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ABSTRACT 

Misidentifying materials—such as mistaking soap for pâté, or vice versa—could lead 

to some pretty messy mishaps. Fortunately, we rarely suffer such indignities, thanks 

largely to our outstanding ability to recognize materials—and identify their 

properties—by sight. In everyday life, we encounter an enormous variety of 

materials, which we usually distinguish effortlessly and without error. However, 

despite its subjective ease, material perception poses the visual system with some 

unique and significant challenges, because a given material can take on many 

different appearances depending on the lighting, viewpoint and shape.  Here, I use 

observations from recent research on material perception to outline a general theory 

of material perception, in which I suggest that the visual system does not actually 

estimate physical parameters of materials and objects. Instead—I argue—the brain is 

remarkably adept at building ‘statistical generative models’ that capture the natural 

degrees of variation in appearance between samples.  For example, when 

determining perceived glossiness, the brain does not estimate parameters of the 

BRDF.  Instead, it uses a constellation of low- and mid-level image measurements to 

characterize the extent to which the surface manifests specular reflections. I argue 

that these ‘statistical appearance models’ are both more expressive and easier to 

compute than physical parameters, and therefore represent a powerful middle way 

between a ‘bag of tricks’ and ‘inverse optics’.  

 

KEYWORDS: materials, surface perception, computational models, theory. 
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BACKGROUND 

 

Different materials—such as soap, velvet and pâté—have distinct physical and 

functional properties, which determine how we can use them; for example, whether 

they are good for washing, wearing or eating, respectively.  Being able to visually 

distinguish between materials and infer their properties by sight, is invaluable for 

many tasks. For example, when determining edibility, we can make subtle visual 

judgments of material properties to determine whether fruit is ripe, whether soup 

has been left to go cold or whether bread is going stale. When walking or climbing, 

the ability to judge whether a surface is slippery or fragile is critical for selecting foot- 

and handholds. Evidently, material perception is useful.  One obvious question this 

raises is, are we any good at it? 

Everyday experience, suggests that we are. We effortlessly distinguish 

numerous different categories of material: textiles, stones, liquids, foodstuffs, and so 

on, and can recognize many specific materials within each class such as silk, wool, 

cotton, etc. Indeed, it seems plausible that our capacity to categorize and recognize 

materials probably rivals our capacity to categorize and recognize objects—after all, 

every object is made out of some kind of materials, and we usually know which 

ones.  Indeed, as Adelson (2001) points out, not everything that we can recognize is 

what we would normally call an ‘object’.  Some ‘stuff’—like snow, sand or soil—is 

just ‘stuff’, without a clearly defined shape.  In many cases such materials are not 

subject to key constraints—like cohesion and indivisibility—which we usually 

associate with ‘objecthood’. Despite this, we usually experience no problems 

recognizing such materials. 

There is experimental evidence to support the intuition that human observers 

are good at recognizing and categorizing materials.  For example, Sharan, Rosenholtz 
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& Adelson (2009) have shown that subjects can identify a wide range of materials 

from photographs even with brief presentations.  Recently, Fleming, Wiebel and 

Gegenfurtner (2013) showed subjects photographs of materials from different 

categories and asked them to rate various subjective qualities, such as hardness, 

glossiness and prettiness.  Even though subjects were not explicitly informed that the 

samples belonged to different classes, the subjective ratings of the individual 

samples were systematically clustered into categories, suggesting that subjects could 

theoretically classify materials through visual judgments of their properties. 

At the same time, there is almost certainly more to material perception than 

our ability to categorize or recognize familiar materials.  In general, without actually 

touching an object, we usually have a clear idea of what it would feel like were we to 

reach out and handle it: whether it would be hard or soft, rough or smooth, 

malleable or likely to crumble in response to force. Even with unfamiliar materials, 

we seem to be acutely aware of their specific visual and physical characteristics—is it 

sticky, runny, spongy, would it feel cold to the touch?  We can usually answer such 

questions based on a material’s visual appearance.  In other words, in addition to 

recognizing and categorizing materials, we also form a vivid impression of their 

material properties. 

In many cases, of course, physical and functional properties—such as density, 

thermal conductivity or toxicity—cannot be seen directly, so our impressions must 

presumably be learned associations.  Nevertheless, many quite complex material 

properties do have a distinctive and vivid visual phenomenology: the frothy head of 

a freshly poured wheat-beer, for example, has a characteristic ‘look’, which is 

subjectively intimately associated with its physical properties.  Because of this rich 

phenomenology, product designers go to great lengths in developing the visual ‘look 

and feel’ of consumer products, selecting and synthesising specific materials to elicit 
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a particular impression of the product as a whole.  If we weren’t highly sensitive to 

material appearance, it surely would not be profitable for companies to invest 

resources in perfecting complex paints and other surface finishing techniques. 

Indeed, material appearance plays a disproportionate role in the assignment of value 

to things. Precious metals and gemstones are not especially useful, yet they 

command high prices, largely because of their lustrous appearance.  Again, humans 

appear to derive a compelling sense of material properties through vision. 

There is a growing body of experimental evidence to back this up.  For 

example, Sharan, Rosenholtz and Adelson (2008) tested how well subjects 

distinguish between photographs of ‘real’ and ‘fake’ materials—for example real 

fruit vs. realistic wax simulacra—in brief presentations.  They found that even with 

presentation times of just 40 ms, subjects were able to make remarkably precise 

descriptions of the properties of materials and were above chance performance at 

distinguishing between real and fake materials.  This is impressive because the 

image differences between real and fake materials are usually far from trivial to 

define.  Real and fake materials have highly variable but overlapping appearances, 

which cannot easily be distinguished based on the overall colour distributions, 

intensities, contrasts or spatial attributes of the images.  Clearly there is something 

about the ‘look’ of the real and fake materials that subjects rapidly identify, but what 

exactly comprises these—often subtle—appearance differences is not at all clear.  

Nevertheless, the empirical finding supports the intuition that we can make often 

quite subtle judgments of material attributes. 

Other work has focussed on the visual estimation of specific properties of 

materials, such as glossiness, translucency or surface roughness (for recent reviews 

see Anderson, 2011; Thompson, Fleming, Creem-Regehr and Steffanucci, 2011 or 

Zaidi, 2011).  For example, on the topic of glossiness, Nishida and Shinya (1998) 
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showed that subjects can judge the specular reflectance of computer simulated glossy 

surfaces and Fleming Dror and Adelson (2003), showed that this ability generalizes 

across differences in lighting, as long as the illumination has statistical structure that 

is typical of the natural environment.  Motoyoshi and Matoba (2012) showed that 

varying the statistical characteristics of the illumination has systematic effects on 

perceived glossiness, which can be predicted from the low-level properties of the 

image.  Judgments of specular reflectance are affected by both binocular disparity 

and motion information (Koenderink and van Doorn, 1980; Blake and Bülthoff, 1990; 

Hurlbert, Cumming and Parker, 1991; Wendt, Faul and Mausfeld, 2008; Doerschner, 

Fleming, Yilmaz, Schrater, Hartung and Kersten, 2011; Muryy, Welchman, Blake and 

Fleming, 2013), as well as the properties of highlights, including their brightness, 

position and orientation relative to diffuse shading on the surface (Beck and 

Prazdny, 1981; Fleming, Torralba and Adelson, 2004; Todd, Norman and Mongolla, 

2004; Berzhanskaya, Swaminathan, Beck, and Mingolla, 2005; Kim, Marlow and 

Anderson, 2011; Marlow, Kim and Anderson, 2011, 2012).  What cues does the visual 

system use to infer glossiness?  Motoyoshi, Nishida, Sharan and Adelson (2007) 

found that glossy and matte stucco reliefs create different luminance (and sub-band) 

distributions, and suggested that the visual system could use the skewness of these 

histograms to distinguish between glossy and matte surfaces.  They found that 

increasing the skewness of images of matte stucco reliefs made the surfaces appear 

glossy.  However, others have noted that skewness is neither necessary nor sufficient 

to predict perceived glossiness, and have called into question the idea that such 

simple image statistics could account for surface perception more generally (Kim and 

Anderson, 2008; Anderson and Kim, 2009).  Olkkonen and Brainard (2010, 2011) 

measured how perceived gloss varied as a function of illumination geometry, object 

shape and specular reflectance parameters, and also found that subjective matches 
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were poorly predicted by summary statistics (like skewness) derived from the 

intensity histogram. 

