct RGB (b) Lab (c) HSV (d) YCbCr (e) YUV

(f) direct RGB (g) Lab (h) HSV (i) YCbCr (j) YUV

Figure 5.10: False color representations of the sample image. (a-e) based on a PCA. (f-j) based
on an ICA.

Table 5.1: Target accuracy for each acquisition con�guration.

Acquisition system
Acquisition Acquisition Target accuracy
distance dimensions Spatial Angular
(mm) (mm×mm) (mm) (mrad)

FluxData multispectral camera
500 97×130 0.099 0.198
700 137×183 0.139 0.198

Gom Atos III digitization system 760 500×500 0.120 0.158

acquisition distance when using the multispectral camera has an in�uence on the target spatial

accuracy.

This section successively presents the accuracy of the individual calibrations; the accuracy

of the tracking of the target frame; the 3D registration and the projection of the multispectral

acquisitions on the 3D meshes.

5.3.1 Individual calibration accuracy

Now that we use two acquisition systems, the number of necessary calibrations increases. These

calibrations and acquisitions are the following:

� Interior orientation of the tracking cameras

� Interior orientation of the multispectral camera*

� Calibration of the 3D digitization system

� Target frame calibration

� Exterior orientation of the tracking cameras

� Multispectral camera to target frame orientation*

� Multispectral acquisitions with simultaneous tracking*
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Table 5.2: Accuracy of the individual calibrations, compared to the simulation values.

Calibration
Experiments Simulations

Unit
Cross-stitch Bas-relief Realistic Best-case

Tracking cameras I.O. 0.029 0.100 0.033 pixel

Multispectral camera I.O. 0.035 0.072 � pixel

Target frame calibration 0.011 0.017 0.050 mm

Tracking cameras E.O.
0.014 0.011 0.030 0.010 mm
0.016 0.012 0.040 0.020 mrad

Target frame to Gom 0.029 0.066 � mm
Atos III orientation 0.056 0.106 � mrad

Target frame to multispectral 0.924 0.126 � mm
camera orientation 3.156 0.428 � mrad

� 3D digitization system to target frame orientation

� 3D digitizations with simultaneous tracking

An asterisk highlights the three steps introduced by the use of an additional acquisition system.

This section examines the corresponding calibration results in greater detail. The accuracy of

the individual tracking and calibration procedures is given in table 5.2. When available, the

equivalent values from the simulations are given for comparison.

Sensor calibrations

The same interior orientation of the tracking cameras was used for the two digitizations, which

were performed the same week. As previously, this calibration is more accurate than the values

used for the best-case scenario simulations.

The focus of the multispectral camera is adapted to each set of acquisitions, so we must

repeat the calibration. The three CCDs of the FluxData multispectral camera are independently

calibrated using a much smaller calibration plate than that used for the calibration of the

tracking cameras. Table 5.2 gives the worst accuracy of all three sensors. There is quite a

lot of variation in the accuracy of the calibration of the varying sensors, in particular for the

calibrations performed for the digitization of the bas-relief. In this case CCD B is the least

accurately calibrated (value given in table of 0.072 pixel) but the infrared sensor is much more

accurately calibrated (0.019 pixel). The accuracy of the calibration of CCD A is between these

two values (0.052 pixel). These variations denote that some of the calibration acquisitions were

performed in areas that are in focus for one sensor, and slightly out of focus for the other two.

Though this was not the case for the bas-relief digitization, the calibration of the multispec-

tral cameras can be performed with an accuracy close to that of the tracking cameras.

Calibration of the target frame

The calibration of the target frame is as accurate as in the previous chapter, and much better

than the values used during the simulations.
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Exterior orientation of the tracking cameras

The exterior orientation of the tracking cameras is much more accurate than the realistic sim-

ulation results and almost as good as the best-case simulation results.

Orientation between the target frame and the acquisition systems

The accuracy of the calibration between the Gom Atos III and the target frame was presented in

the previous chapter (section 4.3.4). The least accurate calibration is due to the single relative

position of the target frame and target-covered object during the calibration.

The orientation between the target frame and FluxData multispectral camera is calculated

using three di�erent relative positions of the target frame and calibration object. The discrep-

ancy between the small �eld of view of the multispectral camera and the large tracking frame

are the cause of the disappointing accuracy of the orientation of the tracking frame in the sys-

tem de�ned by the multispectral camera. This orientation can be improved if the multispectral

camera observes a greater number of targets. During the cross-stitch digitization each image

could only see four or �ve targets of the calibration object. For the digitization of the bas-relief

we improved this setup and seven to twelve targets were visible per position, resulting in a

much improved calibration.

5.3.2 Tracking accuracy

The relative position of the tracking cameras and the target frame is illustrated �gure 5.11

for the cross-stitch digitization and �gure 5.12 for the bas-relief acquisitions. The spatial and

angular accuracy of the frame tracking for each of these positions is given �gure 5.13 in the case

of the cross-stitch canvas and �gure 5.14 for the bas-relief. The achieved tracking accuracy is

compared to the simulation results and to the tracking accuracy goals.

Cross-stitch canvas

We only reach the simulation results for the angular accuracy during the Atos III digitizations.

The spatial accuracy is also much better for these �ve positions, rarely exceeding 10% more

than the spatial accuracy of the best-case simulations. As shown �gure 5.11, the target frame

is closer to the cameras during the Gom acquisitions. These positions closely resemble those

used for the simulations. It is thus not surprising that the tracking accuracy better corresponds

to the simulation results.

If we compare the achieved accuracy to the tracking goal we notice that the tracking accuracy

is always better than our goal. As expected from the simulations, we have no di�culty reaching

our target spatial accuracy. Our worst spatial value (0.026mm for FD3) is more than three

times better than the spatial accuracy goal of 0.099mm.

The least well tracked positions are FD3, FD4, FD9, FD10, and FD15. The �rst four of

these positions are those of the third column from the left in �gure 5.11. For these positions

we have a perspective view of all targets on the left and right side of the frame. The ensuing

tracking is less accurate, even though there is a comparable number of targets detected by each

camera compared to the other positions.
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Figure 5.11: Relative position of the tracking cameras and target frame during the digitization
of the cross-stitch canvas.
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Figure 5.12: Relative position of the tracking cameras and target frame during the digitization
of the plaster bas-relief.
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Figure 5.13: Spatial and angular tracking accuracy during the cross-stitch digitization, com-
pared to the simulation results and to the target accuracy. The target FluxData spatial accuracy
is lower than it is for all other �gures of this type, due to the reduced acquisition distance.
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Figure 5.14: Spatial and angular tracking accuracy during the bas-relief digitization, compared
to the simulation results and to the target accuracy.
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Bas-relief

During the bas-relief digitizations, the positions of the target frame when using the Atos III

and FluxData camera are less discernible. The resulting tracking accuracy is also much closer

for the two acquisition systems. As previously, all positions are tracked with an accuracy well

within the spatial target accuracy.

Figure 5.14 shows that the angular tracking accuracy is satisfying for all but three positions:

G10, G11 and G12 are less accurately tracked than the target angular accuracy for the Gom

Atos III. These are the three positions in a column on the right of �gure 5.12. These three

positions are not only o�-center, they are also very tilted, creating a perspective view on the

targets.

Positions G7, G8 and G9, though satisfying, also stand out in the angular tracking accuracy

results. These three tracking positions are the left column of �gure 5.12. They are o�-center,

but not as tilted as the three following positions.

For the multispectral acquisitions, the tracking accuracy is quite stable and is better than

the realistic simulation results angularly and close to the best-case simulation results spatially.

5.3.3 3D registration

Cross-stitch canvas

The frame of the cross-stitch canvas is di�cult to digitize with the Gom Atos III, due to the

shiny paint that covers it. The intricate decorations of the interior of the frame are particularly

challenging to digitize and were only partially acquired.

Figure 5.15 shows the registration of the �ve meshes of the cross-stitch canvas and frame,

as well as the �nal model. There are some holes remaining in this �nal model, particularly in

the area representing the frame, but the cross-stitch canvas is almost fully acquired. There are

no visible discontinuities in the 3D model thought these would be easily visible on the exterior

and interior edges of the frame.

The theoretical accuracy of the �nal registration is the sum of the tracking accuracy and

the target frame to acquisition system orientation. In the case of the 3D data, the theoretical

spatial accuracy is thus the sum of the spatial accuracy of the least well tracked position of the

Gom Atos III, position G2, (0.016mm) and of the spatial accuracy of the target frame to Gom

Atos III orientation (0.029mm). This theoretical spatial accuracy of 0.045mm is well below

our target accuracy of 0.09mm. The theoretical angular accuracy is 0.158mrad (0.0860mrad,

angular accuracy of G2, plus 0.072mrad, spatial accuracy of the target frame to Gom Atos III

orientation). This is exactly our target angular accuracy. We reach our target 3D registration

accuracy somewhat narrowly and based on the assumption that the calibration of the 3D

digitization system introduces negligible errors.

Bas-relief

The registration of all twelve meshes representing the bas-relief is shown in �gure 5.16. Figure

5.17a shows a close-up of the areas where defects in the registration are visible. Mesh G5 (in

pale blue in �gure 5.16a) is not well aligned to the surrounding meshes. There are also several
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100 mm

Figure 5.15: 3D registration of �ve meshes representing the cross-stitch canvas. First row:
successive projection of each individually colored mesh. Bottom image: all meshes.

inaccuracies visible on the hand that holds the box. Removing mesh G5 results in an inaccurate

alignment of the meshes in the middle of the skirt, as shown �gure 5.17b. Also removing meshes

G3 and G4 (respectively the lower pink and salmon meshes of �gure 5.16a) results in an overall

satisfying model, as shown in �gure 5.18.

We could expect the meshes we remove to obtain a coherent model to be the least accurately

tracked, but it is not the case. What distinguishes these three meshes from the others is their

orientation, which is sensibly the same, yet di�erent from all the others (tracking results and

accuracy are given in table 5.3). The registration of only these three meshes results in a visually

satisfying, though partial, model.This con�rms the idea that most of the inaccuracies stem from

the unstable �xture between the target frame and the acquisition system.

The registration accuracy of the remaining nine positions can be calculated as previously by

summing the tracking accuracy and the accuracy of target frame to Atos III orientation. For

the least accurately tracked position (G12) this results in 0.112mm spatially and 0.342mrad

angularly. The spatial results are still within our target limit, but the angular results are

much worse, since the tracking accuracy was already above the limit and our orientation is

not particularly satisfying. If we consider the other six remaining positions, G9 is the least

accurately tracked and the resulting angular registration accuracy is 0.246mrad angularly, which

is still more than our target. Even if we consider positions G1, the angular registration accuracy

is above 0.2mrad, which is close to thirty percent higher than our target accuracy of 0.158mrad.

To reach our target registration accuracy, we need an orientation between the target frame

and the Atos III that is as accurate as that performed for the digitization of the cross-stitch
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100 mm 100 mm

Figure 5.16: 3D registration of the twelve meshes representing the bas-relief. (a) Each mesh is
individually colored. (b) All meshes in grey.
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Figure 5.17: Details of the 3D registration meshes representing the bas-relief. Mis-alignments
are highlighted by an arrow. (a) All twelve meshes. (b) Without mesh G5. (c) Without meshes
G3, G4 and G5.

109



Chapter 5. Integration of 3D and Multispectral Data

100 mm 100 mm

Figure 5.18: 3D registration of nine meshes representing the bas-relief. Meshes G3, G4 and
G5 have been removed compared to �gure 5.16. (a) Each mesh is individually colored. (b) All
meshes in grey.
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5.3. 3D � multispectral registration

Table 5.3: Tracking results and accuracy during the bas-relief digitization. Position and orien-
tation values are signi�cantly rounded.

Position Orientation Accuracy
X Y Z Ω Φ K Spatial Angular

(mm) (mm) (mm) (rad) (rad) (rad) (mm) (mrad)

G1 =277 90 =1986 0.522 0.649 =0.004 0.021 0.104
G2 =290 =98 =2124 0.453 0.648 0.023 0.018 0.094
G3 =310 =131 =2083 0.133 0.583 0.168 0.018 0.102
G4 =175 =92 =2148 0.135 0.584 0.166 0.017 0.100
G5 =164 91 =2017 0.134 0.583 0.166 0.018 0.100
G6 =155 111 =1978 0.593 0.624 0.005 0.019 0.098
G7 =510 257 =1580 0.179 0.307 0.039 0.021 0.134
G8 =521 78 =1708 0.178 0.307 0.039 0.023 0.132
G9 =539 =229 =1928 0.179 0.307 0.039 0.024 0.140
G10 45 54 =2370 0.006 0.831 0.405 0.034 0.188
G11 63 359 =2152 =0.034 0.879 0.461 0.031 0.164
G12 78 606 =1977 =0.033 0.878 0.461 0.046 0.236

FD1 =350 131 =2043 0.590 0.602 =0.015 0.023 0.110
FD2 =187 205 =2145 0.593 0.602 =0.018 0.022 0.108
FD3 =358 =9 =2145 0.590 0.602 =0.015 0.023 0.116
FD4 =240 =104 =2128 0.130 0.642 0.168 0.020 0.114

canvas and a tracking accuracy that is close to the best-case simulation results.

5.3.4 Multispectral projection

The projection of the multispectral data on the registered 3D meshes is not as straightforward

as the 3D registration itself. As stated in chapter 3, the tracking provides us with TC0,CF
, the

transformation between the tracking camera coordinate system and the target frame; while the

target frame to multispectral camera calibration provides us with TCF ,CSi
. We can thus calcu-

late the coordinates of point A in the tracking camera coordinate system from its coordinates

in the acquisition coordinate system using:

A|C0
= TC0,CF

· TCF ,CSi
· A|CSi

. (5.1)

We assume that acquisition system i is an imaging system such as a multispectral camera,

and not a 3D digitization system. In this case CSi
, (OSi

, ~xSi
, ~ySi

, ~zSi
) is de�ned such that OSi

is the optical center of the camera; (~xSi
, ~ySi

) de�ne the image plane; ~zSi
is collinear to the

optical axis. In this setup if A is a point of the surface under study captured by the acquisition

system sensor, we do not know its coordinates A|CSi
in the sensor coordinate system. What

we do have is A′ image of A on the sensor; A′ has only two coordinates xa′ and ya′ .

Using the pinhole camera model ([Morvan, 2009, section 2.2], for example) we obtain the

111



Chapter 5. Integration of 3D and Multispectral Data

coordinates of point A given xa′ and ya′ using:

A|CSi
= λ

[
K−1

0 0 1

]
︸ ︷︷ ︸

G

 xa′

ya′

1

 (5.2)

with

K =

 f τ ox

0 ηf oy

0 0 1

 .

f is the focal length of the camera, τ represents the slant of the pixels (τ = 0 for rectangular

pixels), η is the pixel height/length ratio (η = 1 for square pixels), (ox, oy)T are the coordinates

of the principal point o�set and λ is a scaling factor. If the distance Z between the sensor and

the object is known then λ = Z.