On the topic of surface roughness, several authors have discussed how the 

visual system estimates and represents the characteristics of surface relief (e.g., Pont 

and Koenderink, 2005, 2008; Padilla, Drbohlav, Green, Spence and Chantler, 2008), 

although it remain unclear exactly which parameters of surface perturbations (e.g., 

scale, amplitude or profile) determine visual roughness, or indeed whether 

subjective roughness is a unitary quantity.  Others have investigated how visual 

roughness relates to haptic impressions of roughness (Bergmann Tiest and Kappers, 

2007), although it is still not clear how the brain compares or integrates the two.  Ho, 

Landy and Maloney (2006) have shown that subjects’ judgments of surface 

roughness are systematically biased by the illumination.  They found that glancing 

illumination angles make surfaces appear rougher than frontal illumination. 

Numerous other studies have investigated how we perceive the lightness, 

colour and opacity of thin transparent filters (Metelli, 1970; 1974a,b; Gerbino, 1994; 

D’Zmura, Colantoni, Knobacuh and Laget, 1997; Robilotto, Khang and Zaidi, 2002; 

Singh and Anderson, 2002a,b). By studying the structure of images created by 

transparent surfaces, a number of authors have identified photometric and geometric 

conditions that cause the visual system to separate single image intensity values into 

multiple causal layers—a process known as ‘scission’ (Beck, Prazdny and Ivry, 1984, 

Beck and Ivry, 1988; Adelson and Anandan, 1990; Anderson 1997, 2003).  For 

example, thin transparent layers tend to create ‘X-junctions’ in the image, where the 

boundary of the transparent layer crosses over contours in the background layer.  

However, solid transparent and translucent objects—like an ice-cube or wax 

candle—behave quite differently from thin transparent filters, and appear 

subjectively to transmit light even when these photometric and geometric image 
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conditions are not met (Fleming and Bülthoff, 2005).  With solid translucent 

materials, light scatters within the body of the object, leading to a characteristic soft, 

glowing appearance.  It is known that perceived translucency is affected by the 

thickness of the material, the direction of illumination, and colour properties of the 

image.  However, how the visual system distinguishes shading gradients that are 

caused by opaque reflectance from those that are caused by sub-surface scattering 

remains unclear, although shadow regions are likely to play a role, as these are the 

portions of objects that are most affected by light that has passed through the object 

(Fleming and Bülthoff, 2005).  Motoyoshi (2010) notes that because translucency has 

much larger effects on shading than on specular highlights, relationships between 

shading and highlights provide important information about whether an object is 

translucent.  He shows that varying the contrast (both magnitude and sign) and blur 

of the non-specular components of an object can dramatically alter its appearance 

from diffuse to translucent.  Fleming, Jäkel and Maloney (2011) showed that subjects 

could match the refractive index of solid transparent materials, although, again their 

judgments were substantially biased by the thickness of the object and the distance to 

the background. 

Taken together, these findings seem to support the general idea that—at least 

in certain circumstances—the human visual system can estimate the properties of 

materials from the retinal images.  With this background in mind, it is interesting to 

ask how the visual system categorizes materials and infers their properties from the 

retinal images.  Our theoretical understanding of material perception is very much in 

its infancy, but in the following section, we sketch out some of the key theoretical 

challenges posed by material perception. 

 

COMPUTATIONAL GOALS AND CHALLENGES OF MATERIAL PERCEPTION 
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Material perception can play many different roles in a wide variety of tasks, 

from judging surface friction when working out how to pick up an object, to 

choosing which scarf to wear.  Depending on the particular goals, different levels of 

fidelity of material perception may be important.  In some cases, it is sufficient to 

make a categorical judgment of some material attribute (e.g., wet or dry), in other 

cases, such as selecting between surface finishes for product design, extremely subtle 

distinctions are necessary.  However, despite the wide range of high-level uses to 

which material perception can be put, I suggest that it is useful to group the 

underlying visual processing broadly into two kinds of computations: categorization 

and estimation. 

It is important to point out that these are not mutually exclusive processes.  On 

the contrary, they are likely to be highly interdependent.  Estimating material 

properties (glossiness, roughness, colour, etc.) is likely to be a key stage in 

establishing the feature space within which samples can be categorized. Conversely, 

knowing which class a material belongs to presumably helps infer its properties 

(Fleming et al., 2013).  Thus, the two processes represent two ends of a continuum in 

terms of the fidelity of the internal representation of materials.  Nevertheless, in 

order to specify the key computational challenges posed by material perception, it is 

useful to highlight the differences between categorization and estimation. 

 

Material Categorization 

The main goal of categorization is to assign a specific class label to a given visual 

sample of a material, or put simply, to work out what kind of material it is.  Note that 

this does not necessarily require a high-precision representation of the material’s 

properties, as the end result is a simple label.  The primary benefit of categorization 
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is that it provides access to stored knowledge about other members of the same class.  

This is especially useful for inferring characteristics, such as toxicity, which cannot 

easily be visually inferred for unfamiliar samples. Categorization also has other 

benefits, such as reducing information, by replacing a complex, high dimensional 

visual representation of the sample (e.g. in terms of 2D image features, or 3D shape 

and surface characteristics) with a much simpler, lower-dimensional label.  

Categories can be structured hierarchically from super-ordinate categories down to 

the recognition of individual exemplars (e.g. Textiles ⊇ Shirt cloth ⊇ Egyptian 2-ply 

cotton with blue pinstripe pattern), thus providing elements of a semantic system for 

understanding how the world of materials is organized. 

From a computational point of view, material categorization is much like 

categorization of any other kind of entity (e.g., object categorization), in which the 

key computational challenge is establishing category boundaries through experience 

with exemplars. Theoretical approaches to categorization typically represent 

different exemplars as points in a high-dimensional ‘feature space’, and infer 

category boundaries in this space either using unsupervised learning techniques, such 

as clustering, which identify natural modes in the distribution of samples within the 

feature space, or through supervised learning techniques, such as support vector 

machines, which use explicit knowledge of class membership during training to 

determine boundaries.  Having established category boundaries through learning, 

novel exemplars are classified simply by comparing their position in the feature 

space to these boundaries. 

It seems reasonable that a theory of human material categorization could 

proceed more or less along these standard lines, although attempts to achieve human 

levels of categorization performance have not been very successful so far.  For 

example, Liu et al. (2010) developed a Bayesian model for classifying photos of 
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different materials, based on a large number of low- and mid-level image features.  

Through training, the algorithm identifies and combines the most effective image 

features, but performance was only 44.6% correct with just ten material classes. 

One reason for the relatively poor performance may be that materials can take 

on an enormous variety of different appearances, possibly even larger than scenes or 

objects, for example.  Despite the fact that scenes—such as offices, beaches or 

forests—may contain many elements, there is a surprising degree of regularity in the 

overall spatial organization of typical exemplars, at least for typical views (Oliva and 

Torralba, 2001; Torralba and Oliva, 2003).  This regularity enables quite reliable scene 

classification through simple image descriptions, like the ‘gist operator’ (Oliva and 

Torralab, 2006; Greene and Oliva, 2009).  Object appearance can change dramatically 

depending on lighting, viewpoint and other factors, which makes successful object 

recognition and categorization challenging (see Rust and Stocker, 2010 for a recent 

discussion of the challenges).  However, objects do at least typically have a well-

defined shape. Even mutable objects, such as animals, tend to have a fixed 

topological structure, with distinctive shape features that are invariant across poses 

and shared by members of a common class. 

By comparison, for a broad material class like ‘plastics’, the variation in 

possible appearance is huge (Figure 1): polythene bags, children’s toys and 

swimming goggles have widely diverging shapes and appearances.  Even a given 

exemplar, such as a plastic bag, can take on many different shapes depending on the 

particular series of forces and processes to which it is subjected.  Because plastic can 

be made into almost any shape and can have almost any colour, these features are 

much less diagnostic than for objects. Thus, material categorization presents the 

visual system with the significant challenge of enormous within-class variability. 
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FIGURE 1.  Examples of different plastics with diverse visual appearances.  
Images from the MIT-Flickr materials database (Liu et al, 2010). 

 

Recent trends in computer vision and computer graphics have emphasized the 

power of very large quantities of training data (e.g., Torralba et al, 2008; Hays and 

Efros, 2007).  It is interesting to speculate whether one key to the effectiveness of 

human material categorization might simply be the massive quantity of materials 

that we have seen and remembered in our past.  Perhaps training a system on 

comparably large quantities of training data would yield comparably good model 

performance. 

 

Estimation of Material Properties 

In contrast to categorization, the main goal of estimation is to identify specific 

characteristics of given sample of a material, such as its specular reflectance properties or 

elasticity.  In everyday language we use colour terms and words like ‘soft’, ‘lustrous’ 

or ‘sticky’ to describe the characteristics of materials. Visual estimation refers to the 

process of working out such properties.  Estimation is useful for making subtle 

discriminations between similar materials, and allows us, for example, to predict 

how a given material would be likely to respond to external forces, irrespective of 
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whether we have seen such a sample before.  Whereas categorization reduces 

information and tends to group materials together into nominal classes (at least in 

the limit), estimation tends to deal with metric differences between materials along 

continuous parameters. For example, if presented with a piece of glazed ceramic, we 

not only make the categorical judgment that the surface is glossy rather than matte, 

but also have a perceptual impression of the degree of glossiness along some 

continuous subjective scale.  In this respect, estimation is computationally more 

challenging in the sense that it results in a higher fidelity of representation (i.e., 

higher information) than categorization.  It is also worth noting that while 

categorization deals with the identity of materials independently of their specific 

characteristics (e.g., quartz and granite are both stones, but they differ in terms of 

their transparency), estimation deals with properties that may be common to 

materials of very different classes (e.g., both quartz and water are transparent and 

glossy).  In this sense, categorization and estimation may be complementary to one 

another. 

In many cases, physics has developed sophisticated descriptions of material 

properties.  For example, the way light is reflected from a surface is completely 

described using the bidirectional reflectance distribution function (BRDF; Nicodemus, 

1965; Nicodemus, Richmond, Hsai, Ginsberg and Limperis, 1977), which measures 

the proportion of light reflected in every direction as a function of the amount of 

light arriving from every direction in the hemisphere above the local surface tangent 

plane.  Differences in appearance between surfaces like glossy plastics, brushed 

aluminium or matte paint are fully captured by the BRDF.  In principle, if the visual 

system estimated the BRDFs of surfaces, it could represent the reflectance properties 

of any arbitrary material.  However, even if we ignore wavelength variations, the 

BRDF is a function of four variables (two incoming angles and two outgoing angles), 
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making representing arbitrary BRDFs computationally costly.  Fortunately, however, 

the BRDFs of real materials are highly constrained and represent only a tiny 

subspace within the set of all possible BRDFs.  In fact, the reflectance properties of 

many materials can be quite well approximated by analytical BRDF models with just 

a handful of parameters (Torrance and Sparrow, 1967; Ward, 1992; Oren and Nayar, 

1994; Ashikhmin and Shirley, 2000; Matusik, Pfister, Brand and McMillan, 2003), and 

even quite complex materials like multi-layered paints can often be modelled as the 

linear combination of a few such layers (e.g., Günther et al., 2005). 

Most analytical models separate reflectance into diffuse and specular 

components and have parameters controlling the relative weight of these terms (e.g., 

albedo and specular reflectance) and their angular distributions (e.g., the spread and 

anisotropy of the specular lobe).  Varying these parameters has broadly intuitive 

perceptual consequences for the appearance of the surface (Figure 2).  For example, 

increasing the albedo makes the surface appear a lighter shade of grey; increasing the 

specular reflectance makes the surface appear glossier (from left to right in the 

figure), and increasing the anisotropy of the specular lobe makes the highlights 

elongate as seen on varnished wood or brushed metal.  Thus, it has become natural 

to pose the visual perception of surface reflectance as the process through which the 

visual system estimates these physical parameters.  When we say that we see a 

surface as having a certain degree of glossiness, it is commonly assumed that this is 

because the visual system has estimated a specific value of specular reflectance for 

that material. 
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FIGURE 2.  Varying the parameters of a BRDF model (Ward, 1992) 
leads to continuous changes in the appearance of the surface.  It is 
common to pose visual reflectance estimation as the process of 
identifying the values of the parameters of a reflectance model. 

 

With this in mind, it is typically assumed that as a computational process, 

estimation takes some image information (‘cues’) as input and returns as output a 

visual estimate of various physical parameters of the material, perhaps along with a 

measure of the reliability or certainty of the estimates.  For example, returning to the 

example of a piece of glazed ceramic, it seems quite natural to pose gloss perception 

as the process of making various measurements of the highlights visible on the 

surface to derive an estimate of the magnitude of specular reflectance of the sample. 

When posed this way, the two key scientific questions raised by the visual estimation 

of material properties are: (1) ‘what are the cues?’—in other words, which image 

information does the visual system rely on to derive its estimate?—and (2) ‘how does 

the visual system compute the target material property (glossiness, translucency, 
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viscosity, etc.) from these cues?’.  Most research on material estimation has focused 

on one or both of these questions.  However, as I argue below, formulating both the 

goal and process of material perception in terms of estimating physical properties may 

be problematic.  I suggest that by reformulating what we think ‘material perception’ 

means, we may stand a better chance of explaining some of the empirical curiosities 

that have emerged in the study of material perception (see below), and perhaps also 

unify categorization and estimation to some degree. 

In the following sections, we first discuss the key computational challenges 

posed by material perception; then discuss the two main theoretical approaches that 

have emerged to account for how the visual system overcomes these.  Using recent 

experiments that aim to shed light on the mapping between cues and material 

properties, I suggest that there may in fact be a third way of posing material 

perception. 

 

What makes material perception difficult? 

 Imagine being presented with two spheres: one is made of a highly polished 

chrome-like material, and the other of pearlescent plastic material, as shown in 

Figure 3.  Because the two surfaces appear so different, it can be hard to appreciate 

what might be difficult about estimating reflectance properties from the retinal 

image.  However, it is important to remember that the input to the visual system is 

highly ambiguous.  The intensities in the image are a complex and unknown 

combination of many distinct physical processes, including the lighting, material 

properties and object geometry.  In order to recover the intrinsic material properties 

of the surface—and identify which sphere is chrome, and which one is plastic—the 

visual system must somehow disentangle these various contributions from one 

another. 
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 One reason this is difficult is because the image of a given material can change 

dramatically depending on the context.  For example, the image of the chrome 

sphere consists of nothing more than a distorted reflection of the world surrounding 

it.  Therefore, when it is moved from one context to another, the retinal image 

changes dramatically (see Figure 3).  This means that the visual system cannot 

recognize materials by simply matching the image against a stored ‘template’. 

Somehow, the visual system has to abstract what is common to the appearance of the 

sphere across these different contexts. 

 

 

FIGURE 3:  Photographs of two materials in two different contexts.  We easily 
identify the spheres across changes in the illumination, and easily distinguish 
between the two spheres. 
 

 To make matters worse, a chrome sphere could, in principle, be made to take 

on any arbitrary appearance, simply by placing it in a carefully contrived context, so 

that it reflects certain intensities into the eye.  For example, by placing the chrome 
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sphere in a carefully designed ‘smooth’ world, it could be made to produce exactly 

the same pattern of pixels as one of the pearlescent spheres.  Because the images 

would be identical, the visual system would have no way to tell the difference.  