For each pixel (x′a, y
′
a)T
∣∣
CS

we can thus calculate the possible positions of point A in coor-

dinate system C0 using equations 5.1 and 5.2:

A|C0
= λ · TC0,CF

· TCF ,CSi
·G

 xa′

ya′

1

 . (5.3)

The camera model can be extended to account for lens distortion, or corrected images can be

used directly. The distortion parameters, as well as the precise values of f , τ , η and (ox, oy)T

are obtained from the optical calibration of the acquisition system.

In practice the projection is currently performed by tracing the rays that exit the multi-

spectral camera origin and pass through the center of each pixel (ray de�ned by equation 5.3).

The intersection of each ray with the 3D model is matched to the corresponding pixel. For

the remaining faces of the model that do not have any pixel correspondence, the intersection

between image plane and of the segment joining the center of the face and the camera origin

is calculated. When this intersection matches a pixel, this pixel is assigned to the face of the

model. To enable di�erent representations of the multispectral data on the 3D model, we assign

the coordinates of the pixels to the faces of model, and not directly the pixel values. This way,

true color images, single band greyscale representations and false-color PCA renderings of the

same multispectral data can all be projected identically on the 3D model.

Cross-stitch canvas

Figure 5.19 shows the full registration of the 3D and multispectral acquisitions. For these

acquisitions we only used the six channels in the visible range from the FluxData multispectral

camera. The seventeen images are successively projected on the 3D model in the order they

were acquired. Areas captured several times are simply hidden by the following acquisitions.

Visual examination of the 3D model presents a horizontal inaccuracy. Manually selecting two

points the mesh shows this inaccuracy to be of approximately 0.6mm between the multispectral

and 3D data, highlighted �gure 5.20. There is no noticeable registration inaccuracy in the
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100 mm

Figure 5.19: 3D � multispectral registration representing the cross-stitch canvas.
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(a)
�-

-

-

-

(b)

10 mm

Figure 5.20: Closeup of the multispectral / 3D registration of the cross-stitch canvas datasets.
(a) shows the inaccuracy of the 3D to multispectral registration while (b) highlights the seamless
multispectral registration.

vertical direction. The 3D model and the images are well aligned both along the edge of the

cross-stitch and along the edge of the engraving.

The theoretical spatial accuracy is only 0.950mm: 0.026mm, the accuracy of the least well

tracked position of the multispectral camera, position FD4, plus 0.924mm, spatial accuracy of

the target frame to multispectral camera orientation. This inaccuracy is thus mostly due to

the inaccuracy of the target frame to multispectral camera orientation. We observe the same

problem on the theoretical angular accuracy; of the total 3.306mrad, 3.156mrad are due to

the the target frame to multispectral camera orientation, while only 0.150mrad come from the

tracking accuracy (position FD3). This explains why we have a good multiview registration

of the multispectral data, even though the multimodal registration could be improved. The

accuracy of the multispectral registration on the 3D model could be greatly improved with a

better calibration between the multispectral camera and the target frame.

Another important factor for the accurate registration of the multispectral data on the 3D

model is the accuracy of the camera interior orientation. The accuracy of the focal length

ensures that the image is correctly scaled (the accuracy of the focal length is better than a

micrometer). The principle point o�set must also be taken into account, or the image will be

translated with respect to 3D model. Though this e�ect is present here, we believe it is a cause

of the movement of the acquisition system in the target frame and not of an inaccurate camera

calibration: the principle point o�set calibrated with an accuracy of a few micrometers. It

is also most important to compensate the distortion of the lens, though this is not a visible

problem here.
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100 mm

Figure 5.21: 3D � multispectral registration of the bas-relief data.
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Bas-relief

Figure 5.21 shows the projection of the images produced from the multispectral acquisitions,

on the 3D model made of nine registered meshes (without G3, G4 and G5). The registration is

visually satisfying, though this is easier to assess when interacting with the data. When shading

and unshading the model it is clear that the shadows in the images match those in the 3D data.

The theoretical registration accuracy is 0.149mm spatially (0.023mm + 0.126mm) and

0.544mrad angularly (0.116mrad + 0.428mrad). Spatially, we are are only slightly worse than

the target registration accuracy of 0.139mm but angularly we are far from the target 0.198mrad.

The accuracy of the calibration between the target frame and FluxData multispectral camera

must be further improved.

5.4 Conclusion

Using a photogrammetric setup based on four tracking cameras we were able to successively

track the position and orientation of a fringe projection digitization system and a multispectral

camera with an accuracy better than 0.05mm spatially and, in all but three cases, 0.150mrad

angularly. This tracking was performed during the digitization of a cross-stitch canvas and

during the digitization of a bas-relief. Five 3D digitizations and seventeen multispectral ac-

quisitions were performed in the �rst case while twelve 3D digitizations and four multispectral

acquisitions of the second object were performed. The tracking results were used to register

the 3D acquisitions to project the multispectral acquisitions on this model.

There are nine necessary calibration and acquisition steps, though some can be performed

in advance. Still, it is possible to perform all these steps in a single eight hour working day.

To guarantee a registration accuracy within our target values we must ensure that the tracking

accuracy is close to the best-case simulation results. It is also important that the target frame

to Atos III calibration accuracy is close to that obtained during the cross-stitch digitization.

The accuracy of the target frame to FluxData multispectral camera also has to be further

improved. An accuracy of 0.070mm spatially and 0.100mrad angularly would be su�cient.

This calibration accuracy is easily reached for the Atos III to target frame calibration, but is

more di�cult to achieve for the FluxData camera, given its small �eld of view.

As in the previous chapter, we have noticed that the �xture between the target frame and

multispectral camera is not as stable as we need it to be. Nevertheless, these experimental

results show that our tracking method is adapted not only for the registration of 3D datasets,

but also for the integration of multispectral texture on 3D models.
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Chapter 6

Improved Re�ectance Estimation

The spectral reconstruction presented in the previous chapter is based on the assumption that

all pixels of a multispectral acquisition are at a �xed angle with respect to the multispectral

camera. Since we analyze objects with measurable surface variations, this assumption is false.

However, our registration procedure provides us with the orientation of the surface and the

position of the acquisition devices. If we also know the position of the light sources, we could

use this data to improve the spectral reconstruction, by taking into account the angle between

the light and the surface.

This chapter opens by presenting the re�ectance correction method we propose and related

work, in particular other illumination models. We then describe the experimental con�guration

and present the corresponding tracking and registration results. Finally, we apply the re�ectance

correction to this data and present the intermediate and �nal results.

6.1 Method

6.1.1 Re�ectance correction principle

We base the correction of the estimated re�ectance on the Phong re�ection model [Phong,

1975], an empirical model of local illumination. The Phong re�ection model states that the

illumination of a surface point is the sum of three components: ambient, di�use and specular.

The illumination IP of surface point P in the presence of M lights is thus de�ned as:

Ip = raia︸︷︷︸
ambient

+

M∑
m=1

rd (L̂m · N̂) im,d︸ ︷︷ ︸
di�use

+ rs

(
R̂m · V̂

)αn

im,s︸ ︷︷ ︸
specular

 (6.1)

with the notations given in table 6.1 and illustrated in �gure 6.1. There is a hidden wavelength

dependency for many parameters of this equation.

Our previous re�ectance estimation assumes that the ambient term is negligible and that

there are no specular highlights in the multispectral acquisitions. This is a common hypothesis

when working with re�ectance and illumination models, though the specular component is often
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Table 6.1: Phong re�ectance model parameters and notations

Variable Description Dependence

M Total number of lights

m Light index

V̂ Unit vector from surface to eye

L̂m Unit vector from surface to light m

N̂ Unit surface normal

R̂m Unit re�ected vector of light m R̂m = 2
(
L̂m · N̂

)
N̂ − L̂m

λ Wavelength

im,s Specular component of light m

im,d Di�use component of light m

ia Ambient component of light ma

rs Specular re�ection b λ, material

rd Di�use re�ection c λ, material

ra Ambient re�ection d λ, material

α Shininess constant e material
a sometimes computed as a sum of contributions from all light sources
b ratio of re�ection of the specular term of incoming light
c ratio of re�ection of the di�use term of incoming light � the Lambertian re�ectance
d ratio of re�ection of the ambient term present in all points in the scene rendered
e large for surfaces that are smooth and mirror-like, in which case the specular highlight
is small

L̂1

L̂2
N̂ R̂2 R̂1

V̂
P

Figure 6.1: Phong re�ection model notations illustrated for two light sources.
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�ltered out using polarizers [Debevec et al., 2000; Malzbender et al., 2001]. We still assume that

the ambient term is negligible, but we acknowledged the existence of a specular component.

For this, we assume the following data is available in a single coordinate system:

� Multispectral acquisitions of a surface area.

� Corresponding 3D structure.

� Position of light sources.

The specular component of the illumination of surface point P , given by equation 6.1, is:

Ip,specular =

M∑
m=1

(
rs

(
R̂m · V̂

)αn

im,s

)

The only variables available to us are R̂m and V̂ . However, the specular component generally

has a very strong but very localized contribution. It is su�cient that we detect the areas where

the specular component is non-negligible, recognizing that we are unable to estimate the surface

re�ectance in these points using the model described by equation 2.1 from chapter 2.

We thus devise a threshold T close to 1. If T < R̂m · V̂ then the illumination has a strong

specular component and the re�ectance can not be estimated in this point. If T > R̂m · V̂ then

the specular component is negligible and the illumination of point P is given by:

Ip =

M∑
m=1

rd

(
L̂m · N̂

)
im,d (6.2)

Highlighting the wavelength dependencies and removing the "di�use" index, since this is the

only remaining component, equation 6.2 can be re-written as:

Ip(λ) =

M∑
m=1

r(λ)
(
L̂m · N̂

)
i(λ)m . (6.3)

Single light source

If there is a single light source, the illumination of point P is:

Ip(λ) = r(λ)
(
L̂ · N̂

)
i(λ) . (6.4)

L and N can be calculated while r(λ) is what we want to estimate. Integrating equation 6.4

with our multispectral model (equation 2.1 from chapter 2) gives us the response of channel k

for a given illumination angle:

dk =

∫ λmax

λmin

r(λ)
(
L̂ · N̂

)
i(λ)o (λ) c (λ) tk (λ) dλ+ ηk .

The corresponding integrated model is illustrated �gure 6.2.

As in chapter 2, we assume all the noise is removed by pre-processing and group i(λ), o(λ),

c(λ) and tk(λ) in a single term S(λ) representing the response of the multispectral camera
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L̂ N̂
R̂

V̂
P

t k (λ) o(λ) c (λ)

d k
r (λ)

i (λ)

Figure 6.2: Phong re�ection model illustrated for a single light source when the re�ectance
is acquired from a multispectral camera in emission �ltering. The notations are those from
chapter 2.

system to the current acquisition settings:

dk =

∫ λmax

λmin

Sk (λ)
(
L̂ · N̂

)
r (λ) dλ .

Which, written in matrix form for all acquired channels becomes:

d =
(
L̂ · N̂

)
.ST r.

We want to �nd a matrix P such that

r̃ =
1(

L̂ · N̂
)P d .

We can use a neural network (or any other optimization method) to calculate Q such that

r̃ = Q d from a set of patches of known re�ectance r and the corresponding measurements

from the multispectral camera d.

We recognize that

Q =
1(

L̂ · N̂
)P.

We do not digitize the surface during the spectral calibration, so we do not know N̂ . However,

the ColorChecker is positioned orthogonally to the multispectral camera so N̂ ≈ V̂ . Since the

ColorCheceker is �at, and there is over a meter distance between the surface under study and

both the light and the multispectral camera, L̂ and V̂ can be considered constant for every

pixel. We calculate the average of
(
L̂ · V̂

)
and note this value a. The calibration thus provides
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us with:

P =
(
L̂ · N̂

)
Q ≈ aQ .

The re�ectance of each pixel can thus be calculated using:

r̃ =
a(

L̂ · N̂
)Q d .

Multiple light sources

If there are multiple light sources we obtain the re�ectance of the kth channel, as acquired by the

multispectral camera by integrating equation 6.3 with our multispectral model (equation 2.1):

dk =

∫ λmax

λmin

M∑
m=1

r(λ)
(
L̂m · N̂

)
im(λ)o (λ) c (λ) tk (λ) dλ+ ηk .

Once again, we assume all noise is removed by processing. We also group im(λ), o(λ), c(λ) and

tk(λ) in a multiple term Sm(λ), one per light source:

dk =

∫ λmax

λmin

r(λ)

M∑
m=1

(
L̂m · N̂

)
Sm (λ) dλ .

Written in matrix form for all acquired channels:

d =

M∑
m=1

(
L̂m · N̂

)
STmr .

The calibration procedure is more complicated now. We have to �nd m matrices Pm such that

r̃ =
1(

L̂m · N̂
)Pmdm .

This can be done by performing m calibrations, one per light source. The acquisitions must

then also be performed with a single light source at a time; we are then in the single light source

con�guration.

6.1.2 Related work

Sitnik et al. [2012, 2010a,b] study cultural heritage using an integrated shape, color and angular

re�ectivity measurement system. The goal of these acquisitions is to record visual properties

of the object through a 3D model that can be visualized in any lighting and viewing condition.

In our case, the goal is to correct our re�ectance acquisitions to obtain spectra that describe

physical properties of the material which are independent from lighting and viewing conditions.

Though the end goal di�ers, they perform a re�ectance correction similar to ours, using the

angle between the surface normal and the the viewing direction to correct their multispectral

acquisitions [Sitnik et al., 2010b].
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Rocchini et al. [2001a] also perform related work: they design a structured light projection

3D scanner with multiple �xed light sources. They create an unshaded 3D model by determining

the di�use re�ection coe�cients (i.e. RGB albedo) for each surface point by inverting the

illumination model using images from the multiple illumination con�gurations. However, they

do not state which illumination model they use.

A �ne di�erentiation of the di�use and specular shading from the surface albedo is performed

by Neverova et al. [2012], using color images and a depth map, with no prior knowledge of the

position of the light source. It is also possible to remove specular highlights from RGB images

with no geometrical nor illumination information [Koirala et al., 2009; Tan and Ikeuchi, 2005].

Rendering techniques used in computer graphics are based on di�erent characterizations

of the surface re�ectance properties. These techniques are generally based on a Bidirectional

Re�ectance Distribution Function (BRDF) [Nicodemus et al., 1977] that de�nes how light is

re�ected from an opaque surface. The function takes an incoming and outgoing light direction,

both de�ned with respect to the surface normal, and returns the ratio of re�ected radiance

exiting along the output direction to the incident radiance on the surface from the input direc-

tion. The input and output light directions are parametrized by an azimuth angle and a zenith

angle. The BRDF is also wavelength dependent, though in practice independent 4D BRDFs

per channel are used.