However, we do not have to go to such extremes to encounter problems.  In figure 3, 

the image of the mirrored and pearlescent spheres on the left (same illumination) are 

actually more similar to one another on a pixel-by-pixel basis than the two images of 

the chrome surface in different contexts (top row).  This occurs because the positions 

of the highlights and dark regions are the same when the illumination is the same. 

 This is the fundamental ambiguity facing the visual system: identical materials 

can create very different images, and very different materials can create surprisingly 

similar images.  Under arbitrary viewing conditions, the image would be completely 

ambiguous and the visual system would have no way of knowing which aspects of 

the image are due to the material, and which are due to lighting, geometry or other 

effects. 

 

TWO THEORETICAL APPROACHES TO MATERIAL PERCEPTION 

 

How then can the visual system overcome this ambiguity and estimate 

material properties?  Broadly speaking, two general approaches have been 

suggested.  The first is inverse optics, which is the idea that the visual system 

explicitly estimates and ‘discounts’ the contributions of illumination and geometry to 

the observed intensity values (Marr, 1982; Poggio and Koch, 1985; Poggio, Torre and 

Koch, 1985; Pizlo, 2001).  According to this line of reasoning, the visual system ‘runs 

physics in reverse’ to accurately model the physical properties of the scene, 

reconstructing the positions of light sources, the surface geometry and the physical 

reflectance parameters of the surface from the image. For example, von Helmholtz 
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(1867/1962) famously conjectured that the visual system recovers albedo by 

estimating and actively discounting the contribution of the illuminant to the 

observed image intensity.  Similar reasoning plays a role many more recent theories 

of colour constancy (e.g. Maloney and Wandell, 1986; Brainard, Kraft and Longère, 

2003; Yang and Maloney, 2003; Maloney, Boyaci and Doerschner, 2005).  In order to 

estimate the reflectance of the spheres in the figure, the visual system would model 

the scene surrounding the spheres, estimate that the surface is spherical, and use this 

information to factor out the contributions of lighting and geometry to the image.  

What is ‘left over’ once these other factors are removed would be the intrinsic 

reflectance properties of the object. 

The main advantage of such an approach is that the visual system would 

theoretically end up with a physical model of the scene, much like a scene description 

in computer graphics.  The main disadvantage is that the visual system is faced with 

a ‘chicken and egg’ problem: in order to estimate and discount the lighting, the 

visual system would need to estimate and discount the reflectance—but this is exactly 

what the brain is trying to work out in the first place.  To get around this problem, 

inverse optics models often invoke various kinds of a priori assumptions about the 

properties of the world.  For example, it is common to assume that the illumination 

comes from a single distant point source, or that the surface reflectance is uniform 

and Lambertian (i.e., completely matte).  This makes the problem tractable, but limits 

the range of viewing conditions and physical properties that can be recovered from 

the image.  More recent computational approaches have shown that it is possible to 

successfully separate BRDF and illumination in a Bayesian framework that uses 

more realistic assumptions about the world (e.g., Romeiro and Zickler, 2010a,b).  

However it remains unclear to what extent these results could be adapted to model 

human visual processing. 
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An alternative approach to inverse optics would be to identify image 

measurements that are diagnostic of material properties, but which remain roughly 

invariant across changes in the illumination.  That is, if there are certain image 

features that reliably correlate with a given material across a range of viewing 

conditions, then the visual system could use these measurements to recognize the 

material.  This way, rather than explicitly estimating and discounting the effects of 

the illumination on the image, the visual system would try to ‘ignore’ them, and 

rather than explicitly estimating physical reflectance parameters, the visual system 

would recognize materials by representing their typical appearance in the image.  

This approach—which we can call the image statistics approach—has gained 

considerable traction in recent years (e.g., Nishida and Shinya, 1998; Fleming et al, 

2003; Fleming and Bülthoff, 2005; Motoyoshi et al, 2007).  The logic underlying such 

an approach is as follows. 

When we posed the problem facing the visual system we argued that under 

arbitrary viewing conditions the image is ambiguous.  However, in the natural 

world, viewing conditions are not completely arbitrary. In the real world, 

illumination conditions are shaped by the environment, leading to certain statistical 

regularities that are generally well conserved from scene to scene.  These statistical 

regularities in the world mean that a given material tends to present certain 

statistical regularities in the image.  For example, although the precise positions of 

highlights and shadows can vary radically from scene to scene, certain features of the 

reflections (such as the average contrast or blurriness of the highlights) generally 

remain more constant.  Thus, a given material will tend to produce certain tell-tale 

statistical ‘signatures’ in the image, which the visual system could use to recognize 

different materials.  Detecting these signatures potentially allows the visual system 

to identify materials without having to accurately estimate all other parameters of 
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the scene.  This approach has the disadvantage that the visual system could be fooled 

when the assumed statistics of the world are infringed.  However, it has the 

advantage of being able to handle arbitrary material properties: as long as a material 

exhibits distinctive image features, the visual system can learn these to recognize the 

material. 

We tested this idea by presenting subjects with images of glossy spheres 

rendered under different illuminations (Fleming, et al., 2003).  Their task was to 

adjust the reflectance parameters of one sphere until it appeared to be made of the 

same material as the other sphere while ignoring any differences in illumination 

between the two spheres.  This allowed us to test the extent of ‘gloss constancy’, that 

is, the constancy of perceived gloss across changes in illumination conditions.  We 

found that when the spheres were rendered under illuminations that were 

photographically captured from the real world (Debevec, 1998)—as shown in Figure 

4a—subjects were quite good at performing the matches.  By contrast, when the 

spheres were illuminated under unnatural illuminations, such as the one shown in 

Figure 4b, performance decreased significantly.  This suggests that the visual system 

relies on characteristic signatures of specular reflection.  When the tacit assumptions 

about the statistical structure of the environment are infringed, gloss perception 

breaks down. 

(a) natural environment 
 

 

(b) unnatural noise environment 
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FIGURE 4. Computer simulations of two identical glossy spheres 
under (a) a real pattern of illumination, and (b) a pattern of random 
noise that has an unnatural intensity histogram. Observers reliably 
report that the sphere in (a) appears glossier than in (b) although the 
surfaces are identical. 

 

 

AN ALTERNATIVE VIEW OF MATERIAL PERCEPTION AS 

‘STATISTICAL APPEARANCE MODELS’ 

 

One conclusion of our experiments on gloss constancy is that the visual system 

is far from perfect.  We have ‘partial’ gloss constancy, as changing the illumination 

can also affect the perceived glossiness of surfaces.  This in itself is not very 

surprising, given that numerous experiments have documented the limits of 

lightness and colour constancy (e.g., Land and McCann, 1971; Arend and Reeves, 

1986; Bauml, 1993; Amano and Foster, 2004; Amano, Foster and Naschimento, 2006; 

Kraft and Brainard, 1999; Gerhard and Maloney, 2010; see Gilchrist et al, 1999 and 

Foster, 2011 for reviews).  These findings show that perceived albedo and surface 

colour also vary to some extent with the lighting.  Computationally it is also no great 

surprise.  If the goal of the visual system is to estimate the physical properties of the 

surface, and these are confounded with the illumination in the image, then it makes 

sense that errors in separating the two sources could lead to mis-estimates of the 

surface reflectance properties. 

However, more recent experiments have yielded some much less intuitive 

interactions between scene variable.  For example, Ho, Landy and Maloney (2008) 

measured the perceived glossiness of surfaces with different reliefs.  Their surfaces 

consisted of a conglomeration of ellipsoids, forming a smooth, bumpy surface, 

whose depth variations were varied across conditions, similar to the ones shown in 
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Figure 5.  Subjects judged both the relief and glossiness of the surfaces.  The 

somewhat unexpected result was that there was a significant ‘contamination’ 

between judgements of the two parameters.  In other words, when asked to estimate 

the glossiness of the surface, the judgments varied significantly depending on the 

depth of the relief.  This is a surprising finding: why should the visual system get 

confused between glossiness and surface relief? 

 

Figure 5: Images of glossy reliefs like those used by Marlow et al. (2012).  All four 
surfaces have identical reflectance properties and yet the perceived glossiness varies 
depending on the interactions between surface relief (left: shallow vs. right: deep) 
and illumination direction (top: oblique vs. bottom: frontal). Image copyright 2012 
Marlow, Kim and Anderson, reproduced with permission. 

 

To gain further insights into these unexpected results, Marlow, Kim and 

Anderson (2012) recently extended the range of conditions tested.  In addition to 

varying the relief and reflectance of the surface, they also varied the orientation of 

the illumination relative to the surface, so that it either arrived from head on, or from 

a more oblique angle.  As can be seen in Figure 5, the way these different factors 
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interact has very significant effects on the highlights visible in the image.  All four 

surface patches have identical surface reflectance properties, yet most observers 

perceive the patch with shallow relief and frontal illumination (bottom left) to appear 

significantly ‘more glossy’ than the others.  In fact, Marlow and colleagues found 

that the interactions between the factors were not only large, they were in some cases 

non-monotonic, which suggests that the effect is not a simple ‘contamination’ of one 

quantity (perceived glossiness) by another (relief), as originally appeared to be the 

case in the Ho et al. study.  For example, under oblique illumination, judgments of 

glossiness first increase and then decrease again as the depth of relief increases.  

What can account for these large and non-linear interactions between scene variables 

in the perception of gloss? 

A key observation that casts light on this question is that the interplay between 

illumination and surface relief has substantial effects on how large and pronounced 

the surface’s specular highlights appear in the image.  Shallow relief illuminated 

frontally leads to large, high contrast highlights that dominate the image, whereas 

when the same surface is illuminated obliquely, the highlights appear much smaller 

and less pronounced by comparison. 

This simple insight leads to a key hypothesis about gloss perception: when 

subjects are asked to report the apparent glossiness of a surface, it could be that their 

judgments reflect the extent to which the surface manifests salient specular reflections.  Put 

another way, it could be that subjects use the characteristics of the reflections—their 

size, contrast, distinctness, etc.—as a ‘proxy’ for estimating the intrinsic physical 

surface parameters, such as specular reflectance.  This makes intuitive sense as 

reflections and highlights are the defining visual characteristic of glossy surfaces.  

While surface reflectance properties are not visible directly, highlights and 

reflections—as the primary manifestations of specular reflection in the image—are 
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visible directly, and have properties that can be measured relatively easily by low- 

and mid-level visual hardware.  Glossier surfaces manifest more salient specular 

reflections than less glossy ones, and thus it makes intuitive sense for the visual 

system to attach special import to the size, contrast and distinctness of specular 

highlights as a way of characterising surface gloss. 

To test this hypothesis, Marlow and colleagues asked a different set of subjects 

to rate simple image properties of the highlights, such as their size, contrast and 

distinctness.  These subjects were not asked to judge anything about the intrinsic 

properties of the surfaces themselves, they simply had to focus on the 2D image 

appearance of the highlight regions of the image.  The results were quite striking.   

The authors found that a simple weighted combination of these latter judgments 

accounted for all the main trends in the glossiness judgments, including the non-

monotonic effects of surface relief and the interactions between relief and 

illumination direction.  That is, it is possible to predict gloss judgments just from the 

low-level image properties of the highlights.  Thus, when asked to compare the 

glossiness of different images of surfaces, what subjects actually appear to do is to 

compare the relative salience of the highlights, based on their size, contrast, 

distinctness, and so on. 

 

Statistical Appearance Models 

The idea that the visual system measures the properties of highlights instead of 

estimating the surface specularity perhaps sounds so obvious as to be almost trivial.  

However, it represents a subtle but profoundly significant shift in our understanding 

of what we mean by material perception.  It implies that the goal of surface 

reflectance perception is not to estimate the BRDF or some parametric approximation 

of the intrinsic physical properties of the surface—whether through inverse optics or 
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image heuristics.  Instead, the goal is to capture the typical ‘look’ of surfaces as they 

appear in the image, and to characterize how this appearance tends to vary from 

sample to sample.  That is, the goal of material perception is to identify and measure 

statistically informative appearance attributes—like the size, contrast and distinctness of 

highlights—that capture how variations in material properties manifest themselves 

in the image1.  Rather than estimating physical parameters of materials, the visual 

system somehow identifies key image parameters that vary between samples of 

related materials (e.g., surfaces with different degrees of gloss), and uses such 

measurements to represent the ‘typical appearance’ of glossy surfaces. 

With this in mind, the central theoretical speculation of this article is the 

following: 

We suggest that the brain is highly adept at inferring a type of 

generative model of material appearance—a ‘statistical appearance 

model’—which captures the natural degrees of variation between 

samples in terms of easily measured appearance properties. 

We suggest that from even a relatively small number of samples of different 

materials, the visual system rapidly infers how to parse the image into appearance 

characteristics (like properties of the highlights) that vary parametrically between 

samples.  Thus, such a generative model encapsulates the visual system’s 

                                                        
1 The term ‘appearance’ has different uses in different fields.  In psychology the 

term typically refers to the subjective phenomenological impression of surface 

characteristics.  By contrast, in computer graphics—and to some extent 

computer vision—the term ‘appearance’ is routinely used to refer to how surface 

properties manifest themselves in the image; that is, certain physical aspects of 

the proximal stimulus associated with the material. In this context, we 
deliberately conflate the two meanings to make the point that the subjective 

‘appearance’ of surfaces is intimately related to the goal of describing regularities 

in the proximal stimulus that they present to the visual system. We suggest that 

subjective ‘appearance’ is based on an internal model of ‘appearance’ (what 

surfaces look like in the image). 
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‘knowledge’ about the way samples typically behave, in terms of their changing 

appearance.  Unlike a physical model, which represents materials in terms of pre-

established intrinsic physical parameters, a statistical appearance model seeks to 

discover in what ways different material samples look different from one another, 

irrespective of the underlying physical basis for those differences (e.g., photon 

interference effects, microscopic roughness, and so on).  Unlike simple image 

heuristics, which seek to approximate physical parameters by mapping crude 

statistics—such as the skewness of intensity or sub-band histograms—directly to 

surface properties, an internal model makes it possible for the visual system to 

predict what new samples might look like even from only a small number of 

exemplars.  It is a generative model, which represents the dimensions along which 

samples tend to vary.  It is also essentially a ‘mid-level’ theory of perception, in 

which perceptual organization principles—including geometrical constraints—play a 

central role in inferring and representing the characteristics of samples.  

 

How might Statistical Appearance Models Be Computed? 

To give a concrete example of how such a model might be computed and what 

it represents, let us consider how the visual system could infer a statistical 

appearance model from images of glossy surfaces.  Our goal here is not to provide a 

detailed computational model, but rather to adumbrate some of the key elements or 

processing stages that such a model might contain.  We outline the approach in 

Figure 6. 
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FIGURE 6.  A cartoon schematic for inferring predicting plausible variations from a 
single exemplar image. 
 

Suppose an observer is presented with a single image of a glossy surface. The 

visual system’s goal is to work out in what ways the image would change if we were 

to change the properties of the surface.  In theory, there is an infinite number of 

possible ways that an image could change, so how can the visual system work out 

what other samples, with different properties, might look like? 

If the world were unconstrained, this would certainly be an impossible task.  