The Phong [1975] re�ectance model is an empirical model that represents the 4D BRDF

and one of the �rst more general shading models in computer graphics. The original Phong

model was not presented in the context of physically-based rendering, but Lewis [1994] derived

a physically plausible re�ectance function from it, a shader that conserves energy. Another

commonly used empirical model was developed by Lafortune et al. [1997].

Physical models based on geometrical optics were developed by Torrance and Sparrow [1967],

and Cook and Torrance [1982]. These models assume the surface is composed of V-shaped

grooves, and incorporate masking and self-shadowing e�ects. The theoretical model developed

by Torrance and Sparrow [1967] takes into account surface roughness and explains some inaccu-

racies of the Phong re�ection model. It accounts for the o�-specular peaks that occur when the

incident light is at a grazing angle relative to the surface normal. Using the specular re�ection

model from [Torrance and Sparrow, 1967], Blinn [1977] developed a model that is similar to the

Phong re�ection model.

Whitted [1980] developed a realistic model based on a recursive ray tracing that checks for

blockage by shadowing objects. He et al. [1991] derived a physically-based analytic model of

the BRDF that accounts for masking and shadowing. The model consists of an ideal di�use

component, a directional di�use component and a specular mirror component. These analytical

expressions depend on two surface roughness parameters and a surface refractive index and can

be evaluated numerically.

As for any model, BRDF models only approximate the re�ectance of real materials. Most

analytic re�ection models describe only particular subclasses of materials, though much e�ort

has been spent on improving these models by incorporating the relevant aspects of the under-

lying physics. These analytic models are often dependent on a series of material parameters

that are di�cult to measure in practice. Often, some version of a gonio-spectro-re�ectometer is
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used to acquire BRDF samples and the acquired data is �tted to the selected analytical model.

Dana et al. [1999] introduced the Bidirectional Texture Function (BTF) to describe mate-

rials with spatially varying re�ectance. Two additional variables are necessary to parametrize

the surface, making the BTF a function of six parameters per wavelength. The original paper

provides samples of the BTF from photographs, but many photographs are required to ade-

quately sample the space over the six dimensions. Furthermore, the camera must be calibrated

to enable the necessary registration of photos from varying viewing directions. However, there

have been developments in the compression and rendering of BTFs [Müller et al., 2003, 2005].

Similar work has been performed by Debevec et al. [2000] and Hawkins et al. [2001]: a scene

is digitized from multiple camera positions under multiple light con�gurations. Employing

high dynamic range imaging, this method is extended to render arbitrary objects under novel

illumination conditions.

Polynomial Texture Maps (PTM) de�ned by Malzbender et al. [2001] simplify BTFs by

omitting the viewing angles, resulting in a function with four variables. They are based on the

assumption that the surfaces described are di�use, though PTMs can also be used to render

specular e�ects. Multiple images of a static objects are acquired with a static camera under

varying lighting conditions, thus sampling the full parameter space. There is no need to calibrate

the camera since it is �xed and the resulting images are naturally registered.

Toler-Franklin et al. [2007] introduced RGBN images, which store for each pixel the surface

normal in addition to the image RGB albedo. The goal is to obtain some of the advantages

of 3D models, without the inherent complexity. The data is acquired with a �x camera and

varying lighting positions. The readability of the 2D images is improved by incorporating 3D

elements that produce a Non-PhotoRealistic (NPR) image. Other such frameworks include

that described by Palma et al. [2010a]. NPR shading that relies on the existence of a 3D model

includes the works of Gooch et al. [1998], Rusinkiewicz et al. [2006] and Vergne et al. [2009].

The illumination model we use is quite simple compared to most of those presented here.

It is an empirical model that we further simplify and invert. As such, we do not expect our

re�ectance correction to fully compensate the e�ects of the surface variation. However, the goal

of these �rst tests is to show the utility of the method. This method can later be re�ned with

a more complete and adequate model.

6.1.3 New acquisition protocol

As stated previously, to improve the re�ectance estimation from our multispectral data we need

a multispectral acquisition of a given surface, the corresponding 3D structure and the position

of the light sources. For now the correction can only be performed when a single source is used

for the acquisitions. The multispectral acquisition and corresponding surface orientation are

provided by the optical tracking of the multispectral and 3D acquisition system in the target

frame by a set of tracking cameras, as presented in chapter 5.

To obtain the position of the light source, we use the same photogrammetric setup that

we use to track the target frame. We simply place a few targets on the light (see �gure 6.3)

and obtain their position in the tracking camera coordinate system from the acquisitions of the

tracking cameras. Targets are also placed on the light stand and the target frame is positioned
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Figure 6.3: Acquisition of the position of the light sources.

in the �eld of view to strengthen the bundle adjustment.

We can then calculate the average of the coordinates of the targets on the light to obtain

the approximate punctual coordinates of the light source. These results are inaccurate by

construction, since we only place targets on the side of the light that faces the tracking cameras.

More accurate results can be obtained by calibrating the position of the targets on the lights,

to obtain a better estimate of the coordinates of the center of the light. However, given the

distances between the surface under study and the light (over a meter), it is not necessary to

compensate a positional error of a few centimeters.

When we project the multispectral acquisition on the 3D model, we store the normal of

the surface on which we project (N̂), the direction of the vector between the center of this

surface and the center of the light source (L̂), and V̂ , the opposite of the projection vector.

This is a straightforward task since all data is in the same coordinate system, that de�ned by

the tracking cameras.

Our photogrammetric setup can easily be used to evaluate the position of multiple light

sources. However, this technique imposes some constraints on the light positioning: the light

must be set in an area that is visible by the tracking cameras without bothering the frame

positioning and without casting shadows of the frame on the surface of interest. The advantages

of this method to evaluate the position of the light source are compared with those of two other

techniques in appendix C.1, page 175.
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Figure 6.4: Relative position of the tracking cameras and target frame during the digitizations.

6.2 Experimental con�guration

6.2.1 Con�guration overview

To test the re�ectance estimation correction, we repeat the digitization of the bas-relief with the

FluxData multispectral camera and the Gom Atos III. We track ten 3D digitization positions

(G1 to G10) and four multispectral acquisition positions (FD1 to FD4). The relative positions

of the target frame and tracking cameras during these measurements are shown in �gure 6.4.

A pair of halogen lights illuminates the bas-relief during the multispectral acquisitions. This

is shown in �gure 6.3, the second light is positioned roughly symmetrically to the one in the

image with respect to the bas relief. As previously, the re�ectance estimation necessitates, for

every position of the multispectral camera:

� A multispectral acquisition of the ColorChecker.

� Several multispectral acquisitions of a white surface.

� A multispectral acquisition of the surface under study.

We perform these acquisitions three times per position: once with both halogen lights on, once

with only the left light on and once with only the right light on. This will enable us to better

evaluate the e�ect of the re�ectance estimation correction by comparing corrected views from

di�erent light sources. Figure 6.5 shows the twelve resulting color acquisitions, created from

the multispectral acquisitions and their corresponding calibration data before the re�ectance

correction. When both lights are turned on the overall illumination is more regular and lighter

shadows are cast on the bas-relief.
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Figure 6.5: Color rendering of the twelve multispectral acquisitions. First row: left light on.
Second row: right light on. Third row: both lights on.

6.2.2 Tracking and registration accuracy

Individual calibrations

The accuracy of the individual calibrations is given table 6.2. As before, the accuracy of the

tracking cameras meets the best-case simulation requirements. The multispectral camera is less

accurately calibrated, but the results are still satisfactory. The target frame calibration is, as

always, much better than the simulation values. The tracking cameras exterior orientation is

only slightly worse than the best-case simulation results spatially, and better than the angular

best-case simulation results.

The orientation between the target frame and the Atos III is the most accurate of all those

performed. The orientation between the target frame and the FluxData multispectral camera

is still disappointing: only two relative positions of the target frame and calibration object are

used. At least three relative positions and an improved setup are necessary to increase the

accuracy of this calibration.

Tracking accuracy

The tracking accuracy is shown �gure 6.6. All but three positions are tracked with the realistic

simulation spatial accuracy. These three least-well tracked positions (G7, G8 and G9) are

perspective, o�-center views though G10, a similar position, is accurately tracked. The spatial

accuracy of these three positions is still quite satisfying � more than three times better the

necessary value for the Atos III registration.
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Table 6.2: Accuracy of the individual calibrations, compared to the simulation values.

Calibration Experiment
Simulations

Unit
Realistic Best-case

Tracking cameras I.O. 0.029 0.100 0.033 pixel

Multispectral camera I.O. 0.043 � pixel

Target frame calibration 0.020 0.050 mm

Tracking cameras E.O.
0.011 0.030 0.010 mm
0.014 0.040 0.020 mrad

Target frame to Gom 0.036 � mm
Atos III orientation 0.068 � mrad

Target frame to multispectral 0.243 � mm
camera orientation 0.556 � mrad
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Figure 6.6: Spatial and angular tracking accuracy, compared to the simulation results and to
the target accuracy.

The angular tracking accuracy of these three positions, however, is insu�cient for the regis-

tration of data from both the Gom Atos III and the FluxData multispectral camera. The other

eleven positions are tracked with an angular accuracy that is close to the best-case simulation

results.

Registration

The integrated 3D model created with these ten meshes in shown �gure 6.7. There are no visible

discontinuities in the �nal model. Even the meshes from position G7 to G9 seem correctly

registered with the neighboring meshes.

The images projected on the 3D model are the color representations from the multispectral

acquisitions performed under both lights. There are no visible discontinuities between the 3D

model and these projected images. The slight overlap of the two �rst image, over the shoulder,

is distinguishable only due to the illumination di�erence.
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Figure 6.7: Registration of the ten meshes. (a) One color per mesh. (b) All meshes in grey. (c)
Color image from multispectral data projected on the 3D model.

6.3 Results

The re�ectance correction results are presented in three subsections. First we evaluate the

accuracy of the specular highlight detection. We then show the images produced by calculating

the dot product between the light direction and the surface normal. The use of such images to

assess the accuracy of a 2D � 3D registration is presented. Finally, we use the light / normal

dot product to correct the re�ectance cube.

6.3.1 Specular highlights

As explained previously, we detect the specular highlights by calculating R̂ · V̂ for every pixel

of the acquisition and comparing this dot product to a threshold T . Though the result of

R̂ · V̂ is between -1 and 1, T is a positive value. If T = 1 no pixel is detected as specular.

Figure 6.8 shows the �rst acquisition with the left light where the specular pixels thus detected

are blackened for varying values of T . We also indicate the percentage of blackened pixels in

the image, p . Equivalent images for the other eleven acquisitions are given in appendix C.2,

page 179.

The choice of an appropriate threshold is non trivial. We would like to �nd a value that

eliminates all the saturated areas of the image, in particular the left side of the face. In practice,

even with a low threshold such as T = 0.5 not all saturated pixels are detected as specular,

though 40% of the image is blackened. In this case, the non-specular areas of the image also

contain many shadows (right side of the face), resulting in few areas where we can perform

the re�ectance correction. Examining the full results in the appendix also highlights that the

threshold value must be chosen independently for each multispectral acquisition, even though
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(a) T = 0.99, p = 0.14% (b) T = 0.95, p = 0.86% (c) T = 0.90, p = 1.95% (d) T = 0.85, p = 3.32%

(e) T = 0.80, p = 5.59% (f) T = 0.75, p = 9.71% (g) T = 0.70, p = 14.90% (h) T = 0.50, p = 40.06%

Figure 6.8: Specular highlights detected for the �rst multispectral with the left light for varying
values of the threshold T . p represents the percentage of specular pixels in each image.

the acquisitions describe the same material.

The inaccurate localization of the specular re�ection is a known drawback of the Phong

model [Blinn, 1977; Whitted, 1980], in particular in the case of rough surfaces. We thus

examine the e�ect of the re�ectance estimation correction on our multispectral acquisitions

without detecting the specular highlights.

6.3.2 Light / normal dot product

The second step of our estimation correction is to calculate the dot product between L̂ and

N̂ for every pixel of the acquisition. The result is a matrix the size of the input image with

values theoretically bounded by -1 and 1. In practice, negative values represent shaded areas

(the light vector and the surface normal face opposite directions), the lower bound is thus set

to 0.

The results can be presented as a greyscale image that represents the relief of the scene for

the given light position. This result is shown �gure 6.9 for the four multispectral acquisition

positions and for both lights separately. The black areas in these images represent areas or

pixels for which the multispectral projection provided no 3D data, as well as shaded areas.

Evaluation of the 3D � multispectral registration accuracy

The resulting image can be compared to the multispectral acquisitions to assess the accuracy of

the 3D / multispectral registration. It is much easier to compare the similarity of two images,

than to evaluate the precision of a 2D mapping on a 3D model.

We perform this comparison by combining the color representation of the multispectral

acquisition and a corresponding representation of the light / normal dot product in a single

image. The output image is a checkered pattern made of squares of side one hundred pixels taken

alternatively from each input image. The color representation of the multispectral acquisition
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Figure 6.9: Light / normal dot product corresponding to the multispectral acquisitions. First
row: left light. Second row: right light.

is converted to greyscale to improve the visual continuity of the output image. The resulting

comparison images for all four acquisitions are shown �gure 6.10. An equivalent comparison

for the previous multispectral acquisitions is given appendix C.3, page 183.

These checkered images show that the registration is globally quite accurate, though some

discontinuities are visible. It can seem surprising that some areas of an image are very well

registered when discontinuities appear in another area. This is an e�ect of an inaccurate

orientation between the projection and the model, though we saw that the angular tracking

accuracy is quite satisfying for the acquisitions.

The two possible causes of these errors have been noted before: the inaccurate angular

orientation between the FluxData camera and the target frame, and/or a movement of the

multispectral camera in the target frame. The FluxData camera is much lighter than the Gom

Atos III, so it is less prone to moving with respect to the target frame when their orientation

changes. However, this is still a possible source of inaccuracies, in particular during the Flux-

Data camera to target frame orientation, when more extreme orientations of the frame and

camera are used. Furthermore, this would directly impact accuracy of the orientation between

the FluxData camera and the target frame.

6.3.3 Re�ection correction

The multispectral correction is applied to the re�ectance spectra for the eight single-light mul-

tispectral acquisitions. The resulting re�ectance cubes are once again represented as color

images and compared with the color images calculated from the non-corrected cube, in �gure

6.11. Black pixels represent areas for which the multispectral projection provided no 3D data.

We can see that the images appear �attened after the correction, suggesting that we do, to

some extent, correct the e�ect of the surface variations. For the fourth acquisition the correc-

tion greatly brightens the image, making it somewhat saturated. Since the Phong re�ection

model does not take into account the presence of shadows and masking, these areas can not be

corrected. The masked areas acquire a whitish tinge while the shadows, retain their dark value.
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@I

@R

��

Figure 6.10: Light / normal dot product, compared to the multispectral acquisitions. For all
images, the top left corner is from the light / normal product with the right light. In the �rst
�gure some satisfactory alignments are pointed by a green arrow while a red arrow shows a
misalignment.
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Figure 6.11: E�ect of the re�ectance correction on the color images. First row: right light on,
before correction. Second row: right light on, after correction. Third row: left light on, before
correction. Last row: left light on, after correction.
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Figure 6.12: E�ect of the re�ectance correction on selected spectra. 'x' represents the spectra
from the left light; '+' represents the spectra from the right light; the thick continuous lines
represent the improved spectra, the spectrum from both lights is given as a thin continuous
line.

Areas that represent a strong specular component, which were saturated in the original color

images, acquire a grey color.

Theoretically, the corrected re�ectance of a pixel from an acquisition with the left light

should be the same as the corrected re�ectance of the same pixel from the same acquisition

illuminated from the right. This only holds if the pixel is not in a shadow nor in a saturated

area of either image (left light or right light). This leaves only a small portion of each image

on which we can perform our comparison.

A few punctual comparisons are shown �gure 6.12. The points are chosen in areas where

there seems to be no shade nor highlight when either light is cast. The spectra shown are

average spectra over an area of 21 pixels × 21 pixels centered around the selected point. Point

A is the one for which the re�ectance correction is most e�ective: the spectra have a similar

shape to begin with, and the corrective factor makes them almost superimpose. For the other

two positions the correction causes the spectra to be closer, but their shape remains di�erent.

This qualitative observation can be con�rmed using two metrics: the Goodness of Fit Coe�-
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Table 6.3: Quantitative evaluation of the similarity of the spectra shown in �gure 6.12.

A B C

GFC 0.9985 0.9975 0.9969

RMSE
original 67.0162 49.3788 102.7779
corrected 11.8890 17.5947 19.3387
correction % 82.2595 64.3679 81.1840

cient (GFC) and the Root Mean Square Error (RMSE). The GFC is a measure of the similarity

of the shape of two spectra r1(λ) and r2(λ), based on the Cauchy-Schwartz inequality:

GFC =

∣∣∣∑j r1(λj) · r2(λj)
∣∣∣√∑

j [r1(λj)]
2 ·
√∑

j [r2(λj)]
2
.

The GFC is closest to 1 the closer the two input spectra, and tends towards 0 as the two

spectra di�er. Hernández-Andrés et al. [2001] de�ne an "accurate" spectral �t as one with

GFC > 0.995. For them a "good" �t requires a GFC > 0.999, and a GFC > 0.9999 describes

an "excellent" �t.

It is clear from its de�nition that the GFC is robust to scaling of the spectra. If r3(λ) =

a · r2(λ), with a an integer, then GFC(r1, r2) = GFC(r1, r3). The GFC calculated between

reconstructed spectra under the left and right light is thus the same before and after correction.

The GFC for the spectra of the three points is given table 6.3. All three pairs of spectra can

be considered an accurate �t and point A is, as expected, the one that de�nes the spectra with

the closest shape.

The accurate �t between the pairs of spectra, denotes that they are somewhat proportional.

It is thus reasonable to correct these spectra simply by multiplying them each by an adjusting

coe�cient. To evaluate the e�ect of this correction, we must use a metric that is sensible to

scaling, such as the RMSE.

The RMSE is given by:

RMSE =

√∑N
j=1 [r1(λj)− r2(λj)]

2

N
.

The closer the two input spectra, the closer the RMSE is to 0. In table 6.3 we compare

the spectra under left and right light before the correction (original) and after the correction

(corrected). The correction percentage is the percentage by which the correction reduces the

RMSE.

For the points that have been chosen in areas that were not subject to specularity nor

shadowing, the re�ectance correction improves the re�ectance by over 60% and even 80% in

some cases. Though these are carefully chosen points, the use of a more complete illumination

model could enable to extend this type of result to a full multispectral acquisition.
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6.4 Conclusion

We measured the position of the light sources used during the multispectral acquisitions to

correct our re�ectance estimation by taking into account the e�ect of the surface variations.

The position of the light sources was measured using the existing tracking setup, by simply

placing a few targets on the lights.

We base our correction on the Phong re�ection model. Though this produces some inaccu-

racies in the detection of the specular highlights, these preliminary tests show promising results.

The correction of a multispectral cube rendered as a color image appears to �atten the surface

in the image. There are numerous regions where the current acquisitions, using the correction

based on the Phong re�ectance model, can not be compared: shadowed areas, masked areas

and areas with a specular component. In areas where the comparison is valid, the re�ectance

spectra of a given pixel in the left and right light acquisition are closer after the correction. The

improvement can reach 80%.

Better results could be obtained by using a more complex illumination model. Since we

are modifying physical properties, a physical illumination model would be more adapted. This

would help to better localize the specular component. A shader that takes into account mask-

ing and self shadowing would also provide improved results. Even if we can not obtain the

re�ectance of these dark areas, it could help to localize them, just as we localize the specular

component. With an accurate localization of specularity, shadows and masking, multiple single-

light acquisitions can be combined to obtain an unshaded re�ectance cube. A model that can

be inverted in the case of multiple light sources would be even more useful, reducing the number

of necessary calibrations. However, as noted by Sitnik et al. [2012], �tting sparse responses with

a complex model is di�cult and error prone, particularly when no a priori knowledge about the

surface material is available.

Another approximation was introduced by using area lights, though our model assumes the

use of punctual light sources. Future improvement would include using LEDs, �xed to the

target frame, as punctual light sources. As is, the results presented in this chapter are a �rst

step in the investigation of the correction of the acquired re�ectance to obtain viewer- and

illumination-independent spectra.
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Conclusion

7.1 Results

Our goal was to devise a registration technique adapted for the integration of featureless mul-

tisensor data, in particular, 3D and multispectral data describing cultural heritage. The work

stemmed from the study of two speci�c objects: a wallpainting in Rüdesheim (Germany) and a

bas-relief in Trier (Germany). The registration solution, however, had to be adaptable to other

objects and to other situations.

We developed a method based on the photogrammetric tracking of the acquisition systems

in use. A set of cameras observe the scene while several acquisition systems successively digitize

the object under study. Placing targets on the acquisition systems and calibrating all optics

and objects in play enables us to precisely determine the position and orientation of each

acquisition system. The data acquired by these acquisition systems can then be projected

in a single coordinate system, resulting in an integrated model with a registration accuracy

independent from the content of the acquired data.

A series of simulations was performed to evaluate the achievable tracking accuracy and to

choose the characteristics of the necessary material. For these simulations, we de�ned three

tracking con�gurations that represent a variety of cultural heritage setups. The �rst series

of simulations highlighted the necessity of �xing a target frame to the acquisition systems to

improve the tracking accuracy by increasing the dimensions of the tracked object. A frame of

dimensions 0.5 m× 0.5 m× 0.5 m and covered with 56 targets proved to be adequate.

When this target frame is �xed to the acquisition systems while they survey an area of

0.4 m×0.7 m, the simulations show that we can achieve a spatial tracking accuracy of 0.020mm

and an angular accuracy of 0.100mrad using four 5Mpx cameras with 8mm lens. Equivalent

tracking accuracy can be obtained using six cameras when the acquisition systems digitize an

area of 2 m× 1.5 m, such as a wallpainting. If the object under study is a 1m high statue with

a 0.3m radius then the target frame can be tracked with comparable spatial accuracy and an

angular accuracy of 0.122mrad. This, however, requires eight tracking cameras and would be

harder to achieve in practice. These results correspond to a tracking accuracy better than half

a pixel in the prede�ned con�gurations and using the acquisition systems from our laboratories.
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The method was extensively tested in laboratory settings. It was essential to solve the

practical and logistical di�culties in such controlled settings before using the method in situ.

The setup was improved throughout these laboratory tests. To assess the experimental tracking

accuracy we �rst tracked the target frame simultaneously using our photogrammetric setup and

a laser tracker. Though di�cult to compare, the laser tracker results seemed to validate the

photogrammetric tracking internal accuracy. We then measured the accuracy of our method for

multiview 3D registration. These tests were performed on featureless objects which we covered

with targets, using these targets only to evaluate the tracking accuracy. Our registration goal

of half a pixel accuracy was reached in speci�c cases where the orientation of the acquisition

system was stable.

The accuracy of the �nal registration relies on the success of a series of optical and geomet-

rical calibrations: calibration of the target frame, calibration of the interior orientation of the

tracking cameras and acquisition systems, calibration of the exterior orientation of the tracking

cameras. It is also essential that the calibrated parameters are stable for the duration of the full

acquisition process, typically between four and eight hours. We thus evaluated the stability of

our setup and calibrations, to ensure that they were satisfactory. We also tested the tracking of

the target frame in the larger six camera con�guration, and veri�ed that this setup is adapted

for multimodal registration.

Our method was then used for the registration of 3D and multispectral datasets. The

multispectral data is projected as a texture on a 3D model whose constituent meshes have been

previously registered using our technique. The projection parameters are, as before, evaluated

from the tracking of the target frame as well as from the optical and geometrical calibrations.

The 3D � multispectral registration was �rst tested on an object with much greater spectral and

structural variability than typical cultural heritage objects, enabling a quick visual assessment

of the accuracy of the �nal registration. We noticed once again that the �xture between the

target frame and multispectral camera is not as stable as we need it to be. Nevertheless, these

experimental results show that our tracking method is adapted not only for the registration of

3D datasets, but also for the integration of multispectral texture on 3D models.

We extended our method to improve the re�ectance estimation from the multispectral

datasets projected on a 3D model. The photogrammetric setup is used to measure the po-

sition of the light sources in addition to tracking the 3D and multispectral acquisition systems.

We then apply a correction based on the integration of our re�ectance estimation model with the

Phong re�ectance model. Using the known position of the light sources and of the multispectral

camera, as well as the orientation of the surface for each multispectral pixel, we can calculate

the pixels that describe a specular re�ection. For the remaining areas we correct the di�use

re�ectance intensity based on the angle between the incident light and the surface normal. This

process provides us with a hyperspectral cube that takes into account the variations in surface

orientation for areas where there are no specular re�ections, nor any masking or shading.

The �nal registration method is adapted for the contactless registration of featureless mul-

timodal data. The advantage of our registration method is that the accuracy is independent of

the content of the data: if the acquired data represented a smooth plane, it would be registered

with the same accuracy. In comparison, other 3D registration methods such as ICP generally
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fare badly with smooth and planar data. Furthermore, this eliminates the problem of deviation

errors accumulating across the views, particularly when registering open surfaces, that is typical

of ICP. Our method also requires little or no overlap between adjacent meshes, compared to

30% to 40% for ICP and other feature-based registration techniques.

7.2 Future work

There are many possible improvements of this work that would result in an increased accuracy

and easier manipulation. These improvements are important to implement if the method is to

be more widely used for cultural heritage digitization campaigns. Such improvements range

from simple engineering improvements to conceptual extensions.

The most important engineering improvement that has been mentioned throughout this the-

sis is the �xation between the target frame and the acquisition system. The current hexagonal

plate moves in the �xation. Strengthening the �xation by some screws would keep the relative

position of the frame and acquisition �xed, but it remains to be seen how this can be done in

practice without drilling holes in the acquisition systems.

The tracking results could also be improved with a newly designed tracking frame: If this

frame were spherical instead of cubic, the tracking accuracy would not depend on its orientation

with respect to the tracking cameras. Also, the current target frame design is such that the

targets hide one another from certain points of view, since they stick out of the tracking frame.

This could easily be solved on a spherical target frame.

The use of active targets could also remove the need of a uniform external illumination,

increasing the �exibility of the system. If the acquisitions must be performed outdoors, spurious

daylight can be suppressed by using active infrared targets. Finally, aluminum is convenient

for rapid prototyping but a carbon tracking frame would be more stable and less sensitive to

temperature changes that can occur over the course of a day. This would probably result in a

lighter frame that is easier to manipulate and to transport.

We have seen that the calibration between the target frame and multispectral camera must

be improved. It is important to compensate the di�erence in scale between the small �eld-

of-view of the multispectral camera and the large tracking frame. Designing a better adapted

calibration object would probably be su�cient. To a lesser extent, the target frame to Gom

Atos III could also be improved. However, implementing a few of the previously mentioned

engineering improvements on the target frame would probably be su�cient to increase the

accuracy of this calibration to even more satisfying values.

On-site acquisitions would be eased and sped up if we developed an integrated software

tool for photogrammetric processing. Having rapid feedback on the quality of the tracking

and registration would help acquire integrated datasets with an overall satisfying registration

accuracy. There is a lot of software development associated with this task, in particular to

make user-friendly to be used by non-experts, but it relies on known concepts and algorithms.

However, there is much work to be done on the visualization and interaction of models with

multiple textures and with textures of high dimensions. The development of tools to perform

measurements on 3D models with multispectral textures must be performed with the insight of
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conservators to invent adapted tools.

As part of this, the correction of the re�ectance estimation must be improved and based

on a more sophisticated illumination model, to provide an object re�ectance that is truly an

object property. We have seen that physically-based models that take into account shading and

masking would be better adapted.

An important aspect that we have not tackled is the registration of data acquired at di�er-

ent times for monitoring purposes. Such registration must necessarily be based on the acquired

data: variations in cultural heritage occur over large time spans. The tracking setup can not be

expected to hold the calibration for so long, not to mention the constraints keeping the object

and tracking setup �xed for long periods of time. Perhaps if the multiview and multimodal

registration of data from a given time stamp is performed with su�cient accuracy, then regis-

tration of data from di�erent acquisition times can be performed with feature-based methods,

relying on both the 3D and multispectral features from the integrated datasets. However, there

are speci�c problems to address when registering data for monitoring purposes, such as how to

optimize a registration process if one model represents an degraded state of the object.

7.3 Perspectives

Though many possible improvements have been listed, as is the method can be used to study

the objects for which it was developed, as well as any object of comparable dimensions. The full

setup is transportable and can be used in situ. The necessary acquisitions and calibrations to

register data from two acquisition systems can be performed by two people in a single working

day. Some of these calibrations may be performed in advance, to reduce the on-site workload.

The method was developed for the study of two speci�c objects, but the method can easily

be scaled and tweaked for the study of other objects. The method is most adapted for the

study of objects with a strong 2D component. Though the logistical di�culties are greater,

this registration setup can theoretically also be used for the study of free standing 3D objects

such as statues. This would require a higher number of tracking cameras, increasing in turn the

number of necessary calibrations and the di�culty of maintaining a stable setup. If the object

under study is mostly devoted of distinguishable features, then our method still presents clear

advantages over feature-based registration methods. If the improvements listed in the previous

section are implemented, however, our method would then become advantageous in the context

objects with a strong 3D component.

Though our multimodal registration method was developed to respond to the particular

challenges of cultural heritage digitization, it is also adapted for quality control in industrial

settings. In such �xed and controlled settings, the tracking accuracy can be increased. In this

context, the necessary calibrations need only be performed from time to time, instead of once

per object. If many measurements are performed, the acquisitions can also be used to correct

the calibrations in real-time.