However, the real world is highly structured due to lawful generative processes, 

which have systematic effects on the image.  For example, in the real world, moving 

a light source does not cause arbitrary changes in intensity independently at each 

image location.  Instead, shading patterns undergo smooth and systematic 

transformations when light sources move.  Thus, we suggest that the visual system 

can rely on the fact that variations in meaningful parameters of the world—such as 

the lighting or reflectance properties of the surface—generally lead to systematic 

changes in the image.  The brain’s goal is to characterize those changes.  We suggest 

that starting with even a single exemplar of a material, the visual system may be able 

to cast initial hypotheses about which aspects of the image might be likely to change 

in which ways, and therefore develop an internal model of material appearance. 
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Specifically, we suggest that the visual system first uses general-purpose 

perceptual organization mechanisms to parse the image into salient regions or 

features, such as the highlights and shadows across the surface2. This segmentation 

provides some initial candidate features (e.g., highlights), which could plausibly vary 

in some measurable way with changes in the material properties.  Again, we do not 

assume the visual system knows anything about the physical laws of reflection, or 

the properties of surfaces: it is trying to discover which aspects of the image change 

in lawful ways from material to material.  The assumption is that in general, salient 

features are likely to relate in some systematic way to the underlying properties of 

the material.  Put another way, salient features are likely to be evidence of significant 

underlying causes—and are therefore likely to vary from sample to sample.  Of course, 

not all salient features turn out to vary in lawful ways, but they at least represent 

good initial candidates for building an internal model of material appearance. 

Depending on the properties of the candidate features (as well as prior 

experience with other models) it should be possible to cast initial hypotheses about 

their likely degrees of variation.  For example, as highlights differ from their 

surroundings in intensity, one plausible hypothesis is that the relative brightness of 

highlights might be an important feature: a feature that varies systematically from 

material to material. Along similar lines, highlight regions may also differ from 

sample to sample in terms of their size, shape, position or other measurable 

properties. 

We suggest that this set of hypotheses about possible ways in which 

appearance features could vary from sample to sample represents an initial 

                                                        
2 The segmentation processes may also involve ‘scission’ mechanisms (i.e., source separation), 
which parse the image into ‘causal layers’, as in transparency (cf. Anderson, 1997). Although 
we do not understand exactly how such mechanisms work, there is extensive empirical 
evidence that the visual system is adept at distinguishing multiple superimposed image 
contributions. 



  

Material Perception   Roland W Fleming 

 29 

appearance model, which is then refined and corrected through experience with 

other samples.  When new samples are encountered, the visual system can track how 

candidate features vary to improve its appearance model of glossy surfaces.  For 

example, confirmation that different samples do have different highlight contrasts 

reinforces this element of the appearance model.  In contrast, observing that 

highlight colour tends not to change very much reinforces that it is not a natural 

degree of image variation associated with glossy surfaces.  The more evidence is 

provided, the more refined the appearance model becomes, but it remains, 

fundamentally a model of how image features tend to change, rather than an 

estimate of physical surface parameters. The key to the approach is that perceptual 

organization principles provide initial constraints on an otherwise limitless space of 

possible variations, and that accumulated experience with different materials allows 

the visual system to discover reliable dimensions along which samples tend to vary. 

This is, of course, a highly speculative proposal, and raises many questions 

about how the putative segmentation processes work, how the visual system learns 

which hypotheses to cast in the first place, and how new evidence is incorporated 

into the model as the observer gains experience with different surfaces.  It is 

important to point out that segmenting the image into diffuse and specular 

reflections, for example, is far from trivial, and a considerable amount of research 

still needs to be done to understand how such perceptual organization mechanisms 

work.  It is likely that the segmentation processes, and resulting appearance model 

take into account multiple photo-geometric constraints, such as the consistency in 

image orientation between shading gradients and highlights (Beck and Prazdny, 

1981; Fleming et al, 2004; Todd, Norman and Mingolla, 2004; Marlow, Kim and 

Anderson, 2011).  It remains unclear at what level these constraints are imposed.  

Raw filter responses and intensity statistics are presumably not sufficient to measure 



  

Material Perception   Roland W Fleming 

 30 

the relevant relationships between features, so additional grouping processes must 

be involved.  At the same time, it may not be necessary for the visual system to 

determine consistency in world coordinates, using explicit estimates of unseen 

elements (e.g., light sources, rays, etc).  For example, the visual system may not 

necessarily enforce consistency between shading and highlights in terms of 

consistency between estimates of the 3D surface structure and estimates of the light 

sources using ray geometry to enforce consistency.  Instead, it may detect 

consistency in terms of image-level features, such as the directions of intensity 

gradients that are attributed to different causes.  Thus, ‘mid-level’ visual processes 

(Adelson, 1999) may be sufficient to express the crucial photo-geometric constraints.  

By posing gloss perception this way, we believe we can make progress in 

understanding some of the otherwise confusing effects and interactions between 

different scene variables. 

 

THEORETICAL BENEFITS OF STATISTICAL APPEARANCE MODELS 

 

If the visual system cannot or does not estimate intrinsic physical parameters in 

the case of surface reflectance perception, there are scant grounds for thinking that it 

estimates intrinsic physical parameters for other material properties.  Estimating 

complex real-world properties, like translucency, elasticity, viscosity or sponginess—

whether through inverse physics or image heuristics—is surely at least as difficult as 

surface reflectance estimation.  We therefore suggest that the general strategy of 

representing appearance differences likely applies to the perception of all kinds of 

material properties. Indeed, one of the major computational benefits of inferring an 

appearance model—as opposed to estimating physical parameters—is that it is 

highly flexible: it is unconstrained by pre-defined parameters of the physical model, 
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and can readily adapt to new materials (and new properties) that have never been 

seen before. Not only do we encounter new materials throughout our childhood, 

from time to time material science also creates new materials with completely novel 

appearances, such as complex paints and textiles with unusual colour characteristics, 

or holograms, which have a highly distinctive ‘look’, quite unlike most natural 

materials.  A brain that represents material properties in terms of appearance 

features can learn these new materials by identifying statistical regularities in the 

patterns of sensory activity they evoke. 

 

Representing arbitrarily complex material properties 

More importantly, by focussing on appearance, the visual system can capture 

arbitrarily complex physical processes, as long as they lead to systematic variations 

in features that can be easily measured.  For example, consider the cylinders 

presented in Figure 7, from a recent computer graphics article (Narain, Pfaff and 

O’Brien, 2013), in which the authors model the crumpling behaviour of thin elastic 

and plastic sheets.  The model has a number of physical parameters, which control 

the behaviour of the material in response to external forces (here, a compression of 

the cylinders).  In the figure, one of the model parameters varies from left to right 

leading to a vivid subjective impression of differences in the properties of the 

material. 
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FIGURE 7: A series of simulated crumpled materials reprinted from 

Narain et al., (2013).  From left to right, one parameter of the physical 

model varies, leading to different crumpling behaviour and a 

concomitant change in appearance. Image copyright 2013, Narain, Pfaff, 

and O'Brien, reproduced with permission. 

 

The cylinder on the left appears to be a thin, papery material, as seen on a 

Chinese lantern, whereas the one on the far right appears to be thicker and more 

rubbery material, which buckles elastically under pressure.  The underlying physical 

processes are highly complex, and it seems quite implausible that the visual system 

has a sophisticated internal model that captures these physical processes and 

estimates the parameters of the model.  However, despite the complexity, at the 

phenomenological level, the emergent effects of the crumpling process are relatively 

straightforward, and leave clearly identifiable signatures in the shape of the object.  

The crumples in the ‘papery’ cylinder are smaller, higher frequency and have 

sharper creases than the smooth, large scale undulations of the ‘rubbery’ cylinder.  It 

seems much more plausible that the visual system identifies the key statistical 

differences between the materials, expressed in terms of these mid-level appearance 

characteristics, rather than estimating or approximating intrinsic parameters. 