Our registration technique was tested with the acquisition systems present in our laborato-

ries, but it can be used with any 3D digitization system and multispectral camera. Furthermore,

it is also adapted for the registration of optical data from other systems. In addition to multi-
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or hyperspectral images, data from many techniques that are used for the analysis of cultural

heritage can be mapped on their corresponding 3D model using our method: high resolution

digital photography, UV �uorescence, IR re�ectography, Terahertz imaging [Fukunaga and Pi-

collo, 2010], trans-illumination or trans irradiation of paintings [Cucci et al., 2012].

Several complementary textures can thus be mapped on a given 3D model. Such augmented

models can provide insights in material and surface analysis. To better exploit these integrated

datasets, it is necessary to develop both multimodal analytical tools and multimodal visualiza-

tion tools. Such tools must be imagined with the conservation community to provide them with

methods and displays that can enrich their research. The high dimensionality and heterogeneity

of the datasets makes both these tasks an engaging challenge of the yeas to come.
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Appendix A

Simulation Results

The detailed results of the simulations presented in chapter 3 are given in this appendix. All

the following simulation accuracy results are given at 2σ. Values in bold indicate the maximum

value of the column. Grey backgrounds in the overview tables highlight the simulation results

that were not presented in chapter 3.
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A.1 Sarcophagus simulations

Table A.1 presents an overview of all sarcophagus simulation results.

Table A.1: Overview of the sarcophagus simulation results.

Input noise Output accuracy

Tracked ob- Picture Object Orientation Orientation
Spatial Angular

See

ject (points) coord. coord. translation rotation table

(µm) (mm) (mm) (mrad) (mm) (mrad)

2Mpx Baumer cameras with 6mm lens

Lab MSC (18) 0.345 0 0 0 0.020 0.292 A.2

FD MSC (12) 0.345 0 0 0 0.025 0.536 A.3

Atos (24) 0.345 0 0 0 0.013 0.168 A.4

Atos (34) 0.345 0 0 0 0.012 0.160 A.5

5Mpx Baumer cameras with 6mm lens

Lab MSC (18) 0.345 0 0 0 0.017 0.238 A.6

FD MSC (12) 0.345 0 0 0 0.022 0.536 A.7

Atos (24) 0.345 0 0 0 0.011 0.142 A.8

Atos (34) 0.345 0 0 0 0.009 0.128 A.9

Framea (26) 0.345 0 0 0 0.015 0.144 A.10

Framea (56) 0.345 0 0 0 0.012 0.124 A.11

Frameb (26) 0.345 0 0 0 0.017 0.120 A.12

Frameb (56) 0.345 0 0 0 0.012 0.088 A.13

Frameb (56) 0.115 0 0 0 0.004 0.028 A.14

orientation
0.345 0 0 0 0.023 0.058 A.15

0.115 0 0 0 0.009 0.020 A.16

Frameb (56)
0.345 0.05 0.03 0.07 0.023 0.176 A.17

0.115 0.05 0.02 0.03 0.016 0.116 A.18

5Mpx AVT cameras with 8mm lens

Frameb (56)

0.345 0 0 0 0.015 0.104 A.19

0.115 0 0 0 0.005 0.032 A.20

0.345 0.05 0.03 0.07 0.028 0.198 A.21

0.115 0.05 0.02 0.03 0.016 0.112 A.22

orientation
0.345 0.00 0 0 0.021 0.030 A.23

0.115 0.00 0 0 0.007 0.010 A.24

Frameb (56)
0.345 0.05 0.03 0.04 0.024 0.172 A.25

0.115 0.05 0.01 0.02 0.014 0.100 A.26

Framea target frame of dimensions 0.50m × 0.40m × 0.30m

Frameb target frame of dimensions 0.50m × 0.50m × 0.50m
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A.1. Sarcophagus simulations

A.1.1 2Mpx Baumer cameras with 6mm lens

Tracking the acquisition systems

Table A.2: Tracking the lab-designed multispectral camera represented by 18 points in its'
bounding box. Standard deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.019 0.015 0.020 0.230 0.278 0.190

Top Right 0.017 0.014 0.018 0.212 0.256 0.172

Center 0.018 0.016 0.019 0.226 0.270 0.190

Bottom Left 0.019 0.017 0.020 0.240 0.292 0.200

Bottom Right 0.019 0.017 0.020 0.240 0.292 0.200

Mean 0.019 0.016 0.019 0.235 0.285 0.197

Table A.3: Tracking the FluxData multispectral camera represented by 12 points in its' bound-
ing box. Standard deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.023 0.019 0.025 0.444 0.536 0.602

Top Right 0.021 0.018 0.023 0.418 0.496 0.556

Center 0.020 0.018 0.021 0.394 0.460 0.530

Bottom Left 0.019 0.017 0.021 0.366 0.438 0.508

Bottom Right 0.021 0.018 0.023 0.404 0.478 0.556

Mean 0.020 0.018 0.022 0.396 0.468 0.538

Table A.4: Tracking the Gom Atos III represented by 24 points in its' bounding box. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top 0.012 0.011 0.012 0.152 0.106 0.104

Center 0.013 0.012 0.013 0.168 0.116 0.116

Bottom 0.013 0.012 0.013 0.162 0.114 0.112

Mean 0.013 0.012 0.012 0.161 0.112 0.111
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Table A.5: Tracking the Gom Atos III represented by 34 points in its' bounding box. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top 0.012 0.011 0.012 0.160 0.106 0.104

Center 0.012 0.011 0.011 0.156 0.104 0.102

Bottom 0.012 0.011 0.011 0.152 0.104 0.100

Mean 0.012 0.011 0.011 0.156 0.105 0.102

A.1.2 5Mpx Baumer cameras with 6mm lens

Tracking the acquisition systems

Table A.6: Tracking the lab-designed multispectral camera represented by 18 points in its'
bounding box. Standard deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.012 0.010 0.013 0.148 0.180 0.124

Top Right 0.014 0.011 0.014 0.164 0.198 0.136

Center 0.016 0.015 0.017 0.204 0.238 0.174

Bottom Left 0.015 0.013 0.016 0.192 0.228 0.160

Bottom Right 0.016 0.014 0.016 0.200 0.240 0.168

Mean 0.015 0.013 0.016 0.190 0.226 0.160

Table A.7: Tracking the FluxData multispectral camera represented by 12 points in its' bound-
ing box. Standard deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.014 0.012 0.015 0.274 0.324 0.370

Top Right 0.016 0.014 0.017 0.308 0.366 0.418

Center 0.019 0.017 0.019 0.372 0.422 0.498

Bottom Left 0.020 0.018 0.022 0.388 0.458 0.536

Bottom Right 0.019 0.017 0.021 0.370 0.438 0.506

Mean 0.018 0.016 0.020 0.360 0.421 0.490
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Table A.8: Tracking the Gom Atos III represented by 24 points in its' bounding box. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top 0.011 0.011 0.011 0.142 0.096 0.098

Center 0.011 0.011 0.010 0.142 0.092 0.098

Bottom 0.010 0.010 0.009 0.130 0.084 0.092

Mean 0.011 0.010 0.010 0.138 0.091 0.096

Table A.9: Tracking the Gom Atos III represented by 34 points in its' bounding box. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top 0.009 0.009 0.009 0.128 0.078 0.086

Center 0.008 0.008 0.008 0.112 0.070 0.074

Bottom 0.009 0.009 0.009 0.126 0.080 0.082

Mean 0.009 0.009 0.008 0.122 0.076 0.081

Tracking a target frame

Table A.10: Tracking a 0.5m × 0.4m × 0.3m target frame represented by 26 points. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.012 0.011 0.011 0.106 0.092 0.082

Top Right 0.013 0.011 0.012 0.114 0.100 0.086

Center 0.014 0.014 0.013 0.126 0.106 0.100

Bottom Left 0.014 0.013 0.014 0.140 0.122 0.102

Bottom Right 0.014 0.013 0.015 0.144 0.126 0.104

Mean 0.014 0.013 0.014 0.131 0.114 0.098
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Table A.11: Tracking a 0.5m × 0.4m × 0.3m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.009 0.009 0.008 0.084 0.072 0.064

Top Right 0.009 0.008 0.008 0.086 0.076 0.064

Center 0.010 0.010 0.009 0.096 0.082 0.076

Bottom Left 0.011 0.010 0.011 0.116 0.098 0.078

Bottom Right 0.011 0.011 0.012 0.124 0.106 0.082

Mean 0.010 0.010 0.010 0.106 0.091 0.075

Table A.12: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 26 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.016 0.015 0.013 0.096 0.094 0.098

Top Right 0.014 0.013 0.012 0.086 0.088 0.082

Center 0.015 0.014 0.013 0.092 0.094 0.094

Bottom Left 0.015 0.015 0.014 0.106 0.094 0.100

Bottom Right 0.017 0.017 0.015 0.120 0.106 0.114

Mean 0.015 0.015 0.013 0.101 0.096 0.098

Table A.13: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.011 0.010 0.009 0.070 0.068 0.064

Top Right 0.010 0.009 0.008 0.062 0.066 0.060

Center 0.010 0.009 0.008 0.064 0.064 0.064

Bottom Left 0.010 0.010 0.010 0.078 0.070 0.070

Bottom Right 0.012 0.011 0.011 0.088 0.078 0.078

Mean 0.010 0.010 0.009 0.073 0.070 0.068
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Table A.14: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.004 0.004 0.003 0.026 0.026 0.024

Top Right 0.003 0.003 0.003 0.022 0.024 0.022

Center 0.003 0.003 0.003 0.022 0.022 0.022

Bottom Left 0.004 0.004 0.003 0.028 0.024 0.024

Bottom Right 0.004 0.004 0.003 0.028 0.026 0.026

Mean 0.004 0.003 0.003 0.025 0.024 0.024

Orientation simulations

Table A.15: Orientation results. Standard deviation of Gaussian noise is 0.345µm on the picture
coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.020 0.016 0.023 0.040 0.050 0.036

Camera 2 0.019 0.021 0.020 0.056 0.058 0.044

Camera 3 0.019 0.015 0.022 0.040 0.050 0.036

Camera 4 0.019 0.021 0.020 0.056 0.058 0.044

Mean 0.019 0.018 0.021 0.048 0.054 0.040

Table A.16: Orientation results. Standard deviation of Gaussian noise is 0.115µm on the picture
coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.008 0.006 0.009 0.016 0.020 0.014

Camera 2 0.006 0.007 0.007 0.018 0.020 0.014

Camera 3 0.008 0.006 0.009 0.016 0.020 0.014

Camera 4 0.006 0.007 0.007 0.018 0.020 0.014

Mean 0.007 0.007 0.008 0.017 0.020 0.014
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Comprehensive simulations

Table A.17: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.03mm on the camera translation and 0.07mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.020 0.017 0.016 0.126 0.126 0.116

Top Right 0.022 0.021 0.019 0.150 0.156 0.148

Center 0.023 0.022 0.019 0.150 0.152 0.150

Bottom Left 0.023 0.023 0.022 0.176 0.156 0.156

Bottom Right 0.020 0.020 0.019 0.152 0.136 0.136

Mean 0.022 0.021 0.020 0.157 0.150 0.148

Table A.18: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.115 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.02mm on the camera translation and 0.03mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.016 0.015 0.013 0.110 0.108 0.104

Top Right 0.015 0.014 0.013 0.102 0.104 0.100

Center 0.014 0.013 0.012 0.090 0.092 0.090

Bottom Left 0.015 0.015 0.014 0.116 0.104 0.106

Bottom Right 0.013 0.012 0.011 0.092 0.084 0.084

Mean 0.014 0.014 0.012 0.100 0.096 0.095
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A.1.3 5Mpx AVT cameras with 8mm lens

Preliminary simulations

Table A.19: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.011 0.010 0.011 0.076 0.080 0.072

Top Right 0.012 0.010 0.011 0.078 0.084 0.074

Center 0.013 0.011 0.012 0.084 0.090 0.080

Bottom Left 0.014 0.012 0.012 0.090 0.098 0.084

Bottom Right 0.015 0.012 0.013 0.094 0.104 0.088

Mean 0.013 0.011 0.012 0.084 0.091 0.080

Table A.20: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.115µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.004 0.003 0.004 0.026 0.028 0.024

Top Right 0.004 0.003 0.004 0.026 0.028 0.024

Center 0.004 0.004 0.004 0.026 0.028 0.026

Bottom Left 0.004 0.004 0.004 0.028 0.032 0.026

Bottom Right 0.005 0.004 0.004 0.030 0.032 0.028

Mean 0.004 0.004 0.004 0.027 0.030 0.026
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Table A.21: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.03mm on the camera translation and 0.07mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.023 0.020 0.022 0.154 0.164 0.144

Top Right 0.022 0.020 0.021 0.150 0.160 0.142

Center 0.022 0.020 0.021 0.148 0.160 0.142

Bottom Left 0.023 0.019 0.020 0.144 0.158 0.134

Bottom Right 0.028 0.023 0.025 0.178 0.196 0.166

Mean 0.024 0.020 0.022 0.155 0.168 0.146

Table A.22: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.115 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.02mm on the camera translation and 0.03mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.015 0.014 0.015 0.104 0.112 0.098

Top Right 0.012 0.011 0.012 0.082 0.088 0.078

Center 0.014 0.013 0.014 0.096 0.102 0.090

Bottom Left 0.016 0.013 0.014 0.102 0.112 0.094

Bottom Right 0.016 0.013 0.014 0.100 0.110 0.092

Mean 0.015 0.013 0.014 0.097 0.105 0.090

Orientation simulations

Table A.23: Orientation results. Standard deviation of Gaussian noise is 0.345µm on the picture
coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.020 0.018 0.021 0.028 0.030 0.026

Camera 2 0.020 0.018 0.021 0.028 0.030 0.026

Camera 3 0.016 0.018 0.017 0.026 0.028 0.024

Camera 4 0.015 0.017 0.016 0.024 0.028 0.024

Mean 0.018 0.018 0.019 0.027 0.029 0.025
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Table A.24: Orientation results. Standard deviation of Gaussian noise is 0.115µm on the picture
coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.007 0.006 0.007 0.010 0.010 0.008

Camera 2 0.007 0.006 0.007 0.010 0.010 0.008

Camera 3 0.005 0.006 0.006 0.008 0.010 0.008

Camera 4 0.005 0.006 0.005 0.008 0.010 0.008

Mean 0.006 0.006 0.006 0.009 0.010 0.008

Comprehensive simulations

Table A.25: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.345 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.03mm on the camera translation and 0.04mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.024 0.021 0.023 0.160 0.172 0.152

Top Right 0.022 0.019 0.021 0.146 0.156 0.138

Center 0.018 0.016 0.017 0.122 0.132 0.116

Bottom Left 0.024 0.021 0.022 0.156 0.172 0.146

Bottom Right 0.019 0.016 0.017 0.120 0.132 0.112

Mean 0.021 0.019 0.020 0.141 0.153 0.133

Table A.26: Tracking a 0.5m × 0.5m × 0.5m target frame represented by 56 points. Standard
deviation of Gaussian noise is 0.115 µm on the picture coordinates, 0.05mm on the object
coordinates, 0.01mm on the camera translation and 0.02mrad on the camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.012 0.011 0.011 0.080 0.086 0.076

Top Right 0.012 0.011 0.012 0.082 0.088 0.076

Center 0.014 0.012 0.013 0.092 0.100 0.088

Bottom Left 0.014 0.012 0.012 0.088 0.098 0.082

Bottom Right 0.013 0.011 0.012 0.086 0.094 0.080

Mean 0.013 0.011 0.012 0.086 0.093 0.080
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A.2 Painting simulations

The tracking cameras used in these simulations match the AVT Stingray 5Mpx cameras used

with 8mm lens. The tracked object is the 0.5 m × 0.5 m × 0.5 m target frame covered de�ned

by �fty six points. An overview of all painting simulation results is given table A.27.

Table A.27: Overview of the painting simulation results.

Input noise Output accuracy

Picture Object Orientation Orientation
Spatial Angular

See

coord. coord. translation rotation table

(µm) (mm) (mm) (mrad) (mm) (mrad)

Bounding box surveyed by four cameras

Frame*
0.345 0 0 0 0.028 0.196 A.28

0.345 0 0 0 0.026 0.186 A.29

0.345 0 0 0 0.029 0.214 A.30

Partial bounding box surveyed by three cameras

Frame*

0.345 0 0 0 0.025 0.174 A.31

0.345 0 0 0 0.026 0.170 A.32

0.345 0 0 0 0.023 0.162 A.33

0.345 0 0 0 0.025 0.172 A.34

0.345 0 0 0 0.024 0.160 A.35

0.345 0 0 0 0.026 0.172 A.36

Bounding box surveyed by six cameras

Frame
0.345 0 0 0 0.016 0.116 A.37

0.115 0 0 0 0.005 0.038 A.38

orientation
0.345 0 0 0 0.052 0.050 A.39

0.115 0 0 0 0.017 0.016 A.40

Frame

0.345 0.10 0.05 0.04 0.029 0.198 A.41

0.345 0.05 0.05 0.04 0.027 0.192 A.42

0.345 0.05 0.06 0.06 0.032 0.216 A.43

0.115 0.10 0.02 0.02 0.023 0.156 A.44

0.115 0.05 0.02 0.02 0.015 0.106 A.45
* the tracked object and noise are �xed but the camera positions vary for these simulations.
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A.2.1 Bounding box surveyed by four cameras

Table A.28: Variation (a) on the arrangement of the four tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.023 0.024 0.027 0.188 0.178 0.152

Top Right 0.024 0.025 0.028 0.196 0.186 0.158

Center 0.025 0.024 0.026 0.184 0.190 0.166

Bottom Left 0.024 0.021 0.024 0.166 0.176 0.150

Bottom Right 0.023 0.022 0.025 0.172 0.176 0.146

Mean 0.024 0.023 0.026 0.181 0.181 0.154

Table A.29: Variation (b) on the arrangement of the four tracking cameras. Gaussian noise of
standard deviation 1/10th of a pixel is added to the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.024 0.022 0.024 0.164 0.178 0.154

Top Right 0.021 0.021 0.024 0.162 0.164 0.142

Center 0.026 0.023 0.024 0.172 0.186 0.164

Bottom Left 0.024 0.021 0.024 0.160 0.176 0.150

Bottom Right 0.021 0.020 0.023 0.158 0.162 0.140

Mean 0.023 0.021 0.024 0.163 0.173 0.150

Table A.30: Variation (c) on the arrangement of the four tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.024 0.021 0.025 0.164 0.182 0.150

Top Right 0.024 0.021 0.026 0.170 0.184 0.150

Center 0.029 0.024 0.028 0.188 0.214 0.178

Bottom Left 0.026 0.023 0.029 0.184 0.200 0.164

Bottom Right 0.025 0.021 0.026 0.166 0.186 0.152

Mean 0.026 0.022 0.027 0.174 0.193 0.159
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A.2.2 Partial bounding box surveyed by three cameras

Table A.31: Variation (a) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.018 0.018 0.019 0.134 0.132 0.122

Top Center 0.022 0.017 0.019 0.130 0.150 0.126

Center Left 0.025 0.022 0.022 0.162 0.174 0.156

Bottom Left 0.020 0.017 0.019 0.130 0.138 0.122

Bottom Center 0.023 0.017 0.019 0.130 0.158 0.132

Mean 0.022 0.018 0.020 0.137 0.150 0.132

Table A.32: Variation (b) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.019 0.016 0.018 0.124 0.130 0.118

Top Center 0.026 0.018 0.020 0.138 0.170 0.142

Center Left 0.024 0.019 0.020 0.144 0.160 0.142

Bottom Left 0.021 0.017 0.020 0.134 0.142 0.128

Bottom Center 0.023 0.016 0.018 0.126 0.154 0.128

Mean 0.022 0.017 0.019 0.133 0.151 0.132

Table A.33: Variation (c) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.018 0.018 0.019 0.136 0.132 0.120

Top Center 0.023 0.018 0.020 0.140 0.160 0.120

Center Left 0.021 0.020 0.020 0.148 0.150 0.136

Bottom Left 0.019 0.019 0.020 0.144 0.142 0.128

Bottom Center 0.023 0.018 0.020 0.142 0.162 0.134

Mean 0.021 0.019 0.020 0.142 0.149 0.128
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A.2. Painting simulations

Table A.34: Variation (d) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular
x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.018 0.017 0.018 0.128 0.130 0.118
Top Center 0.024 0.018 0.020 0.140 0.166 0.140
Center Left 0.025 0.022 0.022 0.160 0.172 0.156
Bottom Left 0.018 0.017 0.019 0.128 0.132 0.118
Bottom Center 0.024 0.017 0.020 0.134 0.162 0.132

Mean 0.022 0.018 0.020 0.138 0.152 0.133

Table A.35: Variation (e) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular
x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.017 0.015 0.017 0.116 0.124 0.110
Top Center 0.021 0.016 0.019 0.126 0.146 0.124
Center Left 0.021 0.020 0.018 0.140 0.144 0.140
Bottom Left 0.018 0.017 0.018 0.130 0.124 0.118
Bottom Center 0.024 0.022 0.020 0.154 0.158 0.160

Mean 0.020 0.018 0.018 0.133 0.139 0.130

Table A.36: Variation (f) on the arrangement of the three tracking cameras. Standard deviation
of Gaussian noise is 0.345µm on the picture coordinates.

Spatial Angular
x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.018 0.019 0.019 0.138 0.130 0.126
Top Center 0.026 0.024 0.022 0.166 0.168 0.172
Center Left 0.022 0.021 0.019 0.146 0.150 0.146
Bottom Left 0.019 0.016 0.018 0.124 0.136 0.120
Bottom Center 0.021 0.017 0.019 0.126 0.148 0.126

Mean 0.021 0.019 0.019 0.140 0.146 0.138
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A.2.3 Bounding box surveyed by six cameras

Preliminary simulations

Table A.37: Standard deviation of Gaussian noise is 0.345 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.016 0.014 0.015 0.108 0.116 0.104

Top Center 0.014 0.012 0.013 0.090 0.098 0.088

Top Right 0.016 0.015 0.015 0.110 0.116 0.102

Center Left 0.014 0.015 0.013 0.100 0.102 0.096

Center Right 0.015 0.015 0.013 0.102 0.102 0.098

Bottom Left 0.015 0.014 0.015 0.104 0.110 0.096

Bottom Center 0.014 0.012 0.012 0.088 0.096 0.086

Bottom Right 0.015 0.013 0.014 0.100 0.108 0.096

Mean 0.015 0.014 0.014 0.100 0.106 0.096

Table A.38: Standard deviation of Gaussian noise is 0.115 µm on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.005 0.004 0.005 0.032 0.036 0.032

Top Center 0.005 0.004 0.004 0.032 0.034 0.030

Top Right 0.005 0.005 0.005 0.036 0.038 0.034

Center Left 0.005 0.005 0.004 0.032 0.032 0.030

Center Right 0.005 0.005 0.004 0.034 0.034 0.032

Bottom Left 0.005 0.005 0.005 0.036 0.038 0.034

Bottom Center 0.005 0.004 0.004 0.030 0.034 0.030

Bottom Right 0.005 0.005 0.005 0.036 0.038 0.034

Mean 0.005 0.005 0.005 0.034 0.036 0.032

158



A.2. Painting simulations

Orientation

Table A.39: Orientation results with 1/10th of a pixel noise on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.034 0.033 0.046 0.042 0.038 0.028

Camera 2 0.036 0.045 0.052 0.050 0.038 0.034

Camera 3 0.032 0.030 0.042 0.042 0.040 0.030

Camera 4 0.033 0.034 0.049 0.048 0.042 0.032

Camera 5 0.034 0.034 0.048 0.046 0.038 0.028

Camera 6 0.034 0.038 0.049 0.048 0.036 0.030

Mean 0.034 0.036 0.048 0.046 0.039 0.030

Table A.40: Orientation results with 1/30th of a pixel noise on the picture coordinates.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Camera 1 0.011 0.011 0.015 0.014 0.012 0.010

Camera 2 0.012 0.015 0.017 0.016 0.012 0.012

Camera 3 0.011 0.010 0.014 0.014 0.014 0.010

Camera 4 0.011 0.011 0.016 0.016 0.014 0.010

Camera 5 0.011 0.011 0.016 0.014 0.012 0.010

Camera 6 0.011 0.013 0.016 0.016 0.012 0.010

Mean 0.011 0.012 0.016 0.015 0.013 0.010

159



Appendix A.

Comprehensive simulations

Table A.41: Standard deviation of Gaussian noise is 0.345 µm on the picture coordinates, 0.1mm
on the object coordinates, 0.05mm on the camera translation and 0.04mrad on the camera
rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.028 0.024 0.026 0.182 0.196 0.176

Top Center 0.027 0.023 0.023 0.168 0.182 0.164

Top Right 0.026 0.024 0.025 0.184 0.192 0.170

Center Left 0.025 0.025 0.022 0.174 0.176 0.168

Center Right 0.025 0.026 0.023 0.178 0.178 0.170

Bottom Left 0.028 0.025 0.026 0.192 0.200 0.176

Bottom Center 0.029 0.025 0.025 0.182 0.198 0.178

Bottom Right 0.026 0.023 0.024 0.172 0.184 0.164

Mean 0.027 0.024 0.024 0.179 0.188 0.171

Table A.42: Standard deviation of Gaussian noise is 0.345 µm on the picture coordinates,
0.05mm on the object coordinates, 0.05mm on the camera translation and 0.04mrad on the
camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.023 0.020 0.022 0.154 0.166 0.148

Top Center 0.021 0.018 0.019 0.132 0.144 0.130

Top Right 0.027 0.024 0.025 0.182 0.192 0.168

Center Left 0.024 0.024 0.022 0.168 0.168 0.160

Center Right 0.020 0.020 0.018 0.138 0.140 0.132

Bottom Left 0.021 0.019 0.020 0.144 0.150 0.132

Bottom Center 0.023 0.019 0.020 0.142 0.154 0.138

Bottom Right 0.024 0.021 0.023 0.160 0.174 0.154

Mean 0.023 0.021 0.021 0.153 0.161 0.145
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A.2. Painting simulations

Table A.43: Standard deviation of Gaussian noise is 0.345 µm on the picture coordinates,
0.05mm on the object coordinates, 0.06mm on the camera translation and 0.06mrad on the
camera rotation.

Spatial Angular
x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.030 0.026 0.028 0.198 0.214 0.192
Top Center 0.032 0.027 0.028 0.198 0.216 0.194
Top Right 0.028 0.025 0.026 0.190 0.198 0.176
Center Left 0.023 0.023 0.020 0.158 0.160 0.152
Center Right 0.026 0.027 0.024 0.182 0.184 0.176
Bottom Left 0.023 0.020 0.021 0.154 0.162 0.142
Bottom Center 0.022 0.019 0.019 0.140 0.152 0.136
Bottom Right 0.023 0.020 0.021 0.154 0.162 0.142

Mean 0.024 0.022 0.022 0.163 0.170 0.154

Table A.44: Standard deviation of Gaussian noise is 0.115 µm on the picture coordinates, 0.1mm
on the object coordinates, 0.02mm on the camera translation and 0.02mrad on the camera
rotation.

Spatial Angular
x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.022 0.019 0.020 0.144 0.156 0.140
Top Center 0.021 0.018 0.018 0.130 0.142 0.128
Top Right 0.022 0.020 0.021 0.148 0.154 0.136
Center Left 0.020 0.021 0.018 0.142 0.144 0.136
Center Right 0.018 0.018 0.016 0.124 0.126 0.120
Bottom Left 0.021 0.019 0.020 0.144 0.150 0.134
Bottom Center 0.023 0.019 0.020 0.144 0.156 0.140
Bottom Right 0.022 0.019 0.020 0.144 0.154 0.138

Mean 0.021 0.019 0.019 0.140 0.148 0.134

161



Appendix A.

Table A.45: Standard deviation of Gaussian noise is 0.115 µm on the picture coordinates,
0.05mm on the object coordinates, 0.02mm on the camera translation and 0.02mrad on the
camera rotation.

Spatial Angular

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

Top Left 0.013 0.011 0.012 0.086 0.092 0.082

Top Center 0.012 0.010 0.010 0.074 0.080 0.072

Top Right 0.011 0.010 0.010 0.074 0.076 0.068

Center Left 0.012 0.012 0.011 0.082 0.082 0.078

Center Right 0.011 0.011 0.010 0.078 0.078 0.074

Bottom Left 0.014 0.012 0.013 0.092 0.096 0.086

Bottom Center 0.012 0.010 0.011 0.078 0.084 0.076

Bottom Right 0.015 0.013 0.014 0.100 0.106 0.096

Mean 0.013 0.011 0.011 0.083 0.087 0.079

A.3 Statue simulations

As for the painting simulations the tracking cameras used in the simulations match the AVT

Stingray 5Mpx cameras used with 8mm lens. The tracked object is the 0.5 m× 0.5 m× 0.5 m

target frame covered de�ned by �fty six points. An overview of all statue simulation results is

given table A.46.

Table A.46: Overview of the painting simulation results.