 

Statistical generative models as categorization in high-dimensional feature spaces 
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Another important advantage of statistical generative models is that they 

embody knowledge about the relationships between material samples, and are thus 

more expressive than simple heuristics.  A ‘Bag of Tricks’ (Ramachandran, 1985) 

view of material perception—based on simple correlations between image features 

and physical surface parameters—does not capture a deeper understanding of the 

underlying generative processes that are responsible for the correlations.  In their 

simplest form, heuristics represent a case-by-case mapping from sensory 

measurements to physical properties.  In contrast, by capturing the typical behaviour 

of materials with an internal model, the visual system can also predict, to some 

extent, what plausible variations of exemplars might look like, and thus relate 

samples to one another in meaningful ways.  An internal model adds 

‘understanding’ to the heuristics by predicting the sensory consequences of changing 

samples and viewing conditions, much as internal models of limb movements are 

thought to predict the sensory consequences of actions (Wolpert, Miall and Kawato, 

1998). 

Indeed, by formulating material perception as the process of discovering 

statistical relationships between samples, we can to some extent unify estimation and 

categorization into a common theoretical framework, as depicted in Figure 8. We can 

think of individual samples of materials as points in a high-dimensional feature 

space (Figure 8a), where the features represent appearance characteristics, like the 

smoothness or extendedness of the liquid.  Different materials which differ, for 

example, in terms of their viscosity, occur at different locations within the feature 

space, tracing out a sub-space or manifold within the space of all possible 

appearances. Material estimation is the process of establishing the true position of a 

given sample within the feature space (Figure 8b), and material categorization is the 

process of identifying the boundaries separating different classes of material.  A 
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statistical appearance model facilitates both of these processes because it represents a 

hypothesis about the shape and internal parameterization of the sub-space occupied 

by related materials, and thus determines which appearance features are important 

for a given class of material.  In other words, learning to estimate viscosity can be 

thought of as the process of working out how to parameterize the sub-space 

occupied by viscous materials, for example, through non-linear dimensionality 

reduction (Tenenbaum, de Silva & Langford, 2000; Roweis & Lawrence, 2000). 

 

FIGURE 8: Relationship between statistical appearance models and material 
categorization, based on samples of viscous liquids. 
 

A generative model that predicts natural degrees of variation between samples 

(Figure 8c) is equivalent to casting a hypothesis about the distribution of samples in 

the feature space (Figure 8d). As we experience more material samples, the accuracy 
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of the model improves, providing more accurate category boundaries as well as a 

more accurate representation of the natural dimensions of variation between samples 

within a class.  We have speculated that the visual system derives initial hypotheses 

about the likely dimensions of variation between samples by parsing images into 

candidate features.  This would potentially allow the visual system to infer material 

classes, and identify key dimensions of variation based on just a small number of 

exemplars. One of the most remarkable aspects of material perception is that when 

presented with just a small number of samples of related stimuli, we seem to be able 

to rapidly identify which features we should use for comparing them.  One very 

interesting direction for future research is to test how subjects learn to recognize and 

distinguish novel materials (e.g., using simulations of BRDFs that are quite unlike 

those seen in natural materials) from small numbers of exemplars.  If our hypothesis 

is correct, subjects should be able to identify key dimensions of variations from just a 

few samples, allowing them to predict the appearance of intermediate materials, for 

example. 

This view of material perception is inspired by ideas from machine learning, 

which pose learning as a process of inferring underlying generative processes from 

data samples (e.g., Kemp and Tenenbaum, 2008; Schmidt and Lipson, 2009; 

Tenenbaum et al, 2011).  Given only limited data, the expressiveness of the model is 

limited, and distinct physical processes may be conflated.  For example, when a 

runny liquid is poured, the height of the splash is influenced by both the viscosity of 

the liquid and the height over which the liquid is poured.  However, given only 

limited experience, the visual system may be unable to distinguish between these 

two factors and therefore conflate them in its representation of the liquid.  This 

would show up as apparent errors in ‘estimates of viscosity’, with the visual system 
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unable to separate the effects of height from the effects of the intrinsic properties of 

the material. 

Of course, a sufficiently detailed appearance model (i.e., one inferred from 

sufficient samples) should be able to separate distinct underlying causes as long as 

these create systematic and distinct effects on measured image features.  By 

representing samples in a high-dimensional (over-complete) feature space, the visual 

system may be able to tease apart factors that have different physical origins.  

Statistical appearance models see this separation as a process of discovering distinct 

dimensions of variation between observed samples distributed in the feature space—

rather than the application of pre-defined strategies to estimate specific physical 

quantities. 

For example, when judging surface lightness, both reflectance and illuminance 

contribute to the observed image intensity of a surface patch.  Given only isolated 

luminance measurements, there is no way in principal to separate the two factors to 

correctly infer surface albedo.  Therefore, an appearance model based solely on 

luminance would confound illuminance and reflectance changes: increasing either 

factor would make the surface appear brighter.  In traditional parlance, this would be 

a ‘failure of lightness constancy’, although of course, brightly illuminated surfaces do 

tend to appear subjectively brighter (although not lighter), presumably reflecting the 

fact the image intensity is an important dimension of variation between samples and 

thus serves as a useful low-order characterisation of appearance, even though it is 

not specifically diagnostic of reflectance.  However, Gilchrist and Jacobson (1984) 

have shown that observers can distinguish a dark gray room under bright light from 

a light gray room under dim light, even when the average luminance is the same for 

the two rooms.  This shows that the visual system does not rely solely on raw 

luminance values to represent the difference between different samples.  In other 
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words, the appearance model for illuminated matte surfaces is not unidimensional.  

The input relies on more features (dimensions) than just luminance, and the resulting 

appearance model captures more natural degrees of variation between samples than 

just ‘brightness’.  The idea that lightness perception probably involves more than one 

subjective dimension has been discussed widely (Katz, 1935; Arend & Reeves, 1986; 

Whittle, 1992; Logvinenko and Maloney, 2006; Anderson and Winawer, 2008; 

Shapiro, 2008; Vladusich, 2012).  According to the statistical appearance model idea, 

this reflects the fact that observers have internalized the statistical ‘look’ of inter-

reflections, using higher order image features (contrasts, filter responses, etc.) in 

conjunction with luminance.  It is these higher-order degrees of variation between 

samples that allow observers to distinguish the distinct contributions to observed 

luminance from reflectance and illuminance. 

 

Predicting systematic estimation errors and other eccentricities of material 

perception 

Importantly, statistical appearance models also predict several perceptual 

phenomena that would otherwise be difficult to understand if the visual system’s 

goal were to estimate physical properties of surfaces.  There are many cases in which 

scene parameters have non-intuitive effects on material perception.  We have already 

suggested that appearance-based explanations may account for some of these, such 

as the complex non-monotonic interactions between illumination, relief and 

glossiness in the studies by Ho et al. (2008) and Marlow et al. (2012). 

They probably also account for the effects of other scene variables that we have 

observed in the perception of transparent materials (Fleming, Jäkel and Maloney, 

2011).  When a thick transparent object is placed in front of a patterned background, 

the patterns that are visible through the object appear spatially distorted due to 
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refraction.  The degree of distortion depends on the refractive index, a physical 

parameter of the material that determines how light is ‘bent’ as it passes through the 

object.  This means that the visual system could use estimates of the degree of 

distortion to infer the material properties of the object.  However, the degree of 

distortion also varies with other scene variables, including the 3D thickness of the 

refracting object, as well as its distance from the background that is visible through 

it. 

We asked subjects to adjust the refractive index of one simulated object to 

match the apparent material properties of another transparent object, which had a 

different thickness or distance to the background.  We found that subjects’ matches 

were substantially biased by the thickness or distance of the object, even though 

these scene variables have nothing to do with the intrinsic properties of the material.  

However, these biases can be easily understood if instead of estimating the physical 

refractive index of the transparent objects, subjects simply match the degree of 

distortion observable in the image.  Because the salient consequence of refraction is 

spatial distortion of the background, subjects use this distortion to capture the 

appearance of refractive materials. 