Input noise Output accuracy

Cameras Picture Object Orientation Orientation
Spatial Angular

See

total / used coord. coord. translation rotation table

(µm) (mm) (mm) (mrad) (mm) (mrad)

3/4 0.345 0 0 0 0.056 0.308 A.47
*6/8* 0.345 0 0 0 0.031 0.196 A.48

6/8 0.345 0 0 0 0.031 0.210 A.49

0.345 0.05 0.05 0.04 0.036 0.242 A.50

6/8 0.345 0.05 0.06 0.06 0.057 0.362 A.51

0.115 0.05 0.02 0.02 0.019 0.122 A.52
* cameras are staggered instead of vertically aligned two by two.
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A.3. Statue simulations

Preliminary simulations

Table A.47: Partial bounding box surveyed by three cameras. Standard deviation of Gaussian
noise is 0.345 µm on the picture coordinates.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.047 0.037 0.031 0.226 0.260 0.308

4 3 0.041 0.030 0.027 0.196 0.212 0.256

2 2 0.037 0.041 0.030 0.222 0.224 0.278

2 3 0.036 0.048 0.034 0.250 0.244 0.290

0 2 0.035 0.053 0.037 0.274 0.232 0.284

0 3 0.036 0.056 0.038 0.278 0.244 0.290

Mean 0.039 0.044 0.033 0.241 0.236 0.284

Table A.48: Partial bounding box surveyed by six cameras. Top and bottom tracking cameras
are staggered. Standard deviation of Gaussian noise is 0.345µm on the picture coordinates.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.031 0.026 0.029 0.196 0.196 0.200

4 3 0.027 0.021 0.024 0.156 0.174 0.166

2 2 0.023 0.025 0.022 0.164 0.158 0.170

2 3 0.025 0.024 0.020 0.156 0.158 0.174

0 2 0.025 0.029 0.024 0.186 0.166 0.180

0 3 0.024 0.026 0.020 0.160 0.150 0.184

Mean 0.026 0.025 0.023 0.170 0.167 0.179
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Table A.49: Partial bounding box surveyed by six cameras. Top and bottom tracking cam-
eras are vertically aligned. Standard deviation of Gaussian noise is 0.345 µm on the picture
coordinates.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.027 0.023 0.023 0.162 0.174 0.174

4 3 0.026 0.022 0.022 0.158 0.170 0.166

3 2 0.022 0.023 0.019 0.150 0.144 0.162

3 3 0.023 0.024 0.020 0.156 0.150 0.168

2 2 0.023 0.029 0.021 0.172 0.158 0.184

2 3 0.023 0.028 0.021 0.166 0.154 0.180

1 2 0.022 0.029 0.020 0.168 0.150 0.180

1 3 0.023 0.029 0.020 0.164 0.150 0.178

0 2 0.023 0.029 0.021 0.176 0.150 0.186

0 3 0.026 0.031 0.023 0.182 0.162 0.210

Mean 0.024 0.027 0.021 0.165 0.156 0.179

Comprehensive simulations

Table A.50: Partial bounding box surveyed by six cameras. Top and bottom tracking cameras
are vertically aligned. Standard deviation of Gaussian noise is 0.345µm on the picture coordi-
nates, 0.05mm on the object coordinates, 0.05mm on the camera translation and 0.04mrad on
the camera rotation.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.035 0.029 0.029 0.208 0.222 0.224

4 3 0.035 0.029 0.030 0.212 0.228 0.222

2 2 0.027 0.033 0.024 0.196 0.180 0.212

2 3 0.031 0.036 0.027 0.218 0.202 0.236

0 2 0.028 0.036 0.026 0.218 0.186 0.232

0 3 0.029 0.036 0.026 0.210 0.186 0.242

Mean 0.031 0.033 0.027 0.210 0.201 0.228
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A.3. Statue simulations

Table A.51: Partial bounding box surveyed by six cameras. Top and bottom tracking cameras
are vertically aligned. Standard deviation of Gaussian noise is 0.345µm on the picture coordi-
nates, 0.05mm on the object coordinates, 0.06mm on the camera translation and 0.06mrad on
the camera rotation.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.048 0.040 0.041 0.288 0.308 0.308

4 3 0.037 0.031 0.031 0.224 0.240 0.234

3 2 0.039 0.042 0.036 0.274 0.262 0.294

3 3 0.033 0.035 0.029 0.228 0.220 0.244

2 2 0.031 0.038 0.028 0.226 0.208 0.244

2 3 0.033 0.040 0.029 0.236 0.220 0.256

1 2 0.028 0.037 0.026 0.212 0.190 0.228

1 3 0.042 0.053 0.037 0.300 0.274 0.326

0 2 0.044 0.057 0.041 0.340 0.290 0.362

0 3 0.027 0.034 0.024 0.196 0.174 0.228

Mean 0.039 0.044 0.035 0.272 0.256 0.294

Table A.52: Partial bounding box surveyed by six cameras. Top and bottom tracking cameras
are vertically aligned. Standard deviation of Gaussian noise is 0.115µm on the picture coordi-
nates, 0.05mm on the object coordinates, 0.02mm on the camera translation and 0.02mrad on
the camera rotation.

Row Col.
Spatial accuracy Angular accuracy

x y z Ω Φ K

(mm) (mm) (mm) (mrad) (mrad) (mrad)

4 2 0.017 0.014 0.014 0.100 0.108 0.108

4 3 0.016 0.013 0.014 0.098 0.104 0.102

2 2 0.014 0.017 0.013 0.104 0.096 0.112

2 3 0.016 0.019 0.014 0.110 0.104 0.120

0 2 0.012 0.015 0.011 0.092 0.078 0.098

0 3 0.015 0.018 0.013 0.106 0.094 0.122

Mean 0.015 0.016 0.013 0.102 0.097 0.110
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Tracking Accuracy Complementary

Data

B.1 Practical considerations

B.1.1 Target frame design

It is important for the �nal tracking and registration accuracy to design a target frame that

is stable. The targets should not move with respect to one another, even of a few tenths of a

millimeter. The target frame must also be light so that the frame and acquisition system can

be supported by a tripod. Carbon is a light material with a low thermal expansion coe�cient,

but it is expensive and not adapted to creating several prototypes. Instead, we use aluminum

pro�les for �exible and rapid prototyping. These aluminum pro�les were bought from item

[item], which has distributors both in France and in Germany.

In the upcoming descriptions, we di�erentiate the following parts of the target frame:

� The skeleton, which is the cubic target frame structure with the additional sustaining

bars.

� The �xtures used to attach the target frame to a tripod and to �x the acquisition systems

to the target frame.

� The targets, including the target supports and screws. The targets themselves are created

by Tritop and printed on adhesive paper.

The tripod head we use to sustain the target frame and acquisition system can bear up

to 16 kg. This is the best compromise we found in terms of sustainable weight and �exibility

(the tripod head must be able to rotate in all directions for the 3D digitizations). The heaviest

acquisition system we use, the Gom Atos III, weighs 7.5 kg (the weigh of all three acquisition

systems we consider is given in table 3.2). As a consequence, the weight of the target frame

should not exceed 8.5 kg. A light target frame is also easier to manipulate. In practice it is

di�cult to design an aluminum target frame that weights less than 8.5 kg and matches our

requirements.
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(a) A (b) B1 (c) B2 (d) B3

Figure B.1: Target frame variations.

Table B.1: Weight of each target frame variation.

Frame
Number Weight (kg)
of targets Total Skeleton Fixtures Targets

A 40 12.215 6.700 2.172 3.632
B1 48 6.654 3.213 2.188 1.253
B2 78 9.341 5.117 2.188 2.036
B3 80 9.665 5.389 2.188 2.088

Two di�erent target frames were created. They are labeled A and B. There are a few

variations on the number of targets covering target frame B. We quickly present these successive

target frames, which are illustrated �gure B.1 and described in table B.1.

Target frame iteration A

This target frame is made of pro�les with a large cross section (30 mm × 30 mm) to maintain

its stability. We use the lightest pro�les available for this cross section. The target supports

are composed of two rectangular brackets that are integrated with the system and can be easily

fastened to it. These supports are made of steel and are very heavy. No photogrammetric

targets are placed on the side of the target frame that will face the object under study, since

it is completely hidden from the cameras. In an attempt to limit the weight of the target

frame we do not place any targets on its bottom face. This side can hardly be seen from the

tracking cameras when the target frame sits close to the ground to image the lower portion of

the sarcophagus surface. We thus place photogrammetric targets on four of the six sides of the

target frame.

This target frame was used for the �rst laser tracker tests. The empty frame was supported

by a theodolite tripod, as shown �gure B.1a. Such tripods can bear greater mass than our

tripod head, which is why we tolerate the overweight target frame, but they are not �exible

at all . To secure the target frame to the tripod, a metal plate is �xed between two bars on

the bottom of the cube and screwed to the theodolite tripod. This metal plate is made of solid

aluminum and measures 160 mm × 160 mm × 16 mm. It ensures a stable base on which the

acquisition system, cube skeleton and tripod can be attached, but it weighs over 1 kg.
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B.1. Practical considerations

Target frame iteration B

The �rst target frame was suitable to be used empty for tracking tests performed with a

theodolite tripod, but not to perform acquisitions with the Atos III. We designed a lighter

target frame made of aluminum pro�les with a smaller cross section (20 mm × 20 mm), even

though this smaller cross section makes for a less stable cube.

In the previous con�guration, a large proportion of the cube weight came from the targets.

To decrease this weight we replaced the steel target holders by plastic target holders. We drilled

two holes in opposite corners of these PVC squares of side 6 cm to fasten them to the target

frame.

In the �rst iteration (target frame B1), the target frame was covered with 48 targets and

was lighter than 8.5 kg. A few tracking tests with this target frame taught us that more targets

were necessary. Increasing the number of targets to 78 or 80 (respectively target frame B2 and

B3) makes the target frame weigh over 9 kg. This is in part due to the weight of the target

holders, but mostly because of the necessary aluminum bars to support them. However, these

additional aluminum bars also improve the stability of the target frame.

We used the same solid aluminum plate used in target frame A to attach the �xtures to

the bottom of the target frame. We screwed a hexagonal plate holder to the metal plate to

attach the acquisition systems to the target frame. Similarly, we screwed a hexagonal plate to

the bottom of the target frame to ensure an easy and steady fastening to the tripod.

B.1.2 Fixing the tracking cameras

We also had to decide how to �x the tracking cameras. We needed a very stable support to

keep the cameras from moving during the several hours that each experiment lasted. We also

needed to position the cameras almost vertically on top of one another, some very close to the

�oor and the others almost 2m high.

Though tripods are the natural solution for �xing cameras, they did not seem adapted to

our speci�c problem: it is not easy to �nd stable tripods that can sit so low or so high. It would

also be di�cult to position the tripods close enough to position our cameras one on top of the

other. Another concern was that it is fairly easy to trip over the feet of a tripod.

Instead, we used aluminum pro�les to create a stand for the tracking cameras. We selected

pro�les with a cross section of 40 mm×40 mm, larger than those used for the target frame. The

�rst tests were performed with pro�les available in the laboratory. The tracking cameras were

�xed to the pro�les with a hinge, which provided some �exibility for their orientation.

For the other tests, we designed a trestle-shaped frame that served as a camera support. By

adding or removing a few pieces from this modular support we were able to adapt it both to

the four camera con�guration and to the six camera con�guration. The cameras were �xed to

the support using a small aluminum ball-joint, also from item, which was easily integrated to

the stand.
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Figure B.2: Setup used to evaluate the laser tracker accuracy.

B.2 Laser tracker measurements

B.2.1 Evaluating the laser tracker accuracy

Before performing our measurements using the laser tracker, we wanted to evaluate its accuracy

in our laboratory setup. Five CCR target holders were �xed to the target frame and three were

glued to a marble table. The target frame was clamped to the marble table to �x it for the

duration of the acquisitions (see �gure B.2).

We acquire the points four times and the control points three times. The order of the

acquisitions is the following:

� Points 1 � 5

� Control 1 � 3

� Points 1 � 5

� Control 1 � 3

� Points 1 � 5

� Control 1 � 3

� Points 1 � 5

The mean distance between each point and the laser tracker, as well as the standard deviation σ

of each of these distances is given table B.2. The standard deviation if lower than 0.003mm(1σ)

for all points. The points on the target frame do not have a larger deviation than the control

points, which means that the target frame is securely fastened and there are no vibrations.
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Table B.2: Repeatability testing of the laser tracker.

Average σ
(mm) (mm)

Point 1 1922.967 0.0027
Point 2 1353.744 0.0006
Point 3 1971.182 0.0019
Point 4 1474.050 0.0015
Point 5 1418.963 0.0020
Control 1 1649.977 0.0026
Control 2 2293.404 0.0007
Control 3 1527.912 0.0010

B.2.2 Characteristics of photogrammetric tracking measurements

The target frame is clamped to the marble table. To compare the �ve successive measurements

table B.3 shows the number of targets that are seen by one, two, three or for targets while

table B.4 shows the average residuals of the targets in the images.

Table B.3: Number of targets used for each measurement.

Number of Measurement

cameras M1 M2 M3 M4 M5

1 1 0 1 2 1

2 23 29 26 21 38

3 0 0 3 1 1

4 10 10 11 10 13

Total 34 39 41 34 53

Table B.4: Average of residuals of targets in pictures for each measurement, in micrometers.

M1 M2 M3 M4 M5

1.264 1.280 0.443 0.547 0.821

B.2.3 Point to point distance

Point to point distances between the CCR targets are given for all acquisitions of the three

laser tracker measurements in tables B.5 through B.7. Average and standard deviation σ of the

distances over the acquisitions are also provided. All values are given in millimeters.
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Table B.5: Point to point distances between the CCR targets during the laser tracker measure-
ments with the target frame �xed to a theodolite tripod. Position of target 5 was not available
for measurement M1.

Points M1 M2 M3 M4 Average σ

1 to 2 367.926 367.926 367.935 367.921 367.927 0.005
1 to 3 564.652 564.592 565.125 565.151 564.880 0.259
1 to 4 574.438 574.479 574.405 574.440 574.440 0.026
1 to 5 � 374.531 374.453 374.478 374.487 0.032
2 to 3 287.813 287.779 288.279 288.325 288.049 0.254
2 to 4 563.280 563.329 563.250 563.268 563.282 0.029
2 to 5 � 528.490 528.453 528.437 528.460 0.022
3 to 4 416.167 416.165 416.174 416.157 416.166 0.006
3 to 5 � 523.809 524.141 524.111 524.020 0.150
4 to 5 � 263.195 263.214 263.205 263.205 0.008

Table B.6: Point to point distances between the CCR targets during the laser tracker measure-
ments with the target frame clamped to a marble table.

Points M1 M2 M3 M4 M5 Average σ

1 to 2 366.008 366.305 366.820 366.942 366.846 366.799 0.460
1 to 3 260.635 260.634 260.633 260.649 260.621 260.644 0.018
1 to 4 335.900 335.761 335.753 335.667 335.822 335.689 0.162
1 to 5 676.478 676.730 675.727 676.150 675.771 676.153 0.339
2 to 3 363.412 363.640 364.234 364.254 364.350 364.128 0.398
2 to 4 495.308 495.122 495.803 495.640 496.135 495.569 0.314
2 to 5 497.213 497.153 497.203 497.079 497.218 497.094 0.139
3 to 4 238.517 238.320 238.289 238.185 238.372 238.229 0.197
3 to 5 505.724 505.856 504.803 505.193 504.939 505.209 0.387
4 to 5 491.948 492.007 490.625 491.182 490.997 491.217 0.509
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B.2.4 In�uence of calibrations

Table B.8 shows the varying tracking accuracy depending of the target frame calibration and

exterior camera orientation used for the processing. The values correspond to the maximum

spatial and angular standard deviation. The most accurate calibrations (B for the target frame

and B* for the camera orientation) globally result in the most accurate tracking.

Table B.8: In�uence of the target frame calibration and exterior camera orientation on the
tracking accuracy when tracking with six cameras.

frame B orient A* frame B orient B* frame C orient A* frame C orient B*

(mm) (mrad) (mm) (mrad) (mm) (mrad) (mm) (mrad)

M1 0.033 0.162 0.031 0.152 0.030 0.148 0.032 0.156

M2 0.024 0.124 0.026 0.130 0.022 0.110 0.022 0.114

M3 0.020 0.100 0.019 0.098 0.020 0.100 0.019 0.094

M4 0.026 0.122 0.027 0.124 0.025 0.118 0.026 0.120

M5 0.021 0.114 0.019 0.108 0.022 0.124 0.021 0.118

M6 0.021 0.108 0.019 0.098 0.024 0.122 0.021 0.110

M7 0.018 0.100 0.016 0.092 0.019 0.110 0.018 0.100

M8 0.019 0.100 0.017 0.092 0.021 0.112 0.020 0.106

M9 0.022 0.106 0.020 0.096 0.025 0.118 0.024 0.114

M10 0.018 0.096 0.017 0.090 0.019 0.104 0.019 0.102

M11 0.016 0.090 0.014 0.080 0.018 0.100 0.017 0.094

M12 0.016 0.080 0.015 0.076 0.018 0.092 0.017 0.090

M13 0.018 0.092 0.017 0.086 0.019 0.100 0.018 0.092

M14 0.024 0.114 0.023 0.108 0.025 0.118 0.024 0.112

M15 0.021 0.102 0.020 0.096 0.023 0.112 0.021 0.100

M16 0.014 0.092 0.013 0.086 0.015 0.100 0.015 0.096

Min. 0.014 0.080 0.013 0.076 0.015 0.092 0.015 0.090

Max. 0.033 0.162 0.031 0.152 0.030 0.148 0.032 0.156

Avg. 0.021 0.106 0.020 0.101 0.022 0.112 0.021 0.107
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Improved Re�ectance Estimation

Complementary Data

C.1 Estimating the position of the light sources

There are several techniques that can be used to estimate the position of the light sources. The

three techniques we considered are the following: using photogrammetry by sticking targets to

the lights, detecting the specular highlight of a re�ective sphere or �xing the lights to the target

frame. We review the advantages and constraints of each of these methods.

Using photogrammetry

If we �x a few targets to the lights it is possible to estimate their position using photogrammetry.

This technique presents the advantage of being easily integrated in our current acquisition

protocol. The lights and their targets must simply visible from at least two of the tracking

cameras. There is an inaccuracy in the depth estimation of the lights since all cameras are on a

single side, but this disadvantage is mitigated by the dimensions in play and can be corrected

by calibrating the position of the targets on the light.

The lights must be positioned to avoid casting shadows of the target frame on the surface

under study. The possible position of the lights in the sarcophagus con�guration is illustrated

�gure C.1. In this setup, the light will necessarily be close to raking the surface. We thus

minimize the specular re�ection but risk casting shadows from the object on itself.

Using a re�ective sphere

Recognizing the specular highlights in a photograph of a re�ective sphere enable us to evaluate

the position of the light sources in a scene with respect to the position the imaging system.

This technique is often used to detect the light position to create PTMs [Malzbender et al.,

2001]. The setup simply requires a re�ective sphere, a camera and a software to process the

images.
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sarcophagus

bounding box

tracking cameras

Figure C.1: Positioning of the lights if their position is estimated using photogrammety repre-
sented by hatching. We assume the light is at least 20 cm from the sarcophagus.

Open source software to create PTMs is available online at [LPtracker ]. Such software

is able to detect a sphere and its specular highlight in a set of images and to calculate the

corresponding light position. The acquisitions can be performed by any of the many cameras

available to us: the tracking cameras or the multispectral camera. When using the tracking

cameras, the position of each image plane can be known with better accuracy than when using

the mutlispectral camera.

A billiard ball is often used as the re�ective sphere when acquiring PTMs but such sphere

would be too small if the tracking cameras were used for the acquisitions. It is best that the

sphere diameter be represented by 100 pixels in the image, which corresponds to a sphere over

close to 10 cm in diameter in our setup with a 2m distance between the tracking camera and

sphere.

The possible positions of the lights in this setup are still constrained by the need not to

cast shadows from the target frame on the surface under study. However, the lights need not

necessarily be in the �eld of view of the tracking cameras, though they must illuminate this

area (see �gure C.2). Though the use of a re�ective sphere o�ers a bit more �exibility in the

positioning of the light sources than the photogrammetric setup, it is also a sensibly more

complicated.

Fixing the lights to the target frame

The lights, for example a set of LED lights, can also be simply �xed to the target frame itself.

A pre-calibration (for example using a re�ective sphere) can provide their position in the target

frame coordinate system. This has numerous advantages: the lights are not in the way of the

user, and their is no risk of casting shadows from the frame on the object under study. The on

site acquisitions could be further sped if such LED lights were controlled by the same software

that controls the multispectral camera. Furthermore, the lights being �xed with respect to the
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sarcophagus

bounding box

tracking cameras

Figure C.2: Possible positioning of the lights if their position is estimated using a re�ective
sphere represented by hatching. We assume the light is at least 20 cm from the sarcophagus.

multispectral camera, the multispectral calibrations need only be performed once for any set

of acquisitions. This drastically reduces the number of necessary acquisitions, greatly reducing

the acquisition time. This however, requires a fair amount of work and preparation, that seems

disproportionate for a �rst feasibility test.

Conclusion

The advantages and disadvantages of each technique are summarized in table C.1. The use of

lights �xed to the target frame seems to be the most adapted method in the long run. For the

�rst tests presented in chapter 6 however, using our current photogrammetry setup seems the

best compromise. The use of a re�ective sphere is more complicated and does not provide any

signi�cant improvement.
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Table C.1: Comparison of possible methods to detect the position of the light sources.

Photogrammetry Re�ective Sphere Fixed to Frame

Light positioning constraints
In the �eld of view of at
least two tracking cameras.
Should not cast shadows
from the target frame on the
surface under study.

Should not cast shadows
from the target frame on the
surface under study.

Fixed to the target frame, no
risk of casting shadows from
the frame.

Light orientation
Raking: Minimizes specular highlights but increases risk
of shadows from surface itself.

Direct: Possible specular
highlights but no shadows
from surface.

Type of light
Any available light, can be �xed on a tripod. Light and soft since directly

shines on object: LED.

Di�culty of �rst setup
Easy: Setup is that already
in place for tracking of the
acquisition systems.

Medium: Must �nd a re-
�ective sphere.

Medium to hard: Must
buy, �x and calibrate lights.
Must develop software that
controls lights and multi-
spectral camera together.

Di�culty of in situ use
Easy: An extra calibration
step not unlike the others.
All light positions acquired
in a single shot.

Medium: An extra calibra-
tion step with di�erent soft-
ware and procedure. Multi-
ple acquisitions necessary to
acquire the position of each
light source.

Very easy: Light positions
known through previous cal-
ibrations. Single software
controls light and multispec-
tral cameras. Same illumi-
nation is cast on each acqui-
sition.
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C.2 Detecting the specular highlights

Figure C.3 through C.10 present the specular highlights detected for each multispectral ac-

quisition position and for both the individual lights, for varying values of threshold T . The

percentage p of specular pixels of each image is given in the legend. These results highlight the

need to adapt the threshold to each image, even though the material is the same.

(a) T = 0.99, p = 0.14% (b) T = 0.95, p = 0.86% (c) T = 0.90, p = 1.95% (d) T = 0.85, p = 3.32%

(e) T = 0.80, p = 5.59% (f) T = 0.75, p = 9.71% (g) T = 0.70, p = 14.90% (h) T = 0.50, p = 40.06%

Figure C.3: Specular highlights detected for the �rst acquisition with the left light.

(a) T = 0.99, p = 0.15% (b) T = 0.95, p = 0.78% (c) T = 0.90, p = 1.74% (d) T = 0.85, p = 3.26%

(e) T = 0.80, p = 5.60% (f) T = 0.75, p = 8.74% (g) T = 0.70, p = 13.47% (h) T = 0.50, p = 39.92%

Figure C.4: Specular highlights detected for the �rst acquisition with the right light.
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(a) T = 0.99, p = 0.09% (b) T = 0.95, p = 1.00% (c) T = 0.90, p = 4.31% (d) T = 0.85, p = 8.48%

(e) T = 0.80, p = 12.27% (f) T = 0.75, p = 16.29% (g) T = 0.70, p = 21.15% (h) T = 0.50, p = 53.49%

Figure C.5: Specular highlights detected for the second acquisition with the left light.

(a) T = 0.99, p = 0.15% (b) T = 0.95, p = 1.07% (c) T = 0.90, p = 2.31% (d) T = 0.85, p = 3.92%

(e) T = 0.80, p = 6.39% (f) T = 0.75, p = 10.06% (g) T = 0.70, p = 14.90% (h) T = 0.50, p = 41.44%

Figure C.6: Specular highlights detected for the second acquisition with the right light.
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(a) T = 0.99, p = 0.10% (b) T = 0.95, p = 0.67% (c) T = 0.90, p = 2.06% (d) T = 0.85, p = 4.53%

(e) T = 0.80, p = 7.89% (f) T = 0.75, p = 11.28% (g) T = 0.70, p = 15.04% (h) T = 0.50, p = 35.49%

Figure C.7: Specular highlights detected for the third acquisition with the left light.

(a) T = 0.99, p = 0.32% (b) T = 0.95, p = 2.05% (c) T = 0.90, p = 4.80% (d) T = 0.85, p = 8.03%

(e) T = 0.80, p = 11.66% (f) T = 0.75, p = 15.44% (g) T = 0.70, p = 19.48% (h) T = 0.50, p = 39.40%

Figure C.8: Specular highlights detected for the third acquisition with the right light.
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(a) T = 0.99, p = 0.04% (b) T = 0.95, p = 0.35% (c) T = 0.90, p = 0.98% (d) T = 0.85, p = 1.88%

(e) T = 0.80, p = 3.43% (f) T = 0.75, p = 5.52% (g) T = 0.70, p = 8.02% (h) T = 0.50, p = 24.45%

Figure C.9: Specular highlights detected for the fourth acquisition with the left light.

(a) T = 0.99, p = 0.02% (b) T = 0.95, p = 0.11% (c) T = 0.90, p = 0.26% (d) T = 0.85, p = 0.46%

(e) T = 0.80, p = 0.77% (f) T = 0.75, p = 1.18% (g) T = 0.70, p = 1.80% (h) T = 0.50, p = 8.21%

Figure C.10: Specular highlights detected for the fourth acquisition with the right light.
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C.3 Evaluating the 3D � multispectral registration

To help complete the visual assessment of the accuracy of the 3D � multispectral registration, we

create the same kind of checkered images described in chapter 6, for the previous acquisitions.

These checkered images are composed of a visual representation of the light / normal dot

product, and a greyscale image of the multispectral acquisition. In the two previous cases

(cross stitch and bas-relief digitization), we did not detect the position of the light source, we

thus calculate a light / normal dot product using the origin of the system as the position of the

light source. Though this light position most certainly does not correspond to the real position

of the light during the acquisitions, it is su�cient to create a 2D representation of the 3D data,

to compare with the multispectral acquisitions.

The resulting checkered images are given �gure C.11 and C.12 for the cross-stitch canvas

and the bas-relief respectively. In the case of the cross-stitch canvas, we do not denote any

other misalignment than the horizontal misalignment previously described. The bas-relief data

also seems satisfyingly registered.
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Figure C.11: Light / normal dot product, compared to the cross-stitch multispectral acquisi-
tions.
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Figure C.12: Light / normal dot product, compared to the bas-relief multispectral acquisitions.
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Abstract:

The concern and interest of this PhD thesis is the registration of featureless 3D and multispectral
datasets describing cultural heritage objects. In this context, there are few natural salient features
between the complementary datasets, and the use of targets is generally proscribed. We thus de-
velop a technique based on the photogrammetric tracking of the acquisition systems in use.
A series of simulations was performed to evaluate the accuracy of our method in three configura-
tions chosen to represent a variety of cultural heritage objects. These simulations show that we can
achieve a spatial tracking accuracy of 0.020 mm and an angular accuracy of 0.100 mrad using four
5 Mpx cameras when digitizing an area of 400 mm × 700 mm. The accuracy of the final registration
relies on the success of a series of optical and geometrical calibrations and their stability for the
duration of the full acquisition process.
The accuracy of the tracking and registration was extensively tested in laboratory settings. We first
evaluated the potential for multiview 3D registration. Then, the method was used for to project of
multispectral images on 3D models. Finally, we used the registered data to improve the reflectance
estimation from the multispectral datasets.

Keywords: 2D – 3D registration, close range photogrammetry, optical calibration, 3D digitization, multispec-
tral imaging, cultural heritage

Résumé :

Cette thèse s’intéresse au recalage de données issues de capteurs 3D et multispectraux pour l’étude
du patrimoine. Lorsque l’on étudie ce type d’objet, il y a souvent peu de points saillants naturels entre
ces jeux de données complémentaires. Par ailleurs, l’utilisation de mires optiques est proscrite. Notre
problème est donc de recaler des données multimodales sans points caractéristiques. Nous avons
développé une méthode de recalage basé sur le suivi des systèmes d’acquisition en utilisant des
techniques issues de la photogrammétrie.
Des simulations nous ont permis d’évaluer la précision de la méthode dans trois configurations qui
représentent des cas typiques dans l’étude d’objets du patrimoine. Ces simulations ont montré que
l’on peut atteindre une précision du suivi de 0,020 mm spatialement et 0,100 mrad angulairement en
utilisant quatre caméras 5 Mpx lorsque l’on numérise une zone de 400 mm × 700 mm. La précision
finale du recalage repose sur le succès d’une série de calibrations optiques et géométriques, ainsi
que sur leur stabilité pour la durée du processus d’acquisition.
Plusieurs tests ont permis d’évaluer la précision du suivi et du recalage de plusieurs jeux de données
indépendants ; d’abord seulement 3D, puis 3D et multispecrales. Enfin, nous avons étendu notre
méthode d’estimation de la réflectance à partir des données multispectrales lorsque celles-ci sont
recalées sur un modèle 3D.
Mots-clés : recalage 2D – 3D, photogrammétrie, calibrations optiques, numérisation 3D, imagerie multispec-

trale, étude du patrimoine
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