It is important to note that observing ‘perceptual errors’ in material perception 

experiments does not on its own rule out the possibility that the visual system is 

trying to estimate physical surface parameters and failing (or only imperfectly 

succeeding).  Indeed, to equate the estimation of physical properties with perfect 

performance would be a ‘straw man’ as it is well known that biological vision is far 

from perfect.  The point is rather to account for the specific pattern of errors.  It is 

difficult to address experimentally the teleological question of the true nature of the 

visual system’s ‘goal’.  In the limit, a highly detailed and accurate appearance model 

may yield patterns of results that approximate what a full inverse optics 
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computation would achieve.  Nevertheless, I suggest that where errors are large and 

systematic (i.e., not just noise), posing material perception as a process of 

representing appearance changes rather than the estimation of internal parameters 

provides a useful way to understand patterns of successes and failures. Perceptual 

theories based on analytical representations of the inverse optics problem do not 

readily predict which image information the visual system relies on, or why in some 

cases the visual system fails to compensate for the spurious affects of different scene 

factors on image measurements.  By contrast ‘statistical appearance models’, or other 

data-driven approaches are directly connected to the image measurements.  Thus, 

appearance models may offer a way to plug the explanatory gap between simple 

image measurements and higher-level goals, like representing the structure of the 

world in sufficient detail to support successful interactions.  

The idea that the visual system does not care about estimating physical scene 

parameters may also explain the curious fact that hue is a circular dimension.  It is 

widely assumed that the goal of early colour processing is to infer a low dimensional 

estimate of the distribution of wavelengths in the stimulus from cone excitations 

(Wandell, 1995).  In spectral terms, narrow-band stimuli that evoke red and purple 

colour sensations lie at opposite ends of the visible spectrum.  Despite this, in terms 

of subjective appearance, red and purple lie next to one another on the hue circle, 

which wraps the two ends of the spectrum close to one another. Purple appears more 

similar to red than green does, even though, in physical (spectral) terms green is 

closer to red than purple is. 

If the goal of colour perception were to estimate the physical spectra of sources 

or surfaces, and to accurately represent the physical similarities or differences 

between stimuli, then this circularity makes no sense: why should hue be a circular 

dimension when wavelength is a linear dimension?  In the case of pitch perception, 
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the physical properties of oscillating sound sources tend to create harmonic 

relationships between frequencies.  This may explain why tones that are separated 

by an octave, for example, appear subjectively similar to one another: raising a 

harmonic signal by an octave leads to a physically similar signal (minus the 

fundamental).  But in colour, there is no equivalence of harmonic relationships.  

Wavelengths are not coupled in the same way because colours are not created by 

standing wave oscillators like many sound sources are, and thus there is no 

‘circularity’ in spectral relationships.  One possible explanation is that circularity 

provides a way to represent similarity relationships between more complex spectra: 

for example placing spectra that are a combination of long and short wavelengths 

subjectively in between spectra that contain only short or long wavelengths.  

However, this could also be achieved using some Cartesian (rather than polar), 

organization of colour space.  Another possibility is that the visual system does not 

care about representing the physical similarity between stimuli with different spectra.  

Instead, there may be some other organizational principles that benefit from 

representing hue on a circle.  Future research—perhaps considering the effects of 

ripening, changes in daylight, or internal constraints, like the computation of iso-hue 

flow patterns—may provide an explanation of why hue is circular. 

In summary, statistical appearance models are easier to compute than physical 

models, and more expressive than simple heuristics.  Such models capture not only 

the key characteristics of individual samples, but also the relationships between 

samples, including novel samples that have not been seen before, by representing a 

material’s natural dimensions of variation. Appearance-based (rather than physics-

based) explanations of material perception account for the otherwise baffling effects 

of irrelevant scene variable on material perception.  Taken together, this suggests 
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that statistical appearance models represent a powerful and flexible way of thinking 

about how the visual system represents material properties. 

 

Beyond Material Perception 

In this article, we have suggested that when we look at an object and 

experience a vivid subjective impression of its material properties, we are not 

actually perceiving its physical properties at all.  Instead, we have learned a set of 

appearance characteristics—i.e., properties of the way the material tends to appear in 

the image—that capture its distinctive ‘look’. The frothy head of the freshly poured 

wheat beer doesn’t look like surface tension and sub-surface scatter in action.  It 

looks like a certain kind of whitish, softish, stuff that is different in important sensory 

ways from the whitish, softish stuff on the inside of a banana skin.   

What consequences does this view of material perception have for the rest of 

perception?  I suggest that the visual characterisation of material appearance is likely 

to be just a special case of a much more general perceptual and cognitive faculty for 

inferring statistical regularities related to the high-level attributes of things, scenes 

and events. The Gestalt psychologists referred to the ‘tertiary’ qualities of sensory 

experiences, such as the ‘mood’ of a room or the gracefulness of a ballet dancer. 

Much of the aesthetic pleasure of sensory experience seems to reside at this level of 

experience: the visual pleasure of seeing a curtain buoyed by a breeze, the poise of a 

well-crafted sculpture, or the melancholy air of favourite melody.  How does the 

visual system represent these aspects of the world? 

Presumably there are some physical regularities that underlie such experiences, 

as we can judge them consistently and dispute their relative merits with other 

observers.  Yet, at the same time, it seems very difficult—perhaps even impossible—

to describe what we are responding to in purely reductive physical terms.  When we 
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hear someone speaking through a wall and can identify a familiar accent even 

though we do not understand the words, or when we note similarities in 

handwriting style between a father and son, it seems highly improbable that we are 

inferring properties of a physical generative model.  What would this even mean?  It 

would be almost comical to praise the low-level physical characteristics of a dancer’s 

movements such as the ratio of tensions in particular muscle groups.  Surely these 

experiences—the differences between good and bad dancers, etc.—are expressed 

along some other kinds of appearance dimensions.  When we experience tertiary 

properties of objects, scenes and events, there is no concept of a physical model.  

Why, then, should the properties of materials be different? 

 

 

CONCLUSIONS 

 

The subjective visual experience of materials and their properties is vivid and 

nuanced but poorly understood.  Research over the last decade or so has started to 

make progress in this important area but each new finding seems to raise many new 

questions.  Different senses make fundamentally different kinds of measurements 

about materials, so how are these different quantities compared and combined to 

yield a multi-sensory impression of material properties?  To what extent and in what 

ways does semantic knowledge about materials influence perceptual processing?  

What limits our ability to generalize perceptual knowledge about specific 

materials—or material classes—to novel viewing situations?  Future research must 

address questions such as these. 

One theoretical idea that has been gaining traction is that the visual system 

may rely on a heuristic approach based on various image statistics that correlate with 
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material properties.  Such an approach is appealing because it would not require the 

brain to perform sophisticated computations to arrive at estimates of material 

properties.  However, as we have argued here, this approach is not without its 

problems.  Given that there are often many possible image measurements that 

correlate to a greater or lesser extent with any given material property, there is a risk 

that the field will become satisfied simply to collect such correlations without 

seeking a deeper theoretical understanding of the origin of these cues.  It is 

important that we test the ability of each hypothesized cue to predict not only the 

successes but also the failures of material perception.  Methods must be developed 

for perturbing the putative image properties and measuring the consequences for 

perception, to establish their causal role in each judgment.  Theory must be 

developed to model the processes through which the visual system selects which 

cues to use for any given material perception task.  Ultimately, we must not only be 

able to answer the question “which cues does the visual system use?” but also the 

question “how does the visual system end up using this cue, rather than some 

other?”  As this area of study matures, we must not allow material perception 

research to slip into a theory-blind process of collecting large numbers of weak 

correlations.  This surely would not count as a deep understanding of how the brain 

works out how stuff looks. 
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HIGHLIGHTS 
 

In this review article, I suggest that the human visual system does not 
estimate the physical properties of materials and objects, but instead infers a 
kind of generative model—a ‘statistical appearance model’—that 
characterizes the natural degrees of variation between samples of different 
materials, expressed in terms of low- and mid-level image features.  I discuss 
several curious findings from the literature and argue that such a model can 
account for these findings. 
 
 

 